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STRUCTURE AND COMMUTATIVITY OF RINGS
WITH CONSTRAINTS ON NILPOTENT ELEMENTS, 1I

HAzAR ABU-KHUZAM and AbpIL YAQUB

The purpose of this note is to generalize the principal theorem of the
previous paper [1] as follows :

Theorem. Let R be an associative ring and let N be the set of all
nilpotent elements of R. Suppose n is a fixed positive integer. Suppose,
Jurther, that (i) N is commutative, (ii) for every x in R, there exists an
element x' in the subring x> generated by x such that x"=x"*'x' with
some positive integer m = m(x), (iii) x —y € N implies that x™— y" is in the
center Z of R.

(a) If na=0, a=N imply a=0, then R is a subdirvect sum of nil
commutative rings and local commutative rings.

(b) If nis a prime, then R is a subdirect sum of nil commutative rings
and local commutative rings.

In preparation for the proof, we establish the following lemmas.

Lemma 1. Hypothesis (iii) implies that ab™ = b"a for all a € N and
all b = R, and necessarily all idempotents of R arein Z.

Proof. Since (a+b)—bEN, by (iii) we have c= (a+b)"'—b" = Z.
Hence b"(a+b)={(a+b)"—c}(a+b)=(a+b){(a+b)"—c)=(a+ b,
which simplifies to 5@ = ab". As is well known, every idempotent
commuting with all nilpotents is central.

Lemma 2. Hypotheses (i), (ii), (iii) smply the following :

(a) N is a commutative nil ideal.

(b) 1If e is an idempotent and a is in N, then neac Z.

(¢c) If ¢ is @ homomorphism of R onto R*, then ¢(N) coincides with
the set of all nilpotent elements of R*.

Proof. (a) and (c) have been proved in Lemma 2 [1]. We shall
prove (b). Since N is a commutative nil ideal, it can be easily seen that
@€ Z for all k>1. By (iii), (¢e+a)"—¢"isin Z. Hence, a"+na" 'e+----
naes Z, since e is central by Lemma 1. This implies that nae = Z.
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Corollary 1. If R satisfies the hypotheses (i), (ii), (iii), then any
subring of R and any homomorphic image of R satisfy (i), (i), (iii).

Now, we are ready to prove our theorem.

Proof of Theorem. Careful scrutiny of the proof of Theorem 2 [1]
shows that it suffices to prove that if ¢ is a homomorphism of R onto a
local ring R* with (nil) radical N* such that R*/N*=GF(r), where r=p5*,
p prime, «=>1, then every element ¢* in N* is central.

(a) By (ii) and Lemma 1, we can easily see that there exists a central
idempotent ¢ of R such that ¢(¢) =1. Let b* be an arbitrary element of
R*. Then, by Lemma 2, a*=¢(a) with some a=N, and b*=¢(b) with
some bE R. Since nea< Z (Lemma 2 (b)), therefore ne[a, b]=0. By
hypothesis, it follows then e[a, 4]=0, and therefore [a*, *]=0.

(b) Obviously, R* is of characteristic p° for some positive integer j3.
By Lemma 2 (b) and Corollary 1, na* is central. If n~p, then it is easy
to see that ¢* is central. On the other hand, if n=p then Lemma 1 enables
us to proceed as in the latter part of the proof of Theorem 2 [1].

The following example was pointed out to us by Prof. H. G. Moore.

0 0 a

commutative and satisfies all the hypotheses of Theorem (a) except the
hypothesis that #a = 0, e N imply a=0 (» =6). Next, we consider
the ring R constructed in Remark [1]. Then R is not commutative,
and satisifies all the hypotheses of Theorem (b) except the hypothesis that
n is prime (n=6).

In conclusion, we would like to express our gratitude and indebtedness
to Prof. H. Tominaga for his helpful suggestions and valuable comments.

a b ¢
Let R={ ( 0 &0 ) la, b, ¢ EGF(4)} . It is readily verified that R is not
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