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SuGicur IKEHATA

In [3] and [4], K. Kishimoto studied some special separable polynomials
in skew polynomial rings, and in [7], T. Nagahara made a thorough
investigation of separable polynomials of degree 2. More recently, Y.
Miyashita [6] studied systematically separable polynomials and Frobenius
polynomials. .

In the present paper, we intend to make further progress on the study
in this direction, and generalize or sharpen some results obtained in [6],
[7] and [9].

Throughout the present paper, K will represent a ring with 1, p an
automorphism of X, and D a p-derivation of K (i. e. an additive endo-
morphism of K such that D(ab) = D(a) p(b) + aD(b) for all a, b € K).
Let R= K[X; p, D] be the skew polynomial ring in which the multipli-
cation is given by X = Xp(a) + D(e) (¢ € K). In particular, we set
K[X; p] =KI[X; p, 0], K[X; D] =K[X; 1, D] (and K[X] = K[X;
1, 0]). By Ry, we denote the set of all monic polynomials g in R with
Rg = gR. A ring extension A/B is called a separable extension if the
A-A-homomorphism of AQ) ;A4 onto A defined by a®@b— ab splits, and
A/ B is called a Frobenius extension if A, is finitely generated (f. g.)
projective and A is B-A-isomorphic to Hom (4, Bs). A polynomial g
in R, is called a separable (resp. Frobenius) polynomial if R/Rg is a
separable (resp. Frobenius) extension of K.

We use the following convensions :

Z = the center of K.

C(A) = the center of a ring A.

u, = the left multiplication by # € K, and #, = the right multiplica-

tion by .

I.., = the inner p-derivation effected by # € K; I, (@) = au — up(a)

(e € K).

L=IL,=u—w, and D,=1,,=p— 1.

K'={acK|p(a)=a}, K’={a€ K|D(a) =0}, and K"”=K"N K".

f=X"+X"'ap.+-+Xa,+a, (ER), and

Yo=X"'14+ X", 1+ -+ Xa,+ a;

Vi=X"?4+ X" 3qp 1+ +a,
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Ym_.z =X @

Y,.=1.

We borrow heavily of Miyashita [6] at various points. Among other
things, the following proved in [6, Theorem 1.8 and Proposition 1.13]
play essential roles in our study:

Theorem A. Let f bein Ry, and I= Rf. If f is separable then
there exists y € R with deg y <<m such that 37 Y,yX’ =1 (mod I) and
p"H@y=ya for all ac K, and conversely. In particular, f in K[ X]
is separable if and only if the derivative f' of f is invertible in K[X]
modulo I, (Note that f' = 275 V;X7.)

Theorem B. Let f bein Ry, and I= Rf. If f is Frobenius then
there exists r € R with deg r <<m such that r is inveriible in R modulo
I and p"'(a)r =ra (or rp™ (a)=ar) for all"a E K, and conversely. In
particular, f in K[(X; Dl is always Frobenius. (We can take 1 as 7.)

In §1, we consider the condition Rf=fR. The results obtained in
this section will play fundametal réles in our subsequent study. In §2, we
assume that pD = Dp, and introduce the notion of (p, D)-separability,
which is closely related to derivatives. The characterizations of (p, 5)-
separable polynomials will be given. §3 contains several remarks on
separable polynomials in K[X; p] and K[X; D], in particular, (7,
Theorems 2.19 and 3.5] will be generalized. In §4, K will be assumed
to be of prime characteristic p, and R will be K[X; D]. A criterion
for a p-polynomial in Ry, to be separable is given. In case D is Z-linear
(D|Z=0), this enables us to see that if R contains at least one (I, 5)-
separable p-poynomial then every separable p-polynolmial in R is (I, 5)-
separable. In §5, we define a QF-polynomial and show that every separable
polynomial in K[X; p] is a QF-polynomial. Finally, in §6, we show
that the question raised by Miyashita in [6] has an affirmative answer for
some special cases.

1. Polynomials in R, First, we state the following

Lemma 1.1. If f is in Ry, then af =fp"(a) (e = K) and Xf =
f(X — D,(an-)), and conversely.

Proof. Assume that Rf=fR. Since f is monic, for every ¢ € K
there exists » & K such that af =fb. Comparing the leading coefficients
of the both sides, we obtain & = p"(¢). Similarly, there exists ¢ € K
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such that Xf = f(X — ¢). Comparing the coefficients of X* in the both
sides, we have ¢ = D,(@.-).

Lemma 1.2. Assume that pD= Dp. Then Kf =fK (i.e. af = fp"(a)
(e € K)) if and only if ‘

a) ap™(a) = ﬁijﬁwﬁwwmemcgygm—u
In particular, if f is in K*°[X] and Kf = fK, then f, f' are in
C(K*?) [X].

Proof. Obviously, Kf = fK if and only if af =fp"(a) (@€ K). By
an easy induction, we obtain aX’=3 L l;X‘( ) oD (@) (a= K, j=0).
Hence

of = Tp( T X' (1) ' D (@) a, = Sita X' (i (4) oD @)

and ‘
fpm(a) = E:';ﬁ X‘a;‘om(a) .

From those above, we readily see that Kf = fK is equivalent to a).
Next, we shall prove the latter part. For any « = K, we have

af = S i X (77 D (@da)
= ST X7 (1) gD @
=X T X ( ) ' D' (a)a;
= S X (1) oD @),

Since 37, (4 ; p ' DI (@)a;=a;p™ '(a) by a), we obtain af’=f"p""'(a).
p P

In case R=K [X ; pJ, Lemma 1.1 can be stated more explicitly as
follows :

Lemma 1.3. Let f bein R= K[X: p]. Then f isin Ry if and
only if

a) aai=ap" (@) @EK, 0=i<m—1),

b) D,(a) = ainuDilany) O=i=m—2),

c) ayD,(@n-1) = 0. _ :
In particular, R(X+ a;)=(X+ao)R if and only if aa,= a,p(a)(a < K).

Proof. Comparing the coefficients, we!can easily see that af=jo"(a)
implies a) and Xf =f(X — D,(a,-;)) does b) and c), and conversely.
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Remark 1.4, Let f bein K[X; plw. Then, by Lemma 1.3, there
holds aD,(@n-1) = D,(an-1)p(a) (¢ € K), and if D,(a,.-,) =0 then f isin
C(K") [X],

Corollary 1.5. Let K be a semiprime ving, and R= K[X; pl.
If f isin Ru then D,(am-) =0, and hence f € C(K") [ X].

. Proof. By Lemma 1.3, @u-18n_) = @u1p(@n-) and @n-) p(@n-1) =
pl@n-1) p(an-1), i€ @n1D(@n) = 0= Dan_,) p(an_).
Hence D, (@n-1)’ = D,(@n-1)p(@n-1)D,(@n-1) — D,(@0n-1) @n-1D,(@n-)) = 0.
Since K is semiprime and KD,(a._,) = D(a.-1)K, we obtain D,(a.-,)=0.

Finally, we consider the case R= K[X; D].

Lemma 1. 6. Let f bein R= K[ X; D]. Then Rf = fR if and
only if '

a) aa= X0, (i) Di'{a)a; (a€ K, 0Zi<m—1),

b) =K’ 0sism—1).
When this the case, f isin C(K®) [ X].

Proof. By Lemma 1.1, Rf=fR if and only if af = fa (e = K)
and Xf = fX. Obviously, Xf = fX is equivalent to b). The equiva-
lence of af = fa (e € K) and a) has been proved in Lemma 1. 2.

Corollary 1.7. Assume that K is of prime characteristic p. Let f
bein R= K[X; D] and of the form Xie, X”ibm + by,. Then Rf=fR
if and only if

a) XD (@)bi+ aby—ba=0(a € K) and b..€Z(0<ixe),

b) L EeK?(0ZLi<e+1). ’

2. (p, D)-separable polynomials. Throughout this section, we
assume that oD = Dp. Let R= K[X; p, D], and consider the mapp-
ings p*: R— R and D*: R— R defined by p* (3 X'd) =3 X"s(d;) and
D* (3. X,'d) = 3, X'D(d;), respectively. As is easily seen, p* is a ring
automorphism of R, and D* is the inner p*-derivation of R effected by
X; D* (h)=hX— Xp* (h) (hE R). -Obviously p* and D* are extensions
of p and D, respectively. Henceforth, our interest will be restricted to
such f that fE K[X; p, D]w N K*’[X] (S C(K"") [X] by Lemmas
1.1and1.2). Then the ideal I'= Rf is both p*-invariant (o*(I)=1I) and
D*-invariant (D*(I) & I). Thus, p* induces naturally an automorphism
p of R/I, and D* does an inner p-derivation D of R/I. Needless to
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say, p and D are regarded as extensions of p and D, respectively. Now,
accorcing to f& K”?[X], we obtain p*(Y,) =Y,, D*(Y;) =0, and
f=2X1'Y;X'=37'X"Y,, Next, we consider the following mappings.:

M RIIR/I® KR/IRH - RIIR/IRII
1 Qy—>xy;
E: RIIQ xR/ - R/IQ <R/I
2@y —Dx)®p(y) + x Q@ D(y);
7t R/IIQ «R/I— R/ITQ R/I
1Q@yop)Qp(y) — xR .

Then, it is easy to see that & and 7 are (well-defined) additive homomor-
phisms. If there exists an R/I-R/Fhomomorphism v: R/I— R/IQ «R/T
such that v = 1, & = »D and 3w =v(p — 1), then f is called a (7, D)-
separable polynomial in R. A (p, 0)separable polynomial in K[X; el
and a (i, D)-separable polynomial in K[X; D] will be called a p-separable
polynomial and a ﬁ-separable polynomial, respectively. Obviously, every
(8, D)-separable polynomial is a separable polynomial.
We are now in a position to state our first main theorem.

Theorem 2.1. Let f bein K[ X; p, D] N K*?[ X1, and I= Rf.
Then the following.are equivalent :

a) f is (p, D)-separable in R.

b) There exists y € K*°[x] with deg y<<m such that 3.7 Yy X’
=1(mod I) and p™(a)y = ya for all a € K.

c) f’' is invertibie in R wmodulo I

d) f is separable in K*°[ X].

e) f is separable in C(K*®) [X].

Proof. Recall that d) (resp. €)) is equivalent to the condition that f’
is invertible in K*?[ X] (resp. C(X*®)[X]) modulo K*?[X]f (resp.
C(K*") [X]f) (see Theorem A). '

a)=b). Let v: zuR/Ip;— riR/IQ«R/Ir; be such that pv =1,
gy =»D and v =v(@—1). Then, by [6, Lemma 1.7], there exists
yE R with deg y<<m such that p"'(2)y=ya(@ € K) and v(z+ I) =

(Y + QX'+ I)(z€ R). Since p*(Y;) = Y;, we have

O=V(P‘—‘1)(1+I)=‘4‘V(1+I)
=925 (Yiy + 1) Q (X + I}
= DY)+ DX+ D— LN Yy + D@ (X + 1)
= 275 (Yp*(») — ) + DX+ I).
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Since {X’+171|j=0, ---, m — 1} isa free basis of R/I, we see that
p*(9) —y=Y..(p*(y) —y) E L Since deg (o*(y) —y) <=deg y<<m,
we obtain p*(y) =y. Next, since D*(Y;) =0, we have

0=vD(1+1I)=E@+1I)
=S (Yy + DR (X + D}
=27 DO*¥mM+ DRX + 1)
=2 YD*(») + DR X/ + D.

By the same reason as above, we see that D*(y) = Y,,.,D*(y) € I. This
together with deg D*(y) <deg y <<m implies D*(y) = 0. Thus we
conclude y € K*?[X]. '

b)=>c). Since y= K"?[X] and Y, C(K*?)[X] (Lemma 1.2), we
have Xy =yX and Y;y =yY, Since f/=3,YV,X’, 'Y yXx'=1
(mod I) implies therefore f’y = yf' =1 (mod I).

c)=>e). Since f’+ I is invertible in R/I and f' € C(K"?)[X],
it follows that f’ + I is invertible in (C(X*?) [X] + I)/I= C(K*®)[X]/
C(K**)[X]f. Hence f’ is invertible in C(X*?)[X] modnlo C(X~?)[X]f.
Thus, f isseparable in C(X"®)[ X].

e)=>d)=>c) are obvious.

e) = a). There exists y= C(K*?)[X] such that fiy=1
(mod C(K*”) [X]f) and deg y<<m. As was shown in the proof of Lemma
1.2, af' =f'p"""(a) (a € K). Hence, f'(p" ' (a)y — ya) = af’y — f'ya=0
(mod I). Since f’ isinvertible modnlo I much more and deg (o™ '(a)y —
ya)<m, it follows then p™ '(a)y=ya (e K). Now, according to the proof
of [6, Lemma 1.7], we can prove that X72(Y,y +I) @ (X’+I) commntes
with every element of R/ Consider the R/ R/-homomorphism v: R/I—
R/IQ «R/I defined by v(z+I)= 27'(2Y, +1I)Q(X’+ I). Obviously,

7 Y,;9X’ = f’y=1 (mod I) implies puv = 1. Moreover, we have

w(z+ I)=9{X 5 Yy + 1) Q (X! + I)}
== A;L.;)I(P*(Z)ij—*—I)®(XJ+I)—Z;”=_0’(ZYJJ’+I)®(XJ+ I)
= {e* @) — DY,y + I} (X, + I)

=v(P—1(+1)
and ‘

E(z+1)=E{X75' @Y,y + 1) QX!+ I}
=20 (D@ Yy + QX'+ 1)
=vD(z + I).

This completes the proof.
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If 7 is (3, 5)-seprable, then by Theorem 2.1 we can teke f' as 7 in
Theorem B, so that f is a Frobenins polynomial.

Theorem 2.2. Let f be in K[X; ploy N K*[X]. Assume that
p" = wu;' with a unit u of K and a positive integer n that is a unit in
K. If f is separable then it is p-separable.

Proof. Let v = p" Nu)p" *(u)---p(u)u. Since ua = p"(a)u (a € K)
and p"(x) = u, we have p*(u)a = p"(@)p"(u) and p*(u)u = ue*(u). Hence,
va = p"z(a)v and p(v) = up" '(u)---p(u) = v. By Theorem A, there exists
yE€ R with deg y<<m snch that p" (a@)y=ya (e K) and 2,V yX’=1
(mod I). We put here g= n”zz'ci’o‘p*"( ¥). Since p(v) =v, p"z(a) =pap”!
and p™ (a)y = ya, we obtain p*"z( y) =vyp~! = yop~' =y, This proves
p*(g)=g, andso, g=K*[X]. Since f, ¥;€ C(K*) [X] (Lemma 1.2),

we see that
1 =00 Y (25 ()} X7
= 25 Y,gX = g(L75 Y, X)) = gf = f'g (mod I).
Thus, f is p-separable by Theorem 2. 1.

Corollary 2.3. Let f be in K[X; play. Assume that p = um’ '
with aunit uw of K. If f is separable, then it is p-separable.

Proof. By Lemma 1.3a), #@n_, = @._,p(#) = a._,u, and therefore
D,(@n-)=0. Then, fisin K*[ X] by Remark 1.4, and hence p-separable
by Theorem 2. 2.

Let K be a (two-sided) simple ring, and f a separable polynomial in
K[X; p]. Then f isin C(K*) [X] by Corollary 1.5. By Lemma 1. 2a),
we have aa; = a;p™ '(a) (¢ € K). Hence, if a;70 for some j, then
o™/ is necessarily an inner automorphism. On the other hand, if 4, =0
forall ¢ then f = X by [1, Lemma 1]. Now, the following two corol-
laries are obvious by Theorem 2. 2.

Corollary 2.3. Let K be a simple ring pf characteristic zero. If
f is a separable polynomial in K[ X:; pl, then it is p-separable.

Corollary 2.5. Let K be a simple ring of characteristic p >0, and
f a separable polynomial with deg f>1 in K[X; pl. Let n be the
minimal positive integer such that p* is inner. If (p, n) = 1, then every
separable polynomial in K[ X; p] is p-separable.
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Remark 2.6. (c.f. [7, Remark 2.4]). Let p be the generator of
the Galois group of GF (4)/GF(2). Let f= X*+ 1€ GF(4) [X; p].
Since z+ p(z) =1 with some z, f isseparable by [7, Lemma 2. 3]. But,
f’ being zero, f is not p-separable.

Next, we consider the case R= K[X; D].

Theorem 2.7. Let R=K[X; D). If D=1, then every separable
polynomial in R is D-separarable.

Proof. Assume that f is a separable polynomial in R. Then
f€ K°[X] by Lemma 1. 6. Now, putting Y= X—u, we see that
R=K[Y] and f =21 (YV+u)a, isin K[Y]w. Moreover, the deriva-
tive f} of f with respect to Y equals 2o ((Y+ w)'a)e =273 (Y+u)"a;
=f’. Since f}{ is invertible modulo Rf by Theorem A, f is 5—separable
by Theorem 2. 1.

Corollary 2.8. Let R=K[X; D]. If f isseparablein R and m
ts tnvertible in K, then f is D-separable.

Proof. By Lemma 1.6a), we have an-.a@ = @a,., + mD(a). Since
m is invertible in K, D is an inner derivation, and f is D-separable by
Theorem 2. 7.

3. Some remarks on K[X; p] and K[X; D]. I f is separable
in K[X; p], then by [1, Lemma 1] there exist d, ¢, € K such that
a1co— aod = 1. By making use of this fact, we shall prove the following
two propositions.

Proposition 3.1, (cf. [9, Theorem 1 (b)]). Let f be separable in
K[X; pl. If plag)=a, then p(@n-)=am_,, andsofc C(K?) [X].

Proof. By Remark 1.4 and Lemma 1. 3, we have D,(a.-,) = (a,¢c, —
aOd) Dp(am—l) = aID_u(am—-l)(cO) - aODp (am—]):o(d) = O'

Proposition 3.2. Let f be separable in K[X ; p]. Then (0| Z)™™ P

= 1z.

Proof. Let ¢ be an arbitrary element of Z. Then, by Lemma 1. 3
a), (p'—p"*")(c)ay = aep”*"(c) — p**"(c)as =0, andso (1—p™™P")(c)a,=
{@—=p™)+ -+ (p™ 2 — p" D)} ()a,=0. Similarly, (1—p™™ ")(c)a,=0.
Hence, (1 — p™ ") (c) = (1 — p™ ") (c) (@160 — @od) = 0.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 22/iss2/3



Ikehata: On separable polynomials and Frobenius polynomialsin skew

ON SEPARABLE POLYNOMIALS AND FROBENIUS POLYNOMIALS 123

Now, we assume that p=uu;' with some unit # in K. Then, itis
easy to see that K[X; p]=K[Y], where Y= Xu. If fisin K[X; plw
then, as was shown in the proof of Corollary 2.3, itis in K’[X], i.e.
ua;=au. Hence f= 2", (Yu"Va, = hu ™, where h = 31, Yiu"‘a,
As is easily seen, & is in K[Y]q = Z[Y]«w. Taking those above into
mind, we shall generalize [7, Theorem 2. 19] as follows:

Theorem 3.3. Let p=uu;' witha umt uin K, and let \r: K[ X; p]
— K[X] bedefined by (X1, X'd) =" X'u"'d,.

(a) A+ induces a one-to-one correspondence between K[(X; play and
Z[X)w.

(b) Let g bein K[X; pla. Then g is separable if and only if so
is ¥ (g).

(c) Let g bein K[X; plo. Then K[X; pl/gK[X; p] is Kring
isomorphicto K Q (Z[ X1/ (g)Z[X]).

(d) Let g1, g; bein K[X; plw. Then K[X; p]/glK[X, p] 18
K-ring isomorphic to K[ X; p]/g.K[X; p] if and only if Z[X]/4{(g,) Z[ X]
is Z-ring isomorphic to Z[ X1/ (g)Z[ X].

Proof. ' Obviously, + induces an injective mapping of K[X: olw
into K[X]w=Z[X]w Given 27, X%: in Z[X]w, 2t X'u'™b, is
in K[X: plw and its image by ¥ is 237 X', Thus, ¥ maps K[ X; plw
onto Z[X]w. The mapping ¢ : K[X;p]— K[X] defined by ¥(3, X'd))
=3:X'u"*d; is easily seen to be a K-ring isomorphism. Since for any
gEK[X; plw of degree n we have ¥ (g) =+r(g)u™", ¥ induces naturally
a K-ring isomorphism #: K[ X; p]/gK[X; pl=K[X]/¥(g)K[X]. There-
fore, g isseparablein K[X; p] if and only if sois v(g) in K[X]. By
Theorem 2.1, +(g) is separable in K[X] if and only if so it is in Z[ X].
As a combination of those above, we obtain (b). Moreover, the K-ring
isomorphism K[ X]Y(g)K[X] = KQAZ[X]/¥(g)Z[X]) together with
# implies (c). Finally, we shall prove (d). If K[X;pl/g.K[X; p] =
K[X; p]l/g.K[X; p] (K-ring isomorphism), then we have the following
K-isomorphisms :

KX/ r(g)K[X]1=K[X; pl/ 8. K[X; p]

=K[X; pl/g.K[X; pl=K[ X1/ (g)K[ X].
As is easily verified, the center of K[ X]/v(g:)K[X] is Z-ring isomorphic to
Z[X]/¥(g)Z[ X]. Hence we have a Z-ring isomorphism Z [ X]/V(g,)Z[ X
== Z[X]1/¥(g:)Z[X]. The converse is obvious by (c).

Corresponding to Theorem 3. 3, we shall generalize [7, Theorem 3. 5]
as follows :
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Theorem 3.4. Let D=1,, andlet ¢:K[X; D]— K[X] be defined

by 0(2{‘:0 X'd) = (X + u)d.
" (a) ¢ induces a ome-to-one correspondence between K[X; Dlw, and

Z [X T ‘ '

(b) Let g be in K[X; D]wy. Then g is separable if and only if
sois ¢(g). B

(c) Let g bein K[X; Dlw. Then K[X; D}/gK[X; D] is Kring
isomorphic to K Q. (Z[X1/¢ (@) Z[X]).

(d) Let g1, g bein K[X; Dlw Then K[(X; D]1/g:K[X; D] is
K-ring isomorphic to K[ X; D]/g,K[X; D] if and only if Z[ X1/4(g)Z[ X]
is Z-ring isomorphic to Z[ X1/d(g)Z[ X].

Proof. TFrom the proof of Theorem 2. 7, it is easy to see that ¢ is
a K-ring isomorphism and induces a one-to-one correspondence between
K[X; D]w and Z[ X]q,. Since ¢ induces naturally a K-ring isomorphism
¢: K[X; D]/gK[X; D] = K[X1/9(¢)K[X], g is separable in K[X; D]
if and only if sois ¢(g) in K[ X]. By Theorem 2.1, ¢(g) is separable
in K[X] if and only if so it is in Z[X]. Combining those above,
we obtain (b). Moreover, the K-ring isomorphism K[ X1/¢(g)K[X] =
K®,(Z[ X]/4(g)Z[ X]) together with ¢ implies (c). Finally, we shall
prove (d). If K[X; D]/g .K[X; D] =K[X; D]/g,K[X; D] (K-ring
isomorphism), then we have the following K-ring isomorphisms :

K[X1/¢(g)K[X] =K[X; D]/g,.K[X; D]

. ' = K[X; D)/¢g.:K[X; D]=K[X]/¢(g)K[X].
Asis eaéib' verified, the center of K[X]#(g:) K[X] is Zring isomorphic
to Z[X]1/¢6(g*)Z[X]. Hence, Z[ X]/¢(g,)Z[ X] is Zring isomorphic
to. Z[X1/#(g;)Z[ X]. The converse is obvious by (c).

4. p-polynomials in K[X ; D]. Throughout this section, we assume
that K is of prime characteristic p and R= K[X; D]. We assume
further that f is a p-polynomial and of the form X% X”bus + bo.

First, we shall prove the following which is a generalization of [6,
Theorem 3. 2] :

" Theorem 4.1, Let f be in Ru. Then f is separable if and only
if there exists y € R with deg y <<p® such that ay = ya (a € K) and
pI D*"L“(y)bm +1=0.

Proof. By an easy induction, we have
D* (@) =T (4) (DX gX! (SR, »20).
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’C—
Since (—b j 1) (— 1" '=1 (mod P, there holds D*”k"‘(g) =

> 251 x**--1g X Assume that f is separable. Then, by Theorem
A, there eyists y € R with deg y <<p® such that ¢y = ya (e € K) and
3251 Y;9X'=1 (mod Rf). Noting that b.,, & K” (Lemma 1.6b)), we
obtain

S 4ee D* (= 9)biyy F 1= — Z}'i’o’X"c"_’yX’-—E}’:]X""-l""bfyX’

— = X T by X — by + 1

=—23'Y,yX’+1=0 (mod Rf).
Since the degree of the left side of the above is smaller than p*, we

conclude ZLOD*"‘“‘(—-y) by +1=0. Reversing the above arguments,
we can prove the converse.

Corollary 4.2. ([6. Theorem 3.2]) Let f= X”+ Xb, + b, be in
Ryy. Then f is separable if and only if there exisis y € R with degy <<p
such that ay = ya(a = K) and D**'(y) + yb, + 1 = 0.

Remark 4.3. If f isin Ry, then f& K?[X] (Lemma 1.6b)) and
f'=b,. Hence, by Theorem 2.1, we see that f is D-separable if and
only if b, isinvertible in K (cf. [2, Theorem]).

Now, we shall prove the main theorem of this section.

Theorem 4.4. Assume that D is Zlinear (i.e. D|Z=0). If R=
K(X; D] contains a D-separable p-polynomial, then every sepasable p-
polynomial f in R is D-separable.

Proof. By Theorem 4.1, there exists y = X ”r“dpp__z + e 4 Xdy +
d, € R such that ay = ya(a € K) and 3>{..D *"t“(y)bi.,.l +1=0. An
easy induction shows that aD*'(y) = D*'(y)a(ea = K, £=0). Now,
assume that D*"'(y) = X? D" (dye_;) + --- + D*"*(d,) for some i=1.
Since aD*H(y) = D*H(y)a, we see that D""(dye_,) isin Z, and there-
fore D'(d,_) =0, proving that D*'(y)=X*""'D'd,_, )+ + D'(d).
Thus, we obtain eventually D**(y) = 0.

Now, let g =215, X ”jcjﬂ + ¢, be a D-separable ppolynomial in R,
where ¢, € K2 and ¢y, -, €ori € Z N K? (Corollary 1. 7). Then, by
Theorem 2.1, g/ =c¢, is a unit of K, and hence of Z.  Since
22 31 (g )r D” + (c)).D + L, =0 by Corollary 1.7, we have then D=
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- (c?‘c,+,),D"j —~ L:.,. Since ci'c, € K and ay=ya(aE K),

it follows Ic;lca(y) = 0. Hence, D*(y)={— 27 (c}’c,ﬂ),D*"j} (»)

= {— 231 (7 ¢ja)e (— D (67'cer). D**)'} (y).  Combining this with
¢i'¢;o1 € KN Zand D**(y) = 0, we can easily see that D*(y)=0, and
$0 yb, 4+ 1= Dieg D**(y)bisy + 1 =0, i.e. dybpy = — 1. Thus, b, is
invertible, and f is 5-separable by Theorem 2. 1.

5. QF-polynomials. In this section, we return back to the general
case R=K[X;p, D]. Let A, B berings, and .M 4Nz A-B-bimodules.
If .M, is isomorphic to a direct summand of ,Nj} (the direct sum of #»
copies of ,N;) for some #n, then we write M, | .Ns  As is well-known,
+M5| 4N; if and only if X3. g, = 1y for some ¢,, -+, &, = Hom (. Ms,,
ANB) and Ay, +--, Y, € Hom (ANB, .4MB)-

Let f bein Ry, and I= Rf. If R/I is a right QF-extension over
K (R/I. is f. g. projective and xR/Iz;; | xHom(R/Ix, Kx)r;:), then f is
called a right QF-polynomial in R A left QF-polynomial is defined by
symmetrically, and a right and left QF-polynomial is called a QF-polynomial.
Needless to say, every Frobenius polynomial is a QF-polynomial.

First, we prove the following

Theorem 5.1. Let f be inRy, and I= Rf. If f is aright (resp.
left) QF-polynomial, then there exist ri, s; € R with deg r;<m and deg
s <<m such that ar, = rip" " '(a), sia=p" " (a)s; (@€ K) and 2isr: =1
(resp. Lurisi=1) (mod I), and conversely.

"Proof. As is shown in [6, pp. 323-324], xHom (R/Ix, Kx)r;t =
«Kv ® xR/ I, with a left K-free element v € R such that va = p" '(a)
(@ € K). Hence, f isright QF if and only if «R/Ir; | xKv Q xR/ Ir;
For any ¢ € Hom (x R/ Iz, xKv @ xR/Iz;), We can easily findan » € R
with ¢(1+I) =vQ@ (» + I) such that deg »<<m and ar =rp" "' (a)(a € K).
Conversely, ‘for such » the mapping ¢: R/I-> Kv @ «R/I defined by
¢(x+I)=vQ@ (rx+ I) is a K-R/IFhomomorphism. Similarly, for any
& Hom («Kv@xR/Inj;, xR/ILy:), wecan find an s € Rwith (@ @1 +
I)) = s + I such that deg s<<m and sa = p™ '(a)s (¢ € R); conversely
for such s the mapping ¥ : Kv@® xR/I— R/I defined by V(v Q (x + I)) =
sx + I.is a K-R/Fhomomorphism. Thus, the assertion concerning a right
QF-polynomial is now immediate. Symmetrically, we can prove that
concerning a left QF-polynomial.

Exaniple. Let K be afield with an automorphism p of order 2, and
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R=K[X;p]. Now, let r = X¢, + ¢, and s = Xd, + d, be such that
ar =rp(a) and sa = p(a)s (a=K). Then, by p~1 we see that co=d,=0,
and therefore rs= X?p (c,)d,. In view of Theorem 5.1, this implies that
X? cannot be a right (left) QF-polynomial.

We conclude this section with the following

Theorem 5.2. Let R=K[X; p]. Then every separable polynomial
S in R is a QF-polynomial.

Proof. By Lemma 1.3, aX* /g, = X* 7171 (g)a, =
X a,p" "' (a) (a € K). Hence, aY; X’ = Y;p" 7 a) X' =Y; X'p" Y(a)
and aX'Y,= X’p’(a)Y; = X’Y,;p""(a). According to Theorem A, there
exists y € R with deg y <m such that p" @)y = ya (¢ € K) and
275 Y;yX'=1 (mod I). Obviously, p"'(a)p*’(y) = p**(»)a. Since
;Y yX? = 33,X°yY; by [6, Remark, p. 322], we have then

XY, X0 (y) = 3, Y;yX/=1 (mod I),
2,077 (») XY, = 5,X’yY; =1 (mod I).
Thus, f is a QF-polynomial by Theorem 5. 1.

6. Frobenius polynomials. In [6], Miyashita posed the following
question : Is any separable polynomial Frobenius? Some arguments
concerning the question have been done in [6], [1], [10] and [11]. We
shall prove first the following :

" Theorem 6.1. Let R=K[X;pl. Assumethat Zis an integral domain
and plZ1z. T hen every separable polynomial f in R is Frobenius.

Proof. By [1, Lemma 1], there exist d, ¢, & K such that a,c, —
ald=1 and a;c, € Z. Choose a ¢ & Z such that p(c)5%c¢. Then
p"(c) = ¢ or pm'(c)s%c. Since (¢c— p™(c)) ad = 0 and (c—p" 1 (c) ayeo
=0 by Lemma 1.3, we obtain ad =0 or a,, =0, i.e. aic=1 or
a,d=1. Then, either a, or a, is invertible in K. Hence f is Frobenius
by [1, Theorem 1]. '

Corollary 6.2. Let K be a prime ring, and R=K[X; pl. If
plZ5~ 1z, then every separable polynomial in R isFrobenius..

Corollary 6.3. If K is a commutative integral domain, then every
separable polynomial in K[X; p] is Frobenius.
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Proposition 6. 4. Assume that K is a simple ring and f is a separabie
polynomial in R= K[X; p, D].

(a) If p|Z5 1, then f is Frobenius.

(D) If plZ=1; and [K: Z] <o, then f is Frobenius.

Proof. (a) By [12, Lemme 3], D=1,, withsome #< K. Then,
it is easy to see that R= K[Y; p], where Y= X— u. Hence, f is
Frobenius by Theorem 6. 1.

(b) By Noether-Skolem theorem, p = wu,' with some unit # in K.
Then, in Theorem B, we can take ™' as », and therefore f is
Frobenius.

Now, we shall prove the following that is a slight generalization of
[6, Theorem 3.4 (2)]:

Theorem 6.5. Assume that K is a simple ring. Let f be a se-
parable polynomial in R=K[X; p,D], andlet y= X"c, + X" 'co_yi+ -
+ ¢ (ca%+0) be as in Theorem A. If n=0 or (m, n) =1, then f is
Frobenius.

Proof. If n =0, then p"'(a)e, = coe (@€ K). Since K is simple,
¢, has to be a unit, and therefore f is Frobenius by Theorem B. Hence-
forth, we assume that (m, #) =1, and choose positive integers 7, s such
that m7 — ns = 1. As is easily verified, d,= 27, p'Dp™* is a p-deriva-
tion and

D=2 p 0o p P — p (P Ouoip M7
By Lemma 1.1, af=fp™(a) (a€ K). Comparing the coefficients of X"~
in%the both sides, we obtain
dn-1{p"™ (@) + p"(@)an-1 = @n-1p"(a).
This means that 8,_, is an inner p-deivation. Next, p" '(a)y = ya implies

mn

o @), = c.a and 8ui(p™ " H@))en + p™ ""H@)ca1 = cuaa. Recalling
that ¢,5~0 and K is simple, we see that ¢, is a unit. Hence,

a-i(p™*""X(a)) = ca-racy’ — p" T @)Cn 67"
— cn_lc‘;lpmﬂ:—l(a) — "‘*”"(a)c,._lc;',
which means that §,_, is an inner p-derivation. Since both p'4,.-,p”" and

p'6,-1p~" are inner p-derivations, D isso. Hence, f is Frobenius by [1,
Corollary 1].

Corollary 6.6. If K is a simple ring, then every separable poly-
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nomial of prime degree in K[ X; p, D] is Frobenius.

Corollary 6.7. Assume that K is a simple ring of characteristic zero
and pD = Dp. Then every separable polynomial in K[X; p, D] is
Frobenius.

Proof. Let f be a separable polynomial in K[X; p, D]. Obviously,
D=m"' 3% p'Dp™* = m '4nr. As was shown in the proof of Theorem
6.5, 0n-; is an inner p-derivation. Hence, D is also an inner p-derivation,
and so f is Frobenius by [1, Corollary 1].
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