Mathematical Journal of Okayama University

Volume 16, Issue 1

1973

Article 8

SEPTEMBER 1973

On a family of Riemannian manifolds defined on an m-disk

Tominosuke Otsuki*

Copyright ©1973 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Tokyo Institute of Technology

ON A FAMILY OF RIEMANNIAN MANIFOLDS DEFINED ON AN m-DISK

Dedicated to Professor MASARU OSIMA on his 60th birthday

TOMINOSUKE OTSUKI

1. The Riemannian manifold O_n^m

Let R^m be the *m*-dimensional coordinate space with the canonical coordinates u_1, u_2, \dots, u_m and D^m be the unit *m*-disk

$$(u, u):=\sum_i u_i u_i < 1,$$

where $u=(u_1, \dots u_m)$. We denote the Riemannian manifold defined on D^m with the following metric:

$$(1.1) ds^2 = (1 - \sum_i u_i u_i)^{n-2} \{ \sum_i du_i du_i - \sum_{i \le i} (u_i du_i - u_j du_i)^2 \}$$

by O_n^m , where n is a real constant.

In order to give a meaning of (1.1), suppose that n is an integer ≥ 2 and consider the unit (n+m-1)-sphere $S^{n+m-1} \subset R^{n+m}$ given by $\sum_{i=1}^{n+m} u_i u_i = 1$. Let us consider as

$$R^{n+m} = R^n \times R^m$$

and take a smooth curve C in D^m . Then, for C we construct an n-dimensional submanifold $M^n(C)$ in S^{n+m-1} as follows:

$$(1.2) M^{n}(C) = \{ \cup S^{n-1}(\rho) \times u, u \in C \},$$

where

(1.3)
$$\rho = \rho(u) := \sqrt{1 - \sum_{i=1}^{m} u_i u_i}$$

and $S^{n-1}(\rho)$ is the (n-1)-sphere of radius ρ about the origin of R^n . The *n*-dimensional volume of $M^n(C)$ is clearly given by the formula:

$$(1.4) V(Mn(C)) = cn-1 \int_C \rho^{n-1} \sqrt{d\rho d\rho + (du, du)},$$

where c_{n-1} is the volume of the unit (n-1)-sphere S^{n-1} , i. e.

$$c_{n-1} = 2\pi^{n/2}/\Gamma(n/2).$$

Lemma 1. The metric (1.1) can be written as

$$ds^2 = \rho^{2(n-1)} \{ d\rho \ d\rho + (du, \ du) \}.$$

Proof. From
$$\rho^2 = 1 - (u, u)$$
, we have $\rho d\rho = -(u, du)$. Hence
$$\rho^{2(n-1)} \{ d\rho d\rho + (du, du) \} = \rho^{2(n-1)} \{ \frac{(u, du)^2}{\rho^2} + (du, du) \}$$
$$= \rho^{2(n-2)} \{ (u, du)^2 + (1 - (u, u)) (du, du) \}.$$
$$= \rho^{2(n-2)} \{ (du, du) - ((u, u) (du, du) - (u, du)^2) \}$$
$$= (1 - \sum_i u_i u_i)^{n-2} \{ \sum_i du_i du_i - \sum_{i < j} (u_i du_j - u_j du_i)^2 \}$$
Q. E. D.

Lemma 1 and (1.4) imply immediately the following

Lemma 2. An extremal of the volume of the family of the submanifolds $\{M^n(C); C \text{ is a smooth curve in } D^m\}$ in the (n+m-1)-sphere corresponds to a geodesic of O_n^m and vice versa.

Remark. In the definition of O_n^m , we consider n as a real number. Especially, the cases of n=1, 0, have the following meanings:

 O_1^m is the representation of the north hemisphere of S^m through the orthogonal projection onto the equatorial hyperplane of $R^{m+1}(\supset S^m)$.

 O_0^m is the Cayley-Klein representation of the hyperbolic *m*-space of curvature 1. In fact, for any two points u, v=u+du in D^m , let p, q be the points of intersection of the straight line joining u and v and the unit (m-1)-sphere $S^{m-1}=\partial D^m$. Denoting p and q in the form $(1-\lambda)u+\lambda v$, we have easily

$$(du, du) \lambda^2 + 2(u, du)\lambda - \rho^2 = 0,$$

hence

$$\lambda = \frac{-(u, du) \pm \delta_s}{(du, du)} := \lambda_{\pm},$$

where

$$\delta_s^2 = (du, du) - \sum_{i < j} (u_i du_j - u_j du_i)^2.$$

Thus, we have the cross ratio of the four points u, v, p, q:

$$R(u, v: p, q) = \frac{\lambda_{+}}{1 - \lambda_{+}} \cdot \frac{1 - \lambda_{-}}{\lambda_{-}} = \frac{\rho^{2} - (u, du) + \delta_{s}}{\rho^{2} - (u, du) - \delta_{s}},$$

from which

$$\log R(u, v : p, q) = \log \left(1 - \frac{(u, du) - \delta_s}{\rho^2}\right) - \log \left(1 - \frac{(u, du) + \delta_s}{\rho^2}\right)$$

$$= \frac{2\delta_s}{\rho^2} + [2],$$

where [2] denotes the part of higher order of du, when we regard du as infinitesimal. Therefore, the Riemannian metric of the hyperbolic m-space H^m in this representation can be written as

$$ds^{2} = \frac{a\delta_{s}^{2}}{\rho^{4}} = a(1-(u, u))^{-2} \{(du, du) - \sum_{i < j} (u_{i}du_{j} - u_{j}du_{i})^{2}\},$$

where a is a constant.

2. Geodesics of O_n^m

We shall investigate the geodesics of O_n^m . From (1.1), the components of the metric tensor of O_n^m are

(2.1)
$$g_{ij} = \rho^{2n-4}(\rho^2 \delta_{ij} + u_i u_j)$$

and

(2.2)
$$g^{ij} = \rho^{-2n+2} (\delta^{ij} - u^i u^j),$$

where δ_{ij} are the Kronecker's δ and $u^i = u_i$. From (2.1), we have

$$\frac{\partial g_{ij}}{\partial u^k} = \rho^{2n-6} \left\{ \rho^2 (u_i \delta_{jk} + u_j \delta_{ik}) - 2(n-1) \rho^2 u_k \delta_{ij} - 2(n-2) u_i u_j u_k \right\}$$

and

$$(2.3) [ij, k] := \frac{1}{2} \left\{ \frac{\partial g_{jk}}{\partial u^i} + \frac{\partial g_{ik}}{\partial u^j} - \frac{\partial g_{ij}}{\partial u^k} \right\}$$

$$= \rho^{2n-6} \left[\rho^2 \left\{ nu_k \, \delta_{ij} - (n-1)(u_i \delta_{jk} + u_j \delta_{ik}) \right\} - (n-2)u_i u_j u_k \right].$$

Thus, using the Einstein convention, the Christoffel's symbols of O_n^m in the coordinates u^i are given by

$$\begin{aligned} {l \atop ij} &= g^{ik}[ij, k] \\ &= \rho^{-4}(\delta^{ik} - u^i u^k) \left[\rho^2 \{ nu_k \delta_{ij} - (n-1)(u_i \delta_{jk} + u_j \delta_{ik}) \} \right. \\ &- (n-2) u_i u_j u_k \right] \\ &= \rho^{-4} \left[\rho^2 \{ nu^i \delta_{ij} - (n-1) (u_i \delta^i_j + u_j \delta^i_i) \} - (n-2) u_i u_j u^i \right. \\ &- \rho^2 u^i \{ n(u, u) \delta_{ij} - 2(n-1) u_i u_i \} + (n-2)(u, u) u^i u_i u_j \right], \end{aligned}$$

i.e.

(2.4)
$$\begin{cases} l \\ ij \end{cases} = \frac{1}{\rho^2} \left[n(\rho^2 \delta_{ij} + u_i u_j) u^i - (n-1) \left(u_i \delta_j^i + u_j \delta_i^i \right) \right].$$

Theorem 1. For any p-dimensional linear space $E^{\mathfrak{p}}(p < m)$ through the origin of R^m , $D^m \cap E^p$ is a totally geodesic submanifold of O_n^m , which is an O_n^p .

Proof. As easily seen by Lemma 1, the metric (1.1) is invariant under the rotations of R^m about the origin. Hence, we may suppose that E^p is given by

$$u_{n+1} = u_{n+2} = \cdots = u_m = 0.$$

For any tangent vector fields $X = \sum_{a=1}^{p} X^a \partial / \partial u^a$, $Y = \sum_{a=1}^{p} Y^a \partial / \partial u^a$ of $E^p \cap D^m$, we put

$$\nabla_X Y = \sum_{i=1}^m Z^i \partial / \widehat{o} u^i,$$

where ∇ denotes the covariant differentiation of O_n^m and Z^i is given by

$$Z^{\iota} = \sum_{a} \frac{\partial Y^{\iota}}{\partial u^{a}} X^{a} + \sum_{a,b} \begin{Bmatrix} i \\ ab \end{Bmatrix} Y^{a} X^{b}.$$

By means of (2.4), on $E^p \cap D^m$ we have

$$\begin{cases} i \\ ab \end{cases} = -\frac{n-1}{\rho^2} (u_a \delta_b^i + u_b \delta_a^i) = 0$$
for $i > p$ and $a, b \le p$.

Hence we have

$$Z^i = 0$$
 for $i > b$,

that is $\Delta_X Y$ is also a tangent vector field of $E^p \cap D^m$. This shows that

 $E^p \cap D^n$ is a totally geodesic submanifold of O_n^m , which can be considered as an O_n^p by the induced metric from O_n^m . Q. E. D.

Corollary. Any geodesic of O_n^m lies on a plane through the origin of R^m and can be considered as a geodesic of O_n^2 .

3. Certain properties of $M^n(C)$ in S^{n+m-1}

In this section, we suppose that n is an integer ≥ 2 . By means of Lemma 2, an extremal of the volume of the family of the submanifolds $\{M^n(C)\}$ corresponds to a geodesic of O_n^m and then C is also a geodesic of an $O_n^2 \subset O_n^m$ by Corollary of Theorem 1. Accordingly, $M^n(C)$ can be considered as

$$M^n(C) \subset S^{n+1} \subset S^{n+m-1}$$

and it belongs to a family of hypersurfaces of S^{n+1} , which has two principal curvatures with multiplicity 1 and n-1.

Now, let C be a smooth curve in D^m not passing through the origin of D^m and \bar{s} be its arclength. We take an orthonomal frame field $(q, \bar{\xi}_1, \bar{\xi}_2, \dots \bar{\xi}_m)$ along C in R^m such that

$$(3.1) q = f \,\overline{\xi}_1 - h \,\overline{\xi}_2 \ (h \ge 0),$$

where q also denotes the position vector of the moving point of C and

$$\overline{\xi}_1 = \frac{dq}{d\overline{s}} \ .$$

If q is not parallel to $\bar{\xi}_1$, $\bar{\xi}_2$ is determined uniquely at q. We have easily

$$(3.3) 1 - \rho^2 = f^2 + h^2,$$

where $\rho^2 = 1 - (q, q)$ by (1.3). From (3.2) and (3.3) we obtain

$$\rho \frac{d\rho}{d\bar{s}} = -\left(q, \frac{dq}{d\bar{s}}\right) = -\left(q, \bar{\xi}_{1}\right) = -f,$$

hence

$$\frac{d\rho}{d\bar{s}} = -\frac{f}{\rho}.$$

We put

(3.5)
$$\overline{k}_a := \left(\frac{d\overline{\xi}_2}{d\overline{s}}, \overline{\xi}_a\right), a = 1, 3, \dots, m.$$

Especially we have

(3.6)
$$\bar{k}_1 = \left(\frac{d\bar{\xi}_2}{d\bar{s}}, \ \bar{\xi}_1\right) = -\left(\frac{d\bar{\xi}_1}{d\bar{s}}, \ \bar{\xi}_2\right),$$

which shows that $-\overline{k}_1 \overline{\xi}_2$ is the orthogonal projection of the principal curvature vector $\frac{d\overline{\xi}_1}{d\overline{s}}$ of C onto the plane through the origin of D^m and the tangent line of C at q.

On the other hand, let $(\bar{e}_1, \dots \bar{e}_n)$ be the moving orthonormal frame of R^n at the origin and put

(3.7)
$$d\bar{e}_i = \sum_j \omega_{ij}\bar{e}_j, \quad \bar{\omega}_{ij} + \bar{\omega}_{ji} = 0.$$

The generating moving point p of $M^n(C)$ is given by

$$(3.8) p = q + \rho \overline{e}_n = \rho \overline{e}_n + f \overline{\xi}_1 - h \overline{\xi}_2,$$

from which we obtain by differentiation

$$dp = \rho \sum_{\alpha=1}^{n-1} \omega_{n\alpha} \bar{e}_{\alpha} + d\bar{s} \left(\frac{d\rho}{d\bar{s}} \bar{e}_{n} + \bar{\xi}_{1} \right).$$

Using (3.3) and (3.4), if we put

(3.9)
$$e_a = \overline{e}_a, \quad e_n = \frac{-f\overline{e}_n + \rho \overline{\xi}_1}{\sqrt{1 - h^2}},$$

$$\omega_a = \rho \overline{\omega}_{na}, \quad \omega_n = \frac{\sqrt{1 - h^2}}{\rho} d\overline{s},$$

then we have the equality

$$dp = \sum_{i=1}^{n} \omega_i e_i$$

and (p, e_1, \dots, e_n) is an orthonormal frame of $M^n(C)$ at p. Next, if we put

(3.10)
$$e_{n+1} = -\frac{h}{\sqrt{1-h^2}} (\rho \, \bar{e}_n + f \, \bar{\xi}_1) - \sqrt{1-h^2} \, \bar{\xi}_2,$$

ON A FAMILY OF RIEMANNIAN MANIFOLDS DEFINED ON AN m-DISK

then

$$||e_{n+1}||^2 = \frac{h^2}{1-h^2}(\rho^2+f^2)+1-h^2=1.$$

 e_{n+1} is clearly orthogonal to e_1, e_2, \dots, e_n . Using (3.3) and (3.8), we obtain

$$(p, e_{n+1}) = (\rho \bar{e}_n + f \bar{\xi}_1 - h \bar{\xi}_2, e_{n+1})$$

$$= -\frac{h\rho^2}{\sqrt{1-h^2}} - \frac{hf^2}{\sqrt{1-h^2}} + h\sqrt{1-h^2} = 0,$$

which shows that e_{n+1} is also tangent to S^{n+m-1} .

Furthermore, putting

$$(3.11) e_{\lambda} = \bar{\xi}_{\lambda-n+1}, \lambda > n+1,$$

we obtain a moving orthonormal frame $(p, e_1, \dots, e_{n+m-1})$ of S_{n+m-1} defined along M'(C). From this frame, we obtain by the covariant differentiation D on S^{n+m-1} the following:

$$\omega_{a,n+1} = (De_a, e_{n+1}) = (d\bar{e}_a, e_{n+1})
= (d\bar{e}_a, -\frac{h}{\sqrt{1-h^2}}(\rho\bar{e}_n + f\bar{\xi}_1) - \sqrt{1-h^2}\bar{\xi}_2)
= \frac{h\rho\bar{\omega}_{na}}{\sqrt{1-h^2}} = \frac{h}{\sqrt{1-h^2}}\omega_a \quad \text{for } a = 1, 2, \dots, n-1$$

and

$$\omega_{n,n+1} = (De_n, e_{n+1}) = (de_n, e_{n+1})
= \left(d \frac{-f\bar{e}_n + \rho\bar{\xi}_1}{\sqrt{1-h^2}}, e_{n+1}\right) = \frac{1}{\sqrt{1-h^2}}(d(-f\bar{e}_n + \rho\bar{\xi}_1), e_{n+1}).$$

Since

$$\begin{split} -\sqrt{1-h^2}\,\omega_{n,n+1} &= \left(\left(-\frac{df}{d\bar{s}}\bar{e}_n + \frac{d\rho}{d\bar{s}}\bar{\xi}_1 + \rho\frac{d\bar{\xi}_1}{d\bar{s}}\right)d\bar{s} - fd\bar{e}_n, \\ &\frac{h}{\sqrt{1-h^2}}\left(\rho\;\bar{e}_n + f\bar{\xi}_1\right) + \sqrt{1-h^2}\;\bar{\xi}_2\right) \\ &= \left\{\frac{h}{\sqrt{1-h^2}}\left(-\rho\frac{df}{d\bar{s}} + f\frac{d\rho}{d\bar{s}}\right) - \rho\sqrt{1-h^2}\,_1\bar{k}\right\}d\bar{s}, \end{split}$$

using (3.4) and (3.9) we have

91

$$\omega_{n,n+1} = \left\{ \frac{h}{\sqrt{(1-h^2)^3}} \left(f^2 + \rho^2 \frac{df}{d\overline{s}} \right) + \frac{\overline{k}_1 \rho^2}{\sqrt{1-h^2}} \right\} \omega_n.$$

On the other hand, from (3.1), (3.2) and (3.6) we obtain

$$\bar{\xi}_1 = \frac{dq}{d\bar{s}} = \frac{df}{d\bar{s}}\bar{\xi}_1 + f\frac{d\bar{\xi}_1}{d\bar{s}} - \frac{dh}{d\bar{s}}\bar{\xi}_2 - h\frac{d\bar{\xi}_2}{d\bar{s}},$$

which implies

$$1 = \frac{df}{d\bar{s}} - h\left(\bar{\xi}_1, \frac{d\bar{\xi}_2}{d\bar{s}}\right) = \frac{df}{d\bar{s}} - h\bar{k}_1,$$

i.e.

$$\frac{df}{d\bar{s}} = 1 + h\,\bar{k}_1.$$

Taking the inner product of the above equality with $\overline{\xi}_2$, we obtain easily

$$0 = f\left(\overline{\xi}_{2}, \frac{d\overline{\xi}_{1}}{ds}\right) - \frac{dh}{d\overline{s}} = -\overline{k}_{1}f - \frac{dh}{d\overline{s}},$$

i.e.

$$\frac{dh}{d\bar{s}} = -\bar{h}_1 f.$$

We obtain analogously the following:

(3. 14)
$$f\left(\frac{d\xi_1}{ds}, \bar{\xi}_a\right) = h \bar{k}_a, \quad a = 3, 4, \dots, n-1.$$

Using (3. 12) and (3. 3), we have

$$\frac{h}{\sqrt{(1-h^2)^3}} \left(f^2 + \rho^2 \frac{df}{d\bar{s}} \right) + \frac{\bar{k}_1 \rho^2}{\sqrt{1-h^2}} = \frac{h}{\sqrt{1-h^2}} + \frac{\bar{k}_1 \rho^2}{\sqrt{(1-h^2)^3}}.$$

Hence, we obtain the following:

(3. 15)
$$\begin{cases} \omega_{a,n+1} = \frac{h}{\sqrt{1-h^2}} \omega_a, \ a = 1, 2, \dots, n-1; \\ \omega_{n,n+1} = \left(\frac{h}{\sqrt{1-h^2}} + \frac{\bar{k}_1 \rho^2}{\sqrt{(1-h^2)^3}}\right) \omega_n. \end{cases}$$

Then, for $\lambda > n+1$, by (3.14) and (3.9) we have

$$\begin{split} \omega_{a\lambda} &= (De_a, \ e_{\lambda}) = (d\bar{e}_a, \ \bar{\xi}_{\lambda - n + 1}) = 0 \ \text{ for } 1 \leq a \leq n - 1, \\ \omega_{n\lambda} &= (De_n, \ e_{\lambda}) = (de_n, \ \bar{\xi}_{\lambda - n + 1}) \\ &= \frac{1}{\sqrt{1 - h^2}} (d(-f\bar{e}_n + \rho\bar{\xi}_1), \ \bar{\xi}_{\lambda - n + 1}) \\ &= \frac{\rho}{\sqrt{1 - h^2}} (\frac{d\bar{\xi}_1}{d\bar{s}}, \ \bar{\xi}_{\lambda - n + 1}) d\bar{s} = \frac{\rho}{\sqrt{1 - h^2}} \cdot \frac{h}{f} \bar{k}_{\lambda - n + 1} \cdot \frac{\rho}{\sqrt{1 - h^2}} \omega_n \\ &= \frac{h\rho^2}{f(1 - h^2)} \bar{k}_{\lambda - n + 1} \omega_n \,, \end{split}$$

i. e.

(3. 16)
$$\begin{cases} \omega_{a\lambda} = 0, \ a = 1, 2, \dots, n-1; \\ \omega_{n\lambda} = \frac{h \rho^2}{f(1-h^2)} \, \overline{k}_{\lambda-n+1} \, \omega_n. \end{cases}$$

Now we state the definition of principal normal vectors for a submanifold introduced by the author in [5]. In general, let M be a submanifold of a Riemannian manifold \overline{M} . A normal vector v at a point $x \in M$ is called a *principal normal vector* of M at x, if it satisfies the following condition:

There exists a tangent vector $u \in M_x$, $u \neq 0$, such that

$$T_u z = (u, z) v$$
 for all $z \in M_x$,

where M_x denotes the tangent space of M at x and T is the shape operator of M in \overline{M} . u is called a *principal tangent vector* for v.

It is evident that all the principal tangent vectors for v and the zero vector span a linear tangent subspace, which we denote by E(x, v).

A C^{∞} normal vector field V of M is called a regular principal normal vector field, if V is a principal normal vector at each point x of M and dim E(x, V(x)) is constant. When \overline{M} is of constant curvature, $E(M, V) = \bigcup_{x} E(x, V(x))$ is a complete distribution of M (Theorem 1, [5]).

Now, going back to the previous situation, by means of (3. 15) and (3. 16), the shape operator of $M^n(C)$ as a submanifold of S^{n+m-1} can be written as follows: For any tangent vectors $X = \sum_{i} X_i e_i$, $Z = \sum_{i} Z_i e_i$,

(3. 17)
$$T_{x}Z = \left\{ \frac{h}{\sqrt{1-h^{2}}} \sum_{a=1}^{n-1} X_{a}Z_{a} + \left(\frac{h}{\sqrt{1-h^{2}}} + \frac{\overline{k}_{1}\rho^{2}}{\sqrt{(1-h^{2})^{3}}} \right) X_{n}Z_{n} \right\} e_{n+1} + \frac{h\rho^{2}X_{n}Z_{n}}{f(1-h^{2})} \sum_{\lambda > n+1} \overline{k}_{\lambda - n+1} e_{\lambda}.$$

The formula (3. 17) implies immediately the following

Theorem 2. $M = M^n(C)$ has two regular principal normal vector fields V and W given by

$$V = rac{h}{\sqrt{1-h^2}} e_{n+1},$$
 $W = \left(rac{h}{\sqrt{1-h^2}} + rac{k_1
ho^2}{\sqrt{(1-h^2)^3}}
ight) e_{n+1} + rac{h
ho^2}{f(1-h^2)} \sum_{\lambda > n+1} \overline{k}_{\lambda - n + 1} e_{\lambda},$

if the tangent lines of C do not pass through the origin of D^m . Then E(M, V) and E(M, W) are distributions of dimension n-1 and 1, respectively and

$$E(M, V) \oplus E(M, W) = T(M).$$

On the distributions in a sphere as V and W, we have the following theorem (Theorem 6, [6]):

Theorem 3. Let M^n $(n \ge 3)$ be a minimal submanifold of $S^{n+p} \subset R^{n-p+1}$ with two regular principal normal vector fields V and W such that

$$E(M^n, V) \oplus E(M^n, W) = T(M^n).$$

Then, there exists an (n+2)-dimensional subspace E^{n+2} of R^{n+p+1} through the origin such that

$$M^n \subset E^{n+2} \cap S^{n+p}$$
.

Theorem 4. $M^n(C)$ is minimal in S^{n+m-1} if and only if C is a geodesic of O_n^m .

Proof. By Theorem 2, $M^n(C)$ has two regular principal normal vector fields V and W satisfying the condition as in Theorem 3.

If M''(C) is minimal in S^{n+m-1} , by Theorem 3 there exists an (n+2)-dimensional linear subspace E^{n+2} of R^{n+m} through the origin such that

$$M^n(C) \subset E^{n+2} \cap S^{n+m-1}$$
.

Hence, by the way of construction of $M^n(C)$, C must lie in a plane through the origin. Accordingly, by (3.1), (3.2) and (3.5) we have

$$\overline{k}_3 = \overline{k}_4 = \cdots = \overline{k}_m = 0.$$

Thus, the condition that $M^n(C)$ is minimal becomes

(3. 19)
$$\frac{nh}{\sqrt{1-h_2}} + \frac{\rho^2 \overline{k_1}}{\sqrt{(1-h^2)^3}} = 0$$

by means of (3.17). Hence, by a result in [4], C is a geodesic of O_n^2 . By means of Corollary of Theorem 1, C is also a geodesic of O_n^m .

Conversely, if C is a geodesic of O_n^m , then it lies in a plane through the origin. Thus, (3.18) is true for C. By means of (3.17), $M^n(C)$ is minimal if (3.19) is true. Using the direction angle t of C in the plane, we have

$$\overline{k}_1 = -1/\left(h + \frac{d^2h}{dt^2}\right)$$
 and $f = \frac{dh}{dt}$.

Therefore, (3. 19) can be written as

(3.20)
$$nh(1-h^2)\frac{d^2h}{dt^2} + \left(\frac{dh}{dt}\right)^2 + (1-h^2)(nh^2-1) = 0.$$

This is also a condition that C is a geodesic of O_n^2 (Proposition 1, [8]). Hence M''(C) must be minimal in S^{n+m-1} . Q. E. D.

Remark. In order to prove Theorem 4, we can use Lemma 2. But, we have to take care of the following fact. If $M^n(C_0)$ is minimal, we may consider C_0 is a smooth arc in D^m and it is extremal with respect to the *n*-dimensional volume of the family of $M^n(C)$ such that C are smooth curves in D^m with the same ond points of C_0 .

Finally, we shall give a remark on the representation of O_n^m like the Poincaré one of $H^2 = O_0^2$.

Let us suppose that n is any real number and denote the line element (1.2) of O_n^m by

(3.21)
$$ds_n^2 = (1-(u,u))^{n-2}[(1-(u,u))(du,du)+(u,du)^2].$$

In D^m we take the change of coordinate system: $u = (u_1, \dots, u_m) \longrightarrow x = (x_1, \dots, x_m)$ given by

(3.22)
$$u = \frac{2x}{1+r^2}, \qquad r = \sqrt{(x, x)}.$$

Then, we have

$$1-(u, u)=\left(\frac{1-r^2}{1+r^2}\right)^2$$

$$(du, du) = \frac{4}{(1+r^2)^4} \left\{ (1+r^2)^2 (dx, dx) - 4(x, dx)^2 \right\},$$

$$(u, du) = \frac{4(1-r^2)}{(1+r^2)^3} (x, dx).$$

Substituting these into (3.21), we obtain

$$ds_n^2 = \frac{4(1-r^2)^{x(n-1)}}{(1+r^2)^{2n}} (dx, dx),$$

i.e.

(3.23)
$$ds_n^2 = \frac{4(1-\sum_i x_i x_i)^{2(n-1)}}{(1+\sum_i x_i x_i)^{2n}} \sum_f dx_i dx_j.$$

Especially, we have

(3. 24)
$$ds_0^2 = \frac{4}{(1 - \sum_i x_i x_i)^2} \sum_i dx_j dx_j,$$

which is the Poincaré representation of the hyperbolic plane of curvature -1. Hence, we have from (3.23) and (3.24)

$$ds_n^2 = \left(\frac{1 - \sum_i x_i x_i}{1 + \sum_i x_i x_i}\right)^{2n} ds_0^2.$$

Therefore, we may call the expression (3.24) the Poincaré representation of O_n^m .

REFERENCES

- [1] S.S. CHERN, M. DO CARMO and S. KOBAYASHI: Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer-Verlag, 1970, 60-75.
- [2] S. Furuya: On periods of periodic solutions of a certain nonlinear differntial equation, Japan-United States Seminar on Ordinary Differential and Functional Equations, Springer-Verlag, 243 (1971), 320—323.
- [3] W.Y. HSIANG and H.B. LAWSON, Jr.: Minimal submanifolds of low cohomogeneity, J. Differential Geometry 5 (1970), 1—38.
- [4] T. Otsuki: Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math. 92 (1970). 145—173.
- [5] T. OTSUKI: On principal normal vector fields of submanifolds in a Riemannian manifold of constant curvature, J. Math. Soc. Japan 22 (1970), 34—46.
- [6] T. OTSUKI: Submanifolds with a regular principal normal vector field in a sphere, J. Differential Geometry 4 (1970), 121—131.

ON A FAMILY OF RIEMANNIAN MANIFOLDS DEFINED ON AN m-DISK 97

- [7] T. Otsuki: On integral inequalities related with a certain nonlinear differential equation, Proc. Japan Acad. 48 (1972), 9—12.
- [8] T. OTSUKI: On a 2-dimensional Riemannian manifold, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 401—414.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOHY, TOKYO 152, JAPAN

(Received October 14, 1972)