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SUPPLEMENTS TO THE PREVIOUS PAPER
“SOME COMMUTATIVITY THEOREMS FOR RINGS”

Yasuyukl HIRANO, MotosHlI HONGAN and Hisao TOMINAGA

In the previous paper [1], we considered the following properties
of a ring R:

1), [x" y*] =0 for all x, yER.

2)n (xy)? = x"y™ and (xy)**! = x™*1y"*! for all x, yE R.

3n (xy)* = (yx)” for all x, yE R.

), [x, (x¥)*] =0 for all x, vE R.

5)» [x", y] =0 for all x, yER.

6)» [x* v] =[x, y*] for all x, yE R.

9), For each pair of elements x, y in R, n[x,y] =0 implies[x, y]=0.

The purpose of the present note is to add two results to the previous
paper [1]. As for notations and terminologies used here, we follow [1].
First, we prove the following that includes essentially Theorem 5 of

[1].

Theorem 1. Let i, j be integers in the set {1, 2, 3, 4, 5, 6}, and m, n>1.
Suppose an s-unital ving R has the properties i)m and j)n. If (m, n) =1,
then R is commutative.

Proof According to [1, Propositions 2 and 3], there exists a positive
integer a such that R has the properties 1)me and 1)n.. Therefore, R is
commutative by [2, Theorem 4].

Let »>1. A ring-property P will be called a C(#n)-property if every
ring with identity having the properties P and 9), is commutative. In
view of [1, Theorem 2], the properties 2),—6), are C(#)-properties.

Theorem 2. Let i, j be integers in the set {2,3 4.5, 6}, and
m, n>1. Suppose an s-unital ring R has the properties i)m and j)n.
If R has the property Qm m, then R is commutative.

Proof. Let e be a pseudo-identity of {a, 6} < R, and e’ a pseudo-
identity of {a, b, e}. Let S=<a, b, e, € be the subring of R generated
by {a, b, e, ¢}, and A = Is(e) (=7rs(e)). Then, e'+A is the identity of

137

Produced by The Berkeley Electronic Press, 1981



Mathematical Journal of Okayama University, Vol. 23[1981], Iss. 2, Art. 5

138 Y. HIRANO, M. HONGAN and H. TOMINAGA

S/A. Since <a, b> N A=0, we may regard <a, b> as a subring of S/A.
Obviously, S/A has the properties #)» and j)». Moreover, we can easily
see that S/A has the property 9)mn. Now, the rest of the proof is
immediate by the proposition below.

Proposition 1. Let P: be a C(n;)-property which is inherited by every
Sinitely generated subring (i =1, 2, -+, t), and d = (ny, -, n,). Suppose a
ring R with identity has the properties P, ---, P. If R has the property 9)q
then R is commulative.

Proof. It suffices to prove the case t =2. We show that R has the
property 9)., (and therefore R is commutative). Suppose #i[a, 6]=0
for some @, 6 € R, and let R’ be the subring of R generated by {1, a, b}.
Then, we can easily see that #[x, y]=0 for all x, yER’. Since R’
has the property 9)s, the above implies that R’ has the property 9)a,.
Hence, R’ is commutative, namely [a, b]= 0.
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Added in proof. A ring-property P is called an H-property if P is
inherited by every finitely generated subring and every canonical image
modulo the annihilator of a central element, and is called an F-property,
provided a ring has the property P if and only if all its finitely gen-
erated subrings have. Obviously, all the properties 1),— 9). considered
in [1] are H-properties, and the commutativity is an F-property. By
making use of the argument employed in the proof of Theorem 2, we can
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easily see the following.

Proposition 2. Let P be an H-property, and Q an F-property. Then
the following ave equivalent :

i) Every ring with identity having the property P has the property Q.

ii) Every s-unital ring having the property P has the property Q.

The authors would like to thank Prof. Y. Kobayashi for all the
interest he has shown in the paper.
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