Mathematical Journal of Okayama University

Volume 23, Issue 2

1981

Article 11

DECEMBER 1981

Free algebras and Galois objects of rank 2

Atsushi Nakajima*

Copyright ©1981 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Okayama University

Math. J. Okayama Univ. 23 (1981), 181-187

FREE ALGEBRAS AND GALOIS OBJECTS OF RANK 2

ATSUSHI NAKAJIMA

Throughout the present note, R will represent a commutative algebra over GF(2), and U(R) the group of all invertible elements in R. Unadorned \otimes means \otimes_R , every module is R-module and every map is R-linear. Given an element u in R, we denote by H_u the free Hopf algebra over R with basis $\{1, d\}$ whose Hopf algebra structure is given by

$$d^2 = ud$$
, $\Delta(d) = d \otimes 1 + 1 \otimes d$, $\varepsilon(d) = 0$ and $\lambda(d) = d$,

where Δ , ε and λ are the comultiplication, counit and antipode of H_u , respectively. As for other notations and terminologies used here, we follow [2] and [6].

In this note we study on Galois H_u -objects and purely inseparable R-algebras in the sense of [7] and compute the group of Galois H_u -objects of R.

1. Galois H_u -objects and purely inseparable algebras of rank 2. An R-algebra A is called a free (resp. projective) R-algebra if A is a free (resp. projective) R-module and R is an R-direct summand of A. An R-algebra A is called an H_u -comodule algebra if A is an H_u -comodule such that the H_u -coaction map $\rho: A \longrightarrow A \otimes H_u$ is an R-algebra homomorphism. An H_u -comodule algebra is called a free (resp. projective) H_u -comodule algebra if it is a free (resp. projective) R-algebra.

Let F be a free H_u -comodule algebra with basis $\{1, x\}$. First, we determine the H_u -comodule algebra structure of F. Let $\rho: F \longrightarrow F \otimes H_u$ be an H_u -comodule structure map of F, and set

$$\rho(x) = t_0 + t_1(x \otimes 1) + t_2(1 \otimes d) + t_3(x \otimes d) \quad (t_i \in R).$$

Then, in view of $(1 \otimes \varepsilon) \rho(x) = x$ and $(1 \otimes \Delta) \rho(x) = (\rho \otimes 1) \rho(x)$, we have

$$t_0 = 0$$
, $t_1 = 1$ and $t_2 t_3 = t_3^2 = 0$.

Moreover, if we set $x^2 = rx + s(r, s \in R)$, then $\rho(rx + s) = \rho(x^2) = \rho(x)^2$ yields $t_2^2 u = t_2 r$ and $t_3 r = 0$. Thus we obtain the following

Lemma 1.1. Let F be a free R-algebra with basis $\{1, x\}$, and $x^2 = rx + s$ $(r, s \in R)$. If F is an H_u -comodule algebra then there exist $r_1, s_1 \in R$ such

182 A. NAKAJIMA

that

$$(1.1) rs_1 = r_1 s_1 = s_1^2 = 0 and r_1^2 u = r_1 r_1$$

and the H_u -comodule structure of F is given by

$$\rho(x) = x \otimes 1 + r_1(1 \otimes d) + s_1(x \otimes d).$$

Conversely, if there exist r_1 , $s_1 \in R$ which satisfies (1.1), then the map ρ defined by (1.2) gives the H_u -comodule structure of F.

A projective H_u -comodule algebra A is called a *Galois* H_u -object if $\gamma: A \otimes A \longrightarrow A \otimes H_u$ defined by $\gamma(a_1 \otimes a_2) = (a_1 \otimes 1)\rho(a_2)$ is an isomorphism, where ρ is the H_u -comodule structure map of A.

Proposition 1.2. Let F be a free R-algebra as in Lemma 1.1. If F is a Galois H_u -object then there exists $v \in U(R)$ such that vu = r, and the H_u -comodule structure of F is given by

$$\rho(x) = x \otimes 1 + v(1 \otimes d).$$

Conversely, if there exists $v \in U(R)$ such that vu = r, then F is a Galois H_u -object with the H_u -comodule structure map ρ defined by (1.3)

Proof. If F is a Galois H_u -object, then γ is an isomorphism. Since F and H_u are free R-modules of rank 2 and γ is an F-algebra map, γ is an isomorphism if and only if there exists $k \in F \otimes F$ such that $\gamma(k) = 1 \otimes d$. We set $k = t_0 + t_1(x \otimes 1) + t_2(1 \otimes x) + t_3(x \otimes x)$ $(t_i \in R)$. Then by $\gamma(k) = 1 \otimes d$ and Lemma 1.1, we have

$$s_1 = 0$$
, $r_1 t_2 = 1$ and $r_1 u = r$.

Thus we may take $v = r_1$.

Conversely, if vu = r for some $v \in U(R)$, then ρ defined by (1.3) gives an H_u -comodule algebra structure on F (Lemma 1.1) and $\gamma(v^{-1}(x \otimes 1 + 1 \otimes x)) = 1 \otimes d$. Thus F is a Galois H_u -object.

Definition 1.3 ([7, Def.1 and Lemma 1 (a)]). An R-algebra A is called *purely inseparable* if the kernel of the map $\mu: A \otimes A^{\circ} \longrightarrow A$ defined by $a \otimes b^{\circ} \longrightarrow ab$ is contained in the radical $J(A \otimes A^{\circ})$ of $A \otimes A^{\circ}$, where A° denotes the opposite algebra to A.

Now, we shall prove the following

Theorem 1.4. Let F be a free R-algebra with basis $\{1, x\}$, and $x^2 = ux + s$ $(s \in R)$.

- (1) F is a Galois H_u -object with the H_u -comodule structure map ρ defined by $\rho(x) = x \otimes 1 + 1 \otimes d$.
 - (2) If u is in U(R) then F is a Galois extension of R, and conversely.
- (3) If u is in the radical J(R) of R then F is a purely inseparable algebra over R, and conversely.

Proof. (1) is a direct consequence of Prop.1.2. (2) is already known (cf. [5]), so we prove (3). Let $\mu: F \otimes F \longrightarrow F$ be the multiplication map of F. Then $\operatorname{Ker}(\mu)$ is generated by $a \otimes 1 + 1 \otimes a$ ($a \in F$), so $y = x \otimes 1 + 1 \otimes x$ is a generator of $\operatorname{Ker}(\mu)$. Assume that F is purely inseparable. Since $\operatorname{Ker}(\mu)$ is contained in $J(F \otimes F)$, 1 + cy is invertible in $F \otimes F$ for any $c \in R$. Let $z = t_0 + t_1(x \otimes 1) + t_2(1 \otimes x) + t_3(x \otimes x)$ be the inverse element of 1 + cy ($t_i \in R$). Then, from (1 + cy)z = 1 we obtain

$$\begin{bmatrix} 1 & cs & cs & 0 \\ c & 1+cu & 0 & cs \\ c & 0 & 1+cu & cs \\ 0 & c & c & 0 \end{bmatrix} \begin{bmatrix} t_0 \\ t_1 \\ t_2 \\ t_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

As is easily seen

$$(1+cu)^{2}\begin{bmatrix} t_{0} \\ t_{1} \\ t_{2} \\ t_{3} \end{bmatrix} = (1+cu)\begin{bmatrix} 1+cu \\ c \\ c \\ 0 \end{bmatrix}$$

Then, by the uniqueness of the inverse of 1+cy, the matrix of the coefficients of t_i is invertible, and so the determinant of it is a nonzero divisor ([4, p.161, Cor.]). We have thus the following:

(1.4) For any $c \in R$, there exists $t \in R$ such that (1+cu)t = c. If $u \notin J(R)$, then there exists a maximal ideal M in R such that $u \notin M$, so that R = Ru + M. Put $1 = r_0u + m$ ($r_0 \in R$, $m \in M$). Then, by (1.4), there exists $t \in R$ such that $(1+r_0u)t = r_0$. Thus $r_0 = (1+r_0u)t = mt \in M$. But this implies a contradiction $1 = r_0u + m \in M$. Hence $u \in J(R)$.

Conversely, if $u \in J(R)$ then $u \in J(F \otimes F)$, since $F \otimes F$ is integral over R. Thus $y^2 = uy \in J(F \otimes F)$, whence it follows that $y \in J(F \otimes F)$.

We denote by (u, s) the Galois H_u -object in Th.1.4(1).

Now, let A be an H_u -comodule algebra. Then A has an H_u^* -module structure ([2, §7, p.56]). The dual Hopf algebra $H_u^* = \operatorname{Hom}_R(H_u, R)$ is a free R-module with basis $\{\varepsilon, \delta\}$, where $\delta(1) = 0$ and $\delta(d) = 1$, and the Hopf

184

A NAKAJIMA

algebra stucture is given by

$$\delta^2 = 0$$
, $\tilde{\Delta}(\delta) = \delta \otimes \varepsilon + \varepsilon \otimes \delta + u(\delta \otimes \delta)$, $\tilde{\varepsilon}(\delta) = 0$ and $\tilde{\lambda}(\delta) = \delta$,

where Δ , $\tilde{\epsilon}$ and $\tilde{\lambda}$ are the structure maps of H_u^* . Thus the H_u^* -action on A is given by

$$\varepsilon(a_1) = a_1$$
 and $\delta(a_1a_2) = \delta(a_1)a_2 + a_1\delta(a_2) + u\delta(a_1)\delta(a_2)$ $(a_i \in A)$.

In case u=0, δ is obviously an R-derivation on A. Next, we consider the case that u is invertible. If we put $\sigma=\varepsilon+u\delta$, then $\sigma^2=\varepsilon$ and $\tilde{\Delta}(\sigma)=\sigma\otimes\sigma$, so σ is an R-algebra automorphism of A.

Theorem 1.5. If A is a Galois H_u -object then A is isomorphic to a free Galois H_u -object (u, s) for some $s \in R$.

Proof. By [2, Ths.9.3 and 9.6], $R = \{a \in A | \delta(a) = 0\}$ and the sequence of R-modules

$$0 \longrightarrow R \xrightarrow{i} A \xrightarrow{\delta} \delta(A) \longrightarrow 0$$

is exact and split, where i is the canonical injection. Thus $\delta(A)$ is projective and of rank 1. We show that $\delta(A) = R$. Let $Q = \{w \in D | (1 \# \delta) w = 0\}$, where $D = A \# H_u^*$, the smash product of A and $H_u^*([2, \text{Def.9.2}, \text{Def. and Remarks 9.4.}])$. Then it is easy to see that w is in Q if and only if $w = \delta(a) \# 1 + a \# \delta$ ($a \in A$). Since $a \# \delta = \delta(a) \# 1 + (1 \# \delta)(a \# 1 + u \delta(a) \# 1)$, $w = (1 \# \delta)$ (b # 1) for some $b \in A$. Moreover by Th.9.6, the map $[\ ,\]: Q \otimes_D A \longrightarrow R$ defined by [w,a] = w(a) is an epimorphism, and so there exists $y \in A$ such that $\delta(y) = 1$. Thus $R \subseteq \delta(A)$, and $\delta(A) \subseteq R$ is clear because $\delta^2 = 0$. Hence A is a free algebra with basis $\{1, y\}$, and $y^2 = ry + t$ ($r, t \in R$). Then, by Prop.1.2, there exists $v \in U(R)$ such that vu = r, and the H_u -comodule structure of A is given by $\rho(y) = y \otimes 1 + v(1 \otimes d)$. Therefore, we have $A \cong (u, v^{-2}t)$ (as Galois H_u -object).

Corollary 1.6. Let A be a projective H_u -comodule algebra of rank 2. Then the following conditions are equivalent.

- (1) A is a Galois H_u -object.
- (2) A contains an element x such that $\delta(x) \in U(R)$.
- (3) $\delta(A) = R$.

Proof. By the proof of Th.1.5, (1) \Longrightarrow (2) is clear and (2) \Longleftrightarrow (3) is immediate by $\delta(A) \subseteq R$, so we prove (2) \Longrightarrow (1). If $t_0 + t_1 x = 0$ ($t_i \in R$), then $0 = \delta(t_0 + t_1 x) = t_1 \delta(x)$, and thus $t_0 = t_1 = 0$. Since A is of rank 2, $\{1, x\}$ is a free basis of A. Then by Lemma 1.1, the H_u -comodule structure of A is given by (1.2). Since $\delta(x) = x \delta(1) + r_1 \delta(d) + s_1 x \delta(d) = r_1 + r_1 \delta(d) + s_1 x \delta(d) = r_1 + r_2 \delta(d) + s_1 x \delta(d) = r_1 + r_2 \delta(d) + s_1 x \delta(d) = r_1 + r_2 \delta(d) + s_1 x \delta(d) = r_1 + r_2 \delta(d) + s_1 x \delta(d) = r_1 + r_2 \delta(d) + s_1 x \delta(d) = r_1 + r_2 \delta(d) + s_1 x \delta(d) = r_1 + r_2 \delta(d) + s_1 x \delta(d) = r_1 + r_2 \delta(d) + s_1 x \delta(d) = r_1 + r_2 \delta(d) + s_1 x \delta(d) = r_1 + r_2 \delta(d) + s_1 x \delta(d) = r_1 + r_2 \delta(d) + s_1 x \delta(d) = r_1 + r_2 \delta(d) + s_1 x \delta(d) = r_1 + r_2 \delta(d) + s_1 x \delta(d) = r_1 + r_2 \delta(d) + s_1 x \delta(d) = r_1 + r_2 \delta(d) + r_2 \delta(d) = r_1 + r_2 \delta(d) + r_2 \delta(d) = r_2 \delta(d) + r_2 \delta(d) + r_2 \delta(d) = r_2 \delta(d) + r_2 \delta(d) + r_2 \delta(d) + r_2 \delta(d) = r_2 \delta(d) + r_2 \delta(d) + r_2 \delta(d) + r_2 \delta(d) = r_2 \delta(d) + r_2 \delta(d$

185

 $s_1x \in U(R)$, we have $s_1 = 0$ and $r_1 \in U(R)$. Hence, by Lemma 1.1 and Prop.1.2, A is a Galois H_u -object.

2. Group of Galois H_u -objects. Let A and B be H_u -comodule algebras with structure maps ρ_A and ρ_B , respectively. We set $\tau_{A,B} = (1 \otimes t)$ $(\rho_A \otimes 1) - (1 \otimes \rho_B) : A \otimes B \longrightarrow A \otimes B \otimes H_u$ and $AB = \operatorname{Ker}(\tau_{A,B})$, where t is the twist map $a \otimes b \longrightarrow b \otimes a$. Then it is easy to see that the map $\rho_{AB} : AB \longrightarrow AB \otimes H_u$ defined by $\rho_{AB} = (1 \otimes t) \ (\rho_A \otimes 1) \ (= 1 \otimes \rho_B)$ is an H_u -comodule algebra structure map of AB. Moreover, if A and B are Galois H_u -objects then AB is a Galois H_u -object by [1, p.689]. In our case the converse holds.

Theorem 2.1. Let A and B be free H_u -comodule algebras of rank 2. If AB is a Galois H_u -object, then A and B are Galois H_u -objects.

Proof. Let $\{1, x\}$ and $\{1, y\}$ be free bases of A and B, respectively. Since AB is a Galois H_u -object, AB has a free basis $\{1, z\}$ and $\rho_{AB}(z) = z \otimes 1 + 1 \otimes 1 \otimes d$. We set $\rho_A(x) = x \otimes 1 + r_1(1 \otimes d) + s_1(x \otimes d)$ and $z = t_0 + t_1(x \otimes 1) + t_2(1 \otimes y) + t_3(x \otimes y)$ ($r_1, s_1, t_i \in R$). Then by $\rho_{AB}(z) = (1 \otimes t)$ ($\rho_A \otimes 1$) (z), we have $t_1 r_1 = 1$ and $t_1 s_1 = t_3 r_1 = t_3 s_1 = 0$. Thus r_1 is invertible and $s_1 = 0$. Then, by Prop.1.2, A is a Galois H_u -object. Also, similarly, B is a Galois H_u -object.

Proposition 2.2. Let $A_i = (u, s_i)$ (i = 1, 2) be Galois H_u -objects. Then $A_1A_2 = (u, s_1 + s_2)$.

Proof. Let $\{1, x_i\}$ be free bases of A_i . Then, by the definition of A_1A_2 ,

$$A_1A_2 = \{t_0 + t_1(x_1 \otimes 1 + 1 \otimes x_2) | t_i \in R\}$$

and $\{1, y = x_1 \otimes 1 + 1 \otimes x_2\}$ is a free basis of $A_1 A_2$. Moreover, $y^2 = uy + s_1 + s_2$ and $\rho(y) = y \otimes 1 + 1 \otimes 1 \otimes d$. Thus $A_1 A_2 = (u, s_1 + s_2)$.

Now, let $Gal(R, H_u)$ be the group of isomorphism classes of Galois H_u -objects in the sense of [1, p.686]. If $C \in Gal(R, H_u)$ and $A \in C$ then we write C = [A]. Moreover, by M_u , we denote the subgroup $\{\beta^2 + u\beta | \beta \in R\}$ of the additive group (R, +). Under this situation, we shall prove the following

Theorem 2.3. Gal(R, H_u) is group isomorphic to the factor group $(R, +)/M_u$, which is abelian and of exponent 2.

186 A. NAKAJIMA

Proof. By Th.1.4, there exists a map $\phi:(R,+)\longrightarrow \operatorname{Gal}(R,H_u)$ where $\phi(t)=[(u,t)]$. In verture of the results of Th.1.5 and Prop. 2.2, ϕ is a group epimorphism. Now, let $A_i=(u,s_i)$ be Galois H_u -objects with bases $\{1,x_i\}$ and H_u -comodule structure maps ρ so that $x_i^2=ux_i+s_i$ and $\rho(x_i)=x_i\otimes 1+1\otimes d$ (i=1,2). We assume that there is an $(H_u$ -Galois object) isomorphism $f:A_1\longrightarrow A_2$, and set $f(x_1)=ax_2+\beta(\alpha,\beta\in R)$. Then by $\rho f(x_1)=(f\otimes 1)\rho(x_1)$, we have $\alpha=1$. Noting $f(x_1)^2=f(x_1^2)$, we see that $\beta^2+u\beta=s_1+s_2$. Thus, we obtain $\operatorname{Ker}(\phi)\subseteq M_u$. Conversely, let $\phi(\beta^2+u\beta)=[(u,\beta^2+u\beta)]$. Define a map $f:(u,\beta^2+u\beta)\longrightarrow (u,0)$ by f(1)=1 and $f(x)=y+\beta$, where $\{1,x\}$ and $\{1,y\}$ are free bases of $(u,\beta^2+u\beta)$ and (u,0), respectively. Then it is easy to see that $\rho f(x)=(f\otimes 1)\rho(x)$ and $f(x^2)=f(x)^2$. Thus f is an isomorphism as Galois H_u -object. Hence $\operatorname{Ker}(\phi)\supseteq M_u$. This proves the theorem.

Now, let Q_s be the group of the isomorphism classes of quadratic Galois extensions of R in the sense of Kitamura [3, p.16]. Then

Corollary 2.5. (1) $Gal(R, H_1) \cong (R, +)/\{r^2 - r | r \in R\} \cong Q_s \cong Gal(R, H_u)$ for every $u \in U(R)$.

(2) $Gal(R, H_0) \cong (R, +)/\{r^2 | r \in R\}.$

Proof. Let $s, s' \in R$, and $u \in U(R)$. Then, the polynomial rings R[X] and R[Y], $R[X]/R[X](X^2+uX+s) \cong R[Y](Y^2+Y+u^{-2}s)$ (as R-algebra), and moreover, $R[X]/R[X](X^2+X+s) \cong R[Y]/R[Y](Y^2+Y+s')$ if and only if $s-s' \in M_1$. Hence, it follows that $Q_s \cong (R,+)/M_1 \cong \operatorname{Gal}(R,H_1)$. Since $\beta^2 + u\beta = u^2(u^{-1}\beta)^2 + u^2(u^{-1}\beta)$ ($\beta \in R$), we have $M_u = u^2M_1$. Hence we obtain $\operatorname{Gal}(R,H_u) \cong (R,+)/M_u \cong (u^2M_1 \cong (R,+)/M_1 \cong \operatorname{Gal}(R,H_1)$.

REFERENCES

- M. BEATTIE: A direct sum decomposition for the Brauer group of H-dimodule algebras,
 J. Alg. 42 (1976), 686—693.
- [2] S. U. CHASE and M. S. SWEEDLER: Hopf Algebras and Galois Theory, Lecture Notes in Math. 97, Springer-Verlag, Berlin, 1969.
- [3] K. KITAMURA: On the free quadratic extensions of commutative rings, Osaka J. Math. 10 (1973), 15—20.
- [4] N. H. McCoy: Rings and Ideals, Carus Math. Monograph 8, The Math. Ass. Amer.

FREE ALGEBRAS AND GALOIS OBJECTS OF RANK 2

[5] T. NAGAHARA: A quadratic extensions, Proc. Japan Acad. 47 (1971), 6-7.
[6] M. E. SWEEDLER: Hopf Algebra, Benjamin, New York, 1969.

[7] M. E. SWEEDLER: Purely inseparable algebras, J. Alg. 35 (1975), 342—355.

DEPARTMENT OF MATHEMATICS OKAYAMA UNIVERSITY

(Received December 15, 1980)

187