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1. Introduction

It was G.H. Hardy [5] who investigated the divisor problem of
Dirichlet in a systematic way by complex analysis depending on a
variant of a theorem of M. Riesz concerning Dirichlet series. Defining

(1) D(x) = § dn) = xlog x + (Qr — )x + H(x),”
he proved that

d(x) 7 o(x*) (x — o)
and derived the identity

d(n)

(2) A= +VE 5P HUnY ) — Y, (dnvm)),

which was fiirst found by G. F. Voronoi [13] where Y, (x) is the Bessel
function of order 1 of the second kind and

H (x) = S th e ™ dt

is one of Hankel's cylinder functions.
Hardy’s argument of the proof is based on the following result
obtained by the complex function theory : If we put

(3) Se=3 ‘ff") -, ¢t >0)
then we have as N— o<

(4) Sy = o(N*),

or

(5) Sy= 2—(Hz)—d(‘1) ‘+o(N)

q4

l+!
1) 7 is Euler's constant. The longstanding hitherto unproved conjecture is A(x)=0(x* ) for
any &> 0.
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for any ¢ >0 accordingly as t5~4ny/ 4 or t=4ny ¢ (¢ € N), where

the constants implied by the o’s may depend on the values of £. Thus
it follows that

(6) 5 ) e

1]
n=1 N

is convergent for ¢ > % or 0> % , accordingly.

Recently the writer found a simple and elementary way® of improv-
ing (4) to

(7) Sx = O(log N) (N — o),
which enabled him to prove elementarily that the series

(8) 5 77 gy o= eV

is convergent for all x ¢ N if a«>1 and divergent if « <<1. The
result has been generalized and refined by S. Uchiyama [11, 12] who in
particular improved the remainder term of (5). XK. Chandrasekharan
and R. Narashimhan [1, 2] adopted a method from the equiconvergence
theorem of Fourier series due to A. Zygmund to prove the convergence
and Riesz summability of the series

(9) 249 1, gy
and
(10) 522 5, Gevim) .

However, it seems impossible to prove, along their lines, the result for

(8) or even the divergence of (9) and (10) when a = % On the other

hand, our argument is elementary and successful for convergence prob-
lem of (8), while we can say nothing akout Riesz summability of (9) and

(10) when «a = %, so in this paper we shall show another simple way

to answer the questions,

2) It should be noted, however, that the underlying idea thereof had substantially been proposed
by Ju. V. Linnik in 1952,
3) r(n) denotes as usual the number of integer solutions in @, & of a*+=n,
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2. It was proved by J. R. Wilton [14] and also by A.L. Dixon and
W. L. Ferrar [4] that (10) with « == % oscilates finitely for all x & N
while it is summable (C, ¢) for all x & N and any ¢ >0. In this
section we shall show that (Q) with a = % oscilates infinitely for all
x & N, and it will be proved in the next section that it is summable
(C, ¢) for all x& N and any €>0. From the asymptotic formulae

of Jix), we see that the summability problem of (9) with « = %is
reduced to that of

d(n
(11) Z 1/(—)(5:;); 47V nx) .
We then obtain the following theorem.

Theorem 1.

,% 7(7)005 (*xV'n) = %logN - sin (xV/'N)
(12) +(i: + Ex) sin (xv/N) + (2r — 1)cosx — 4—rsulx
+ Ay (x) »

where Ay(x) denotes a certain function of N and x which converges,
as N— oo, uniformly in x over any finite positive interval free from
the points 47/ ¢ (g EN).

Our method of the proof differs from that of Wilton or of Dixon and
Ferrar, and is based on the following representation [3, 13], which is
easy to handle because of the absolute convergence of the series on the
right-hand side and is less difficult to obtain the direct one for 4(¢) [9];

3
4

G = S d(u)du = at + b+ 2']/627[272—1‘1(") Sm(47f1/nt—z)
n4

(13) i
15¢° 5 d) — ks
+2“1/27r3,.‘;‘1 1 cos(41r1/_ )—I—O(t ).
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Proof of Theorem 1. Let us put

d(n)

C,»v ]/—COS (xl/n)

Then, by a known summation formula ([10] S. 371), we have

Cy = ’?/(—IXI) cos (1) — S D@) g/ dt,

where
D(t) = Py d(n), 2@ = %‘—7@

On observing that

L sin(xV't)

3
g() = — 177 cos (xv/T) — % ,

2

we obtain

D(N) D() D)
14) Cy=",5 cos(zV'N) + (xv t)dt+ 5 (xv'¢)at.
(14) VN oS ) S: 3 cos(xV ¢ X sin(x v/ ¢

Thus it follows from formula (1) that

Co = (VN 10g N+ @ — DVF+ 25) cos (VW)

S 1/—COS(an/ t)dt+—(2, 1)j &y_tl/_t_)dt
a9+ 3] Weostevpran 3 g siney D) o
1 i .

+% (or — 1)51: sin (xy/ ) dt + %S:L;) sin (xv/¢ ) dt

- (Vﬁ log N+ (2r — )VN + :‘/({1%)) cos (xV'N) -+ ,}é-l I,

say. We shall henceforth consider each of I,, I, ------ , I,
I, and I,: A simple calculation shows that

vE
1 sin (xu)
1, = ?sm(m/N)logN xS. = du,
(16)

2r—1

I, = {sin (x/N) — sinz} .

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 18/issl/1



kano: On Hardy's exponential series related to the divisor problem

I, and I,: Also simply we have

I, = — VN log N-cos(zVN) + %sin(m/m +log N

a7 + %{Sm (xV/N) — sinz} — %S\lfﬁ§mu—(xu) du,

sin (+¥/N) _ sin x}

Is=(27‘—1){-—1/1_\fcos(x1/ﬁ)+cosx+ p x

I,: Since we know that for some 4 >0

(18) JH=0E® (¢ o),

we have
SV 14O | cos (x/7) | dt = O(S 4t = ow.
1 t,

So, I, converges absolutely and uniformly in x as N— oo,
It remains only to consider I,. By partial integration we have

I, = .2_5 (¢ )ﬂxtl/—t)dt [—GI(V—N) sin (V' N)— G(1) sin x]

(19)

+ ZSI G(t) sin (V¢ )dt — (2)5 G(t) cos (Vv ¢t)dt.

Since we know from formula (13) that

G(t) = at + 0% (t = o),
we have
% GJ(V ) sin (xV'F) = —(“ +O(N” ')sm(xl/N)
(20)
= 2 zsin(cVF) + O N9,
and

1
4) It is known that e.g. 4(f)= O(t3), however, we need no such a deeper estimate. In
fact even (18) is unnecessary if we argue as in the evaluation of Ig
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%Sl G(t)Sln =V 7F)dt = > S ,(%—1—00‘—%)) sin (xV/¢) dt

() =% ST MT—) dt + 0 (xSNt—% dt)

= axSN-Siiu(—x—uldu + O(x),

the last integral being convergent, as N — oo, uniformly in x over any
finite positive interval. Now we are going to consider the integral

Iv(x) = Iy = E G(t) cos (xv/ ¢ ) dt.
1 ti
Owing to (13) we obtain

_ {¥cos(xV't) cos (v 1)
Iy = aL N bgl =

n4

2 Vel nzg {t nZ=:1 d(”) sm(47r1/'_ %)} cos (x V¢ )dt
(22)

+ 2,1/157[, SN {t 0 = d::) cos (4"1/nt 1 )} cos(xV ¢ )dt

+ O(Sllvt_%dt).

Here we easily find that

S cos(xl/t)dt {sin(xVN)—sinx},
vVt

and that the second and the fourth integrals are both uniformly absolute-
ly convergent as N— oo, So our final task is to examine the third
integral

Jv= SN {t“% p A

1

sm( AVt — Z)} cos (V¢ )dt.

)
n

On integrating termwise we get®

Iy = n_l{—d—(ig t 45111(47:1/";— )cos(xVT)dt}.

n4

5) This is permissible from the uniform convergence since d(n) = O(n®) for any €20,
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Let us set
Ky =Sft_%sin(4n'1/”_t — %) cos (x1/_[_) dt
=%S ¢ 3{3111(411-1/,# + xt— 4) + sm(41z1/_ xt—-z)}dt,

and consider

I N e % -
LN—ELt‘sm(cim/n—ti-th 4)dt.

Making the substitution v/ ¢ = %, we have

VN

Ly= S u—%sin(47r1/7 u* xu— %)du .

Now let us look into the convergence of Ly as N— o, By the second
mean value theorem,

VN
SM u_3sin( Anyy *2)u— —Z—) du

(23) = M’%E:{ sin((471'1/7 + x)u — %) du (for some € [M, V' NJ)

=0 (M gy E ).

Here we have

x—4m)/ 7y > 4= (4) 1/[41 J
@4)  |dny @ —x|= (x> 47v'n) |
awyva—s>af[(E)]+ 1} - 2>0.
(x <d4my'y)

Moreover it is clear that each of the functions
Vi—V[It], V[tl+1—V¢t

is positive and continuous in any integer-free finite interval [e, b],
and so attains positive minimum there. Hence, on account of this fact
together with (23) and (24), we conclude that both
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lim L‘v and ‘];,im K N

N—soco

converge uniformly in % over any finite positive interval free from the
points 47y 4 (¢ € N). Therefore it follows that so do also both

lim ]N and lim IN'.

Ne=soo N-sco

Thus we have arrived at the formula

=2 . si 4 oexy g N
Cy= xlogN Sm(xv/ﬁ)-l—(x + 2)sm(x1/N)

(25)
+@r — Doosx — Lsinz + 4,(a),
where
A = I = £ 1,0 + (ax = 2)[ 7 elnlan) g,
x 1 u ]
(26) :

+mﬂ+oﬁnﬂ+om'

converges, as N — oo, uniformly in % over any finite positive interval
free from the points 47y 4 (g = N). This proves Theorem 1.
We can give in this manner a quite similar representation like (12)

to the sine series also. Hence we know that (9) with « = % oscilates
infinitely for all x & N ©,

3. In this section we prove that (11) is summable (C, ¢) for all
& N and any €¢>0. Since the situation is quite the same for the
sine series, we only consider the cosine series

g}l i(% cos (47 nx).

Then it will suffice, after (25) and (26), to prove that
@27 log N - sin (47 xN)

is summable (C, ¢) for all positive x and ¢ ”.

6) Such representations for sine and cosine series contain no cancellation terms in (9).

7) sin(dmy/xN) is also (C, &) summable for all positive * and & Since it is easily shown
to be (C, 1) summable, it follows from the boundedness that it is (C, €) summable for any
>0,
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For the purpose we find it convenient to take the following Riesz typical
means of integral form of order £>0%;

(28) L) = & [ @ -1y st ar
with
(29)  S() = % {(log m) sin (4V/ xn) — (log (n — 1)) sin (47 v/ x(n—1)} -

Noticing that
. — . —_ — log ¢
log? - sin (47/f ) — log[#] - sin (4zv/2[7) = O( V% %)
as {— oo, we have for sufficiently large ,

@ =2 (["+ ) 0 — s ar

f,;g (0 — ) S(B)dt +- g (0—#)*""log ¢ - sin (4my/x¢) dt

+ O(mgr (w—t)k-l‘/—f/% dt )

ikg (©—2)"* + log ? - sin (4nV/7¢) dt

+ o( S (w0 — ) log ¢ dt)+ O(k]/xs. (0 —£)+ ‘1°gtdt)

w

The last two O-terms are
E (T _ kB o
o(L{"w—pr10gTat)=0 (LT 108 T)

and

o (3BT e ) - 0 (L BT - )

respectively, if « =27 and T is sufficiently large.
So, if we here specify that T = 1/ w, we have

I (o) = ﬁk S (w — )« logt - sin (4dny/xz) dt
: o Jvg

(30) & 1

+ O (ko 2logw) + 0(1/ g @ * log ).

8) It is known that the Riesz typical means is epuivalent to (C, k) means when k>0 [6,8].
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On making the substitution f = ~u®, we obtain
Jiw) = (ig (w0 — t)*'log ¢ « sin (4w /¢ ) dt
Ve

= 2k g 3 u(l—u®)*"' log (wu?®) « sin (47 gw ) du
© 4
1

= 4k S 1 u{l—u®) " log u - sin (dny yo u) du
w 4

1

-+ 2k log (”5 v u(l—u®) ' sin (47 xw u) du
© 4

=J, + J., say.

Then we find that

1
1 w_z
J. = 4k (L — Sn )u (1—u?)*"log u » sin (471 5w u) du

= 4k Sl u(l — u*Y'log % -+ sin (47 xw u)'d.u
\ :
"’_? 2\k~1 1
—-!—O(kg w(l — u?) log—du)
(31) ° “
1
= 4k S w{l — u®)'logu - sin (4ny/ 5w u) du
0

+ 0 (k {o_% log o » (1 — {U_%)k—l)
=0 (k (xm)_'i) X0 (k ,,)"% log w) )

Here we used the fact that «log« - (1—«*)*" is absolutely continuous
on (0, 1) provided 2> 0. Now let us estimate J,. By the second mean
value theorem we get

1 o 1—w 2 1

{ L u(l — ¥ 'sin (47 g0 u) du == g , E .

“l.l)—T IIJ_T tu_
1

sin (47 1/ g u) dt

—_ (]_-—n)_]?) {1_(1__10_%)2} 1 S" w

1 1
-+ 0 (S u(l— ) du), (for some 7 € [w—%, 1—o 7])
1- 2

w

because # (1 — #*)*' is monotonely increasing for 0 <<z <{1 when
0<<k<1. Hence

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 18/issl/1
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k=1 1 .
J.=0 (log e w 1 (:)_§)+O (log @ o (u_?k)z O(m"‘z& log (u),

Consequently we have

Jul@) = J, + J, = O (o7 log @) + O (™% log )
=0 (n)'% log ).

Therefore

I{w) = 0 ((u‘lit log w) + O (n)_% log ®),

which means that (27) is summable (C, k) to 0 for all ¥ >0 provided
when 0<<k <1, hence for all k>0 by the convexity theorem [6].
Thus we have proved the following theorem.

Theorem 2. The series (9) with a = % is summable (C, €) for all

x6EN and any € > 0.
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