Mathematical Journal of Okayama University

Volume 22, Issue 1 1980 Article 1

JUNE 1980

A note on commutative separable algebras

Stuart Sui-Sheng Wang*

Copyright ©1980 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Okayama University

Math. J. Okayama Univ. 22 (1980), 1-3

A NOTE ON COMMUTATIVE SEPARABLE ALGEBRAS

STUART SUI-SHENG WANG

In this note, we prove that separability descends by faithful flatness and hence is a local property. We also prove that separability is a punctual property over a semi-local ring.

Throughout this paper, rings and algebras are commutative with identity and ring homomorphisms carry the identity to the identity. In what follows, A denotes a ring with identity 1 and B an A-algebra. B is a separable A-algebra if and only if there exists an element e in $B \bigotimes_A B$ such that $(b \bigotimes 1) e = (1 \bigotimes b)e$ for all $b \in B$ and p(e) = 1, where p is the multiplication map from $B \bigotimes_A B$ to B ([3, p. 40]). It is easily seen that e is idempotent and unique. This element is called the separability idempotent of B over A, and is invariant under the switch map $B \bigotimes_A B \to B \bigotimes_A B$ given by $b_i \bigotimes_b b_j \mapsto b_j \bigotimes_b b_i$.

Now, it is well known that if B is separable over A then for any A-algebra C, the C-algebra $B \otimes_A C$ is again separable. Moreover, by [4, Prop. 2.2 (c)], it is known that if C is a faithfully flat A-algebra and $B \otimes_A C$ is separable over C then B is separable over A, provided that B is finitely generated as an A-algebra. Our main result is that the hypothesis on B is not necessary.

Theorem 1. Let B be an A-algebra and C a faithfully flat A-algebra. If the C-algebra $B \otimes_A C$ is separable, then B is separable over A.

Proof. Let ε_0 (resp. ε_1): $C \to V = C \bigotimes_A C$ denote the A-algebra homomorphism defined by $c \mapsto 1 \bigotimes c$ (resp. $c \to c \bigotimes 1$). Then, the homomorphisms

$$1 \otimes \varepsilon_i : U = B \otimes_A C \longrightarrow W = B \otimes_A C \otimes_A C \quad (i = 0, 1)$$

give rise to the homomorphisms

$$(1 \otimes \varepsilon_i) \otimes (1 \otimes \varepsilon_i) : U \otimes_c U \longrightarrow W \otimes_V W \qquad (i = 0, 1).$$

Moreover, we have the homomorphisms

$$U \xrightarrow{\ell} U \bigotimes_{\operatorname{Im}(\varepsilon_{i})} V \xrightarrow{\nu_{i}} \operatorname{Im} (1 \bigotimes \varepsilon_{i}) \cdot V = W \quad (i = 0, 1)$$

where $\mu(u) = u \otimes 1$, and $\nu_i(u \otimes v) = (1 \otimes \varepsilon_i)(u)v$. Now, in general,

if U is separable over T and V is any T-algebra, then the separability idempotent for U over T goes to the separability idempotent for any homomorphic image of $U \otimes_{\tau} V$ over V. Applying this to our case, we see that the separability idempotent e' of U over C (which is an element of $U \otimes_{c} U$) must be sent to 0 under the difference $d = (1 \otimes_{\varepsilon_0}) \otimes (1 \otimes_{\varepsilon_0}) - (1 \otimes_{\varepsilon_1}) \otimes (1 \otimes_{\varepsilon_1})$. Since C is faithfully flat over A, it follows from [2, Lemma 3.8] that the sequence

$$0 {\longrightarrow} B {\bigotimes}_{{\scriptscriptstyle{A}}} B {\stackrel{\rho}{\longrightarrow}} B {\bigotimes}_{{\scriptscriptstyle{A}}} B {\bigotimes}_{{\scriptscriptstyle{A}}} C {\stackrel{1 {\bigotimes} 1 {\bigotimes} \varepsilon_0}{\longrightarrow} - 1 {\bigotimes} 1 {\bigotimes} \varepsilon_1} {\stackrel{1}{\Longrightarrow}} B {\bigotimes}_{{\scriptscriptstyle{A}}} B {\bigotimes}_{{\scriptscriptstyle{A}}} C {\bigotimes}_{{\scriptscriptstyle{A}}} C$$

where $\rho(m) = m \otimes 1$, is exact. From this, one will easily see that the sequence

$$0 \longrightarrow B \otimes_{A} B \stackrel{\sigma}{\longrightarrow} U \otimes_{C} U \stackrel{d}{\longrightarrow} W \otimes_{T} W$$

where $\sigma(b_1 \otimes b_2) = (b_1 \otimes 1) \otimes (b_2 \otimes 1)$, is also exact. Hence there exists an element e in $B \otimes_A B$ so that $\sigma(e) = e'$. Obviously, p(e) = 1, and $(b \otimes 1)e = (1 \otimes b)e$ for all $b \in B$. Thus, B is separable over A, completing the proof.

An application of Th. 1 is the following corollary which shows that separability is a local property.

Corollary 2. Let B be an A-algebra and let $\{f_1, \dots, f_n\}$ be a family of elements of A which generates the unit ideal of A. Then B is separable over A if and only if for all i, B_{f_i} is separable over A_{f_q} , where A_{f_i} is the ring of fractions of B having denominators equal to some power of f, and $B_{f_i} = B \bigotimes_A A_{f_i}$.

Proof. By the result of [1, Ch. II, Prop. 5.1.3], $C = \prod_{i=1}^{n} A_{f_i}$ is a faithfully flat A-algebra. From this, the assertion follows immediately.

As a second application of Th. 1, we have the following corollary which shows that separablility is a punctual property provided that the base ring has only a finite number of maximal ideals.

Corollary 3. Let A be a semi-local ring and B an A-algebra. Then the following conditions are equivalent.

- i) B is separable over A.
- ii) $B_{\mathfrak{p}}$ is separable over $A_{\mathfrak{p}}$ for each prime ideal \mathfrak{p} of A.
- iii) B_{m} is separable over A_{m} for each maximal ideal m of A.

Proof. Only iii) \Rightarrow i) needs proof. Let $\mathcal Q$ denote the set of maximal ideals of A. Since $\mathcal Q$ is finite, $\Pi_{\mathfrak{m}\in\mathcal Q}$ $A_{\mathfrak{m}}$ is faithfully flat over A by [1, Ch. II, Prop. 3. 3. 10].

Remark 1. By virtue of Corollary 2, we easily see that an A-algebra B is separable if and only if for every prime ideal $\mathfrak p$ of A, there exists an element t in $A-\mathfrak p$ (the complement of $\mathfrak p$ in A) such that B_t is separable over A_t . Moreover, the result of Corollary 3 is a partial generalization of [4, Prop. 2.5].

Remark 2. By Theorem 1, we see that for A-algebras B, C, if $B \otimes_A C$ is separable over C then B is separable over A, provided that $\{A, C\}$ is one of (1), (2) and (3):

- (1) A = a Noetherian ring, C =the I-adic completion of A where I is an ideal of A contained in the Jacobson radical of A ([1, p. 206]).
 - (2) A = a local ring, C = the Henselization of A ([3, p. 73]).
- (3) A = a coherent ring (e. g., a Noetherian ring), $C = A[[X_1, \dots, X_n]]$, a formal power series ring over A([1, p. 49]).

Lastly, the author would like to express his gratitude to Professor Alex Rosenberg for his kind advices.

REFERENCES

- [1] N. BOURBAKI: Commutative Algebra (Translated from the French. Actualités Sci. Ind. 1290, Hermann, Paris), Addison-Wesley, 1972.
- [2] S. U. Chase and A. Rosenberg: Amitsur cohomology and the Brauer group, Mem. A. M. S. 52 (1965). 34-79 (Reprinted. 1968). MR 33 #4119.
- [3] F. DEMEYER and E. INGRAHAM: Separable Algebras over Commutative Rings, Lecture Notes in Math. 181 (1971), Springer. MR 43 # 6199.
- [4] M. A. KNUS and M. OJANGUREN: Théorie de la Descente et Algèbres d' Azumaya, Lecture Notes in Math. 389 (1974), Springer. MR 53 #5209.

DEPARTMENT OF MATHEMATICAL SCIENCES OAKLAND UNIVERSITY

(Received January 1, 1979)