Mathematical Journal of Okayama University

Volume 22, Issue 1	1980	Article 13
	JUNE 1980	

A note on separable polynomials in skew polynomial rings of automorphism type

Takasi Nagahara*

*Okayama University

Copyright ©1980 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Math. J. Okayama Univ. 22 (1980), 73-76

A NOTE ON SEPARABLE POLYNOMIALS IN SKEW POLYNOMIAL RINGS OF AUTOMORPHISM TYPE

TAKASI NAGAHARA

Throughout, B will mean a ring with identity element 1. By $B[X; \rho]$, we denote a skew polynomial ring $\sum_{i=1}^{\infty} X^i B$ whose multiplication is given $bX = X\rho(b)$ ($b \in B$) where ρ is an automorphism of B. A monic polynomial $f \in B[X; \rho]$ is called to be separable (resp. Frobenius) if $fB[X; \rho] = B[X; \rho]f$ and the factor ring $B[X; \rho]/fB[X; \rho]$ is separable (resp. Frobenius) over B. Moreover, an element a of B is said to be π -regular (resp. left π -regular (resp. right π -regular)) if there exists an element c in B and an integer t > 0 such that $a^t ca^t = a^t$ (resp. $ca^t =$ a^{t-1} (resp. $a^t c = a^{t-1}$)). If every element of B is π -regular then B will be called to be π -regular (cf. [4]).

The main purpose of this note is to present a generalization of the result of S. Ikehata [1, Th. 1 (a), (b)] which is as follows: For $f = \sum_{i=0}^{n} X^{i} a_{i}$ $\in B[X; \rho]$, if f is separable and one of coefficients $\{a_{0}, a_{1}\}$ is π -regular (or left (or right) π -regular) then f is Frobenius (Lemma 2 and Th. 3). Moreover, some applications of the above will be given (Cor. 4 and Th. 5).

First, we shall prove the following lemma which is useful in our study.

Lemma 1. Let $f = X^n - \sum_{i=0}^{n-1} X^i a_i \in B[X; \rho]$ and $fB[X; \rho] = B[X; \rho]f$. Then

(i)
$$\alpha \rho^{i}(a_{i}) = \rho^{i}(a_{i})\rho^{n-i}(\alpha)$$
 $(n-1 \ge i \ge 0, t \ge 0)$ for all $\alpha \in B$.
(ii) $\rho^{n-1-i}(a_{i}) = a_{i}$ and $\rho(a_{i}^{2}) = a_{i}^{2}$ $(n-1 \ge i \ge 0)$.

Proof. We consider the factor ring $B[X; \rho]/fB[X; \rho]$ and set $x = X + fB[X; \rho]$. Then $x^n = \sum_{i=0}^{n-1} x^i a_i$. Hence we have

$$\begin{aligned} x^n x &= x^n \rho(a_{n-1}) + \sum_{i=0}^{n-2} x^{i+1} \rho(a_i) \\ &= \sum_{i=1}^{n-1} x^i (a_i \rho(a_{n-1}) + \rho(a_{i-1})) + a_0 \rho(a_{n-1}), \\ xx^n &= \sum_{i=1}^{n-1} x (a_i a_{n-1} + a_{i-1}) + a_0 a_{n-1}. \end{aligned}$$

Since $\{x^i \mid n-1 \ge i \ge 0\}$ is a right free *B*-basis of $B[X; \rho]/fB[X; \rho]$, it follows that

(1)
$$a_i\rho(a_{n-1}) + \rho(a_{i-1}) = a_ia_{n-1} + a_{i-1} \quad (n-1 \ge i \ge 1),$$

 $a_i\rho(a_{n-1}) = a_0a_{n-1}.$

74 T. NAGAHARA

Moreover, for any $\alpha \in B$, we have $\alpha x^n = x^n \rho^n(\alpha)$ which implies that $\alpha a_i = a_i \rho^{n-i}(\alpha)$ $(n-1 \ge i \ge 0)$, and so,

(2)
$$\alpha \rho'(a_i) = \rho'(a_i) \rho^{n-i}(\alpha) \quad (n-1 \ge i \ge 0, t \ge 0).$$

In particular, there holds that

(3)
$$a_i a_{n-1} = a_{n-1} \rho(a_i) \quad (n-1 \ge i \ge 0).$$

Now, we assume that $a_m a_{n-1} = a_{n-1}a_m$ for some $(n-1 \ge) m \ge 1$. Then by (1) and (3), we have

$$a_{n-1}a_{m}a_{n-1} + a_{n-1}a_{m-1} = a_{n-1}(a_{m}a_{n-1} + a_{m-1}) = a_{n-1}(a_{m}\rho(a_{n-1}) + \rho(a_{m-1}))$$

= $a_{m}a_{n-1}\rho(a_{n-1}) + a_{n-1}\rho(a_{m-1}) = a_{m}a_{n-1}a_{n-1} + a_{m-1}a_{n-1}.$

and hence $a_{n-1}a_{m-1} = a_{m-1}a_{n-1}$. Therefore, by induction method, we obtain

(4)
$$a_i a_{n-1} = a_{n-1} a_i \quad (n-1 \ge i \ge 0).$$

Now, by (1), (2) and (4), we have

$$a_{n-1}a_i + a_{i-1} = a_ia_{n-1} + a_{i-1} = a_i\rho(a_{n-1}) + \rho(a_{i-1})$$

= $\rho(a_{n-1})\rho(a_i) + \rho(a_{i-1}) = \rho(a_{n-1}a_i + a_{i-1}) \quad (n-1 \ge i \ge 1)$

which is ρ -invariant. We assume here that $\rho^{m-1-m}(a_m) = a_m$ for some $(n-1 \ge) m \ge 1$. Then, by (2) and the above, we see that

$$a_{m}\rho^{n-m}(a_{n-1}) + a_{m-1} = a_{n-1}a_{m} + a_{m-1}$$

= $\rho^{n-m}(a_{n-1}) + \rho(a_{m-1}) = a_{m}\rho^{n-m}(a_{n-1}) + \rho^{n-m}(a_{m-1}).$

This implies that $a_{m-1} = \rho^{n-m}(a_{m-1})$. Hence, by induction method, we obtain $\rho^{n-1-i}(a_i) = a_i$ for all $(n-1 \ge) i \ge 0$. Therefore, it follows from (2) that

$$a_{i}a_{i} = a_{i}\rho^{n-i}(a_{i}) = \rho^{n-i}(a_{i})\rho^{n-i}(a_{i})$$

= $\rho(\rho^{n-i-1}(a_{i})\rho^{n-i-1}(a_{i})) = \rho(a_{i}a_{i}) \quad (n-1 \ge i \ge 0).$

This completes the proof.

Next, we shall prove the following

Lemma 2. Let $f = X^n - \sum_{i=0}^{n-1} X^i a_i \in B[X; \rho]$ and $fB[X; \rho] = B[X; \rho]f$. Then, for a coefficient $a_m(n-1 \ge m \ge 0)$ of f, the following conditions are equivalent.

A NOTE ON SEPARABLE POLYNOMIALS

- (a) a_m is π -regular.
- (b) a_m is left π -regular.
- (c) a_m is right π -regular.
- (c)' $a_m^t B = a_m^{t+1} B$ for some integer $t \ge 0$.

Proof. Given an integer $t \ge 0$, Lemma 1(i) shows that for any $\alpha \in B$, $\alpha a_m^t = a_m^t \rho^{t(\alpha-m)}(\alpha)$ and $a_m^t \alpha = \rho^{t(\alpha-m)}(\alpha) a_m^t$. Using this fact, the assertion will be easily seen.

Now, we shall prove the following theorem which is our main result.

Theorem 3. Let $f = X^n - \sum_{i=0}^{n-1} X^i a_i \in B[X; \rho]$ be separable and one of coefficients $\{a_0, a_1\}$ π -regular. Then f is Frobenius.

Proof. First, we shall prove the assertion in case a_0 is π -regular. By Lemma 2, there exists an integer $t \ge 0$ such that $a_0^t B = a_0^{t+1} B$. In case either $a_0^t B = B$ or $a_0^t B = \{0\}$, there holds the assertion by the result of [1, Th. 1 (a), (b)]. Now, let $B \supseteq a_0^{t} B \supseteq \{0\}$. Then, we have t > 0and $a_0^t B = a_0^{2t} B = a_0^{4t} B$. Moreover, by Lemma 1, we have $a_0^2 B = B a_0^2$ and $\rho(a_i^2) = a_i^2$. Hence, as in [3, Lemma 1], there exist central idempotents e_1, e_2 in B such that $e_1e_2=0, e_1+e_2=1, e_1B=a_0^{1/2}B$, and $\rho(e_i)=e_i(i=1,2)$. Further, each $e_i f$ is separable in $e_i B[X; \rho | e_i B]$. Since $e_i a_0$ is inversible in e_1B , it follows from [1, Th. 1(a)] that e_1f is Frobenius over e_1B . Now, by [1, Lemma 1], there exist elements d_0 , d_1 in B such that $a_0d_0 + a_1d_1 = 1$. Then, by Lemma 1(i), we easily see that $a_0^{2t}u_0 + a_1u_1 = 1$ for some elements u_0 , u_1 in B. Since $e_2 a_0^2 u_3 = 0$, we have $e_2 a_1 u_1 = e_2$. This implies that e_2a_1 is inversible in e_2B . Hence by [1, Th. 1(b)], e_2f is Frobenius over e_2B . Therefore, again by [3, Lemma 1], it follows that f is Frobenius over B. A similar argument applies to case a_1 is π -regular, completing the proof.

As a direct consequence of Lemma 2 and Th. 3, we obtain the following

Corollary 4. Let B be π -regular. Then, any separable polynomial in $B[X; \rho]$ is Frobenius.

Next, we shall prove the following theorem which contains a generalization of the results of Ikehata [1, Cor. 3] and Miyashita [2, Cor. to Th. 3.5] to non-commutative artinian rings.

Theorem 5. Let B satisfy the descending chain condition on two-sided ideals. Then, any separable polynomial in $B[X; \rho]$ is Frobenius.

76

T. NAGAHARA

Proof. Let $f \in B[X; \rho]$ be a monic polynomial with constant term a_{0} , and $fB[X; \rho] = B[X; \rho]f$. Then by Lemma 1, we have $a_{0}^{*}B = Ba_{0}^{*}$ for any integer $s \ge 0$. Hence, by the assumption, there exists an integer $t \ge 0$ such that $a_{0}^{*}B = a_{0}^{*+1}B$. Therefore, it follows from Lemma 2 that a_{0} is π -regular. Combining this fact with Th. 3, we obtain the assertion, completing the proof.

We shall conclude our study with the following remark.

Remark. As in Th. 5, let *B* satisfy the descending chain condition on two-sided ideals. Then, *B* is a direct sum of a finite number of (directly) indecomposable rings B_i . Now let Z_i be the center of B_i , and α an element of Z_i . Since B_i satisfies the descending chain condition on twosided ideals, it follows that $\alpha' B_i = \alpha'^{-1} B_i$ for some integer $t \ge 0$. Hence B_i is the direct sum of $\alpha' B_i$ and the annihilator of α' in *B*. Since B_i is indecomposable, there holds that either $\alpha' B_i = B_i$ or $\alpha' B_i = \{0\}$. If $\alpha' B_i = B_i$ then α is inversible in B_i and so is in Z_i . Hence Z_i is a local ring. Thus, the center of *B* is a semi-local ring. Combining this fact with the results of Ikehata [1, Cor. 2 and Lemma 2], we see that any separable polynomial in $B[X; \rho]$ is Frobenius. We have therefore proved Th. 5 alternatively.

REFERENCES

- [1] S. IKEHATA: On a theorem of Y. Miyashita, Math. J. Okayama Univ. 21 (1979), 49-52.
- [2] Y. MIYASHITA: On a skew polynomial ring, J. Math. Soc. Japan 31 (1979), 317-330.
- [3] T. NAGAHARA: On separable polynomials of degree 2 in skew polynomial rings III, Math. J. Okayama Univ. 22 (1980), 61-64.
- [4] H. TOMINAGA: Some remarks on π-regular rings of bounded index, Math. J. Okayama Univ. 4 (1955), 135-144.

DEPARTMENT OF MATHEMATICS OKAYAMA UNIVERSITY

(Received November 12, 1979)