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ON THE IMMERSIONS OF MANIFOLDS IN ELLIPTIC
SPACES AND A THEOREM OF S.S. CHERN -
M. DO CARMO - S. KOBAYASHI AND T. OTSUKI

L. VANHECKE

Introduction. S.S. Chern, M. do Carmo and S. Kobayashi proved
in [3] (see also [12]) that if V* is a compact n-dimensional manifold
minimally immersed in an (#+ p)-dimensional space V"** of constant
curvature ¢ and the norm ¢ of the system of second fundamental forms

of V* in V"*? satisfies o < #nc (2 — %)", then either ¢ =0 or o=

ne (2 — %)“. If V**® = §**! (the (» + 1)-dimensional unit sphere) and

o=n, then V" is locally-a Riemannian direct product of spaces V, and V,

of constant curvatures 17:; and nfm' where dim V, = m >1 and dim V,

= n —m > 1. In the latter part of this statement the second fundamental
form has but two eigenvalues with respective multiplicities dim V, and
dim V,. Moreover it is proved in Theorem 2 of the cited article that
making an appropriate choice of the frame of reference the connexion form
wj of S restricted to V", are given by
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T. Otsuki’s main purpose in [8] is to treat the inverse problem for
minimal hypersurfaces V* in S™'. First of all he proves a local theorem
on the integrahility of the distributions of the spaces of principal vectors of
a hypersurface in a Riemannian manifold of constant curvature. Making
use of this theorem he investigates minimal hypersurfaces with constant
multiplicities of the principal curvatures. He proves that if the minimal
hypersurface has but two principal curvatures and their multiplicity is at
least two, the minimal hypersurface V" is locally a Riemannian direct
product of two spheres of dimensions m and n—m (i. e. the respective
multiplicities of the principal curvatures) and radius (%)”Z and (”;m)l'a.
For such a minimal hypersurface 6= n. In addition T. Otsuki generalised
certain theorems of [8] in [9] and [9/].

In [10] R. Rosca, L. Verstraelen and the author studied a similar
minimal manifold V* in a 5-dimensional elliptic space P:, especially
with respect to the specific properties in such a space, and also considered
related properties of symplectic manifolds and hamiltonian fields.

In the present contribution we again consider immersions of manifolds
in more-dimensional elliptic spaces of curvature - 1, which can always
be realised by an appropriate preliminary homothetic transformation. We
observe that certain results obtained in this work can be proved without
difficulty to be valid in any Riemannian space with constant curvature.

The main purpose of our study is, just like T. Otsuki’s in [8], to
treat an inverse problem, dropping however the hypothesis that the immer-
sion should be minimal and starting from another property of the higher
matrix. Indeed, we observe that the connexion forms whose indices belong
to the two different groups of indices corresponding to the two principal
curvatures are trivial.

Let = : V2:™(n, m)—> P7*"*! be an isometric immersion of an (#-+m)-
dimensional manifold into an (2 + m + 1)-dimensional elliptic space of
curvature -+ 1, having but two principal curvatures of multiplicities »
and m respectively and with tangential connexion forms belonging to both
principal curvatures which are trivial as in the higher matrix. First, as
did T. Otsuki, an integrability-property is proved (§ 4). This leads to the
result that V. (s, m) is locally a Riemannian direct product of an #- and
m-dimensional submanifold of constant curvature.

In §2 an analogous problem is posed for a hypersurface V** cC pP**'
having but » principal curvatures and whose connexion forms satisfy the
same conditions. The results are similar, but in addition we find V%,
(2, 2) C P} to be the only possible case. The existence of such hypersur-
faces is proved. In § 3 a similar investigation is carried through in a
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special case of manifolds with codimension > 1. Always special attention
is devoted to the particular case of minimal manifolds and to the impact of
the condition ¢ = n. It then turns out that 4-dimensional manifolds play
an important role in the problem which is posed. Moreover it has to be
mentioned the manifolds under consideration are always symplectic.

In §§ 5, 6 and 7 some special properties are indicated concerning the
hypersurfaces obtained by dilatation, the rectilinear system of the normal
and the sectional curvature of the hypersurfaces in question. This sectional
curvature is determined by the plane section defined by the so-called curva-
ture and distinguished fields of the manifold.

Finally in § 8 the generalisation of the theory of [10] is studied for
non-minimally immersed hypersurfaces and this, amongst others, leads to
a result about the field of curvature being hamiltonian.

1. Let P¥* be a (2n + 1)-dimensional elliptic space of which the
curvature is supposed to be reduced to unity by a previous homothetic trans-
formation, and =: V®* ——> P¥*' an isometric immersion of an orientable
C~-hypersurface (n > 2).

With the generating point X, of the hypersurface V** we associate
an orthonormal simplex S ,..={X.}, (4, B, C=0, 1, -, 2z + 1) and
suppose that the dual tangent space Ty (V*") of V** at X, is determined
by the points X; (¢, j, k=1, 2, -+, 2n), the dual basis of Tx (V")
being ©*(«’ | du’). In these circumstances V*" is structured by the con-
nexion

(1) dX, = wiXy,

where «% are the connexion 1-forms of the immersion n. The structural
equations associated with = are:

d A wh = a§ A of,

(2) (0F + wi = 0),
with
(3) s = 7‘_’jiwi ,

where ;4 are the connexion coefficients. Since V*" is an integral manifold

of «*"''= (0 we obtain by exterior differentiation :
FI =
i Ji
The second fundamental form ¢ of the hypersurface V** is defined by
(4) ¢ = - < dXiu dX2n+1> = ")izn+l‘uf'
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It is always possible to choose the simplex S,,., in such a way as to make
¢ diagonal, in which case

( 5 ) (’)%n+] = —‘)‘i(l)?y ('lt % O) ]

where 4; are the principal curvatures of V** at X,. According to the
definitions of [10] we call K& Tx (V*") and w€ A* (V*"), given by

(6) KK, X;>=2; and w:Z(U"

respectively the field of curvature and the distinguished 1-form associated
with =,

2. We now suppose that the 2n-tuple of principal curvatures (4,, 2,,
-+, 4.) can be partitioned into » sets of two, say according to the index-
groups (i*, n+i*), (%, j*=1, -, n). Moreover we suppose that the
tangential connexion forms ] satisfy

(7 w! =10, 7 and j € different index-groups,

and we denote such a hypersurface by V.. Exterior differentiation of
these relations gives, with the help of (5) :

(8) 1+ 22, =0=>4x=2,,+; { and j € different index-groups.

Thus we conclude that V" has but » different principal curvatures.
In the following a hypersurface of this kind will te denoted by V?**(2, 2,
.., 2). From (8) then follows immediately » = 2, and consequently we
can formulate the

Theorem. Let V**(2, 2, -+, 2) be a 2n-dimensional hypersurface
tmmersed in PI"' and having but n different and non-trivial principal
curvatures. The only hypersurfaces of this kind whose tangeniial con-
nexion forms ol are trivial if i and j belong to different principal curva-
tures (after having diagonalised the second fundamental form) are the
Vien(2, 2).

Fora V3!.(2, 2) itis obvious that the system of Pfaffian equations

1% +*

(10) o' =& =0,

corresponding to the principal curvature 4;+ (j* =i*), is completely
integrable. Furthermore, exterior differentiation of (5) gives:

(11) A% = constant.

Hence we can formulate the following :
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Theorem. The system of Pfaffian equations corresponding fo a
principal curvature of a hypersurface Vi.(2, 2) is completely integrable
and the principal curvatures are constant.

We now consider the integral submanifold V, of V*,.(2,2) corres-
ponding to 4, and thus determined by «® = «* = 0. From the connexion
(1) restricted to V, one obtains:

deﬁ=wxy+mxb

(12) dX, = — @'X, + BX, + 1, X,,
l dX, = — X, + @1 X, + 1,5°X,,
dX, = — 1,@'X, + 3°X,),

@i being the forms restricted to V,. «,, a, defining the dual base of
this submanifold, the intrinsic curvature of V, is found with the help of
the tangential connexion from «} from the formula

(13) d A aj = —K,a' A\ .
From (12) we readily get :

(14) ot = o, of = o, ) = b
and so we obtain

(15) K.=1+ 4.

Thus the intrinsic curvature is constant. Furthermore we deduce from
(12) that the submanifold V, belongs to the three-dimensional elliptic
space P} spanned by the points (X,, X;, X,, X,).

For the submanifold V, corresponding to 2, and determined by
o'=w'=0 we find an analogous result. In this case

and V., belongs to Pi!={X,, X,, X, X}.
Moreover each point of Vi. (2,2) has a neighbourhood U which is
the Riemannian product V, X V,. Thus we have the

Theorem. Every Vi, (2, 2) C P} is locally a Riemannian direct
product of manifolds V, and V. of dimension two, of constant curvature
and belonging to three-dimensional linear subspaces of PS5  The constant
curvatures are respectively 1+ 21 and 1+ 23, 2, and 4, being the
principal curvatures of Vi, (2, 2).

Ve (2, 2) is a minimal hypersurface (or = is a minimal immersion) if
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@amn A+ 2,=0.

Under this hypothesis, it follows from (8):

(18) A=1.

On the other hand, as is known, the norm o of ¢ is defined by
(19) 7= TG,

and in the case under discussion one finds :

(20) o= 2 (1 + ).

We shall say in general that a manifold V is of the Kenmotsu type (6] if
c=dim V. So we have the

Theorem. A hypersurface Vi, (2, 2) is minimal if and only if it is
of the Kenmotsu type.

Remark. Following Kenmotsu [6] a minimal V},, (2, 2) is an open
submanifold of a Clifford hypersurface M .

A closed form £ of the second degree and defined on a manifold V*"
for which (A £)" is a volume-form, is called a symplectic form and the
manifold V**(£2) itself a symplectic manifold [1], [5]. It is easy to
verify that for V:.(2, 2)

(21) Q=3 &" A"

k3

is closed and (A £)° is a volume-form, and so we have the

Theorem. The hypersurface Vi, (2,2) are symplectic with
Q=3 0" A\ o™ as symplectic form.

‘*
It isequally easy to prove the existence of the studied hypersurfaces.
Indeed, they are determined by the following closed system ' of Pfaffian
equations :

5. ; 1 5__ -1 2 5 __ 3 5 __ -1 4
w; = Ao, wi= —A{'wb, ws = o', wi= — et

( o =0,
|
\

2 . 4 3 __ 4
wl—wl—w,—w;—o,

d2,=0.

From this it follows the
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Theorem. The hypersurfaces Vin(2, 2) are determined by the sys-
tem I which is in involution and whose general solution depends on 10
arbitrary constants. For a minimal V.,(2, 2) this number of constants
decreases with one.

3. The preceding problems can be considered as particular cases of
the following theory. Let m: V*" — P;"*" now be an isometric immer-
sion of an orientable C*-manifold with codimension N. At the generating
point X, of V*" we again associate an orthonormal simplex S.,.x={X.},
(4, B, C=0, 1, 2n+ N), such that V** is an integral manifold of

(23) =07, s=2n+1 -, 2n+ N,

and (&’ |du’), (5, j =1, 2, -+, 2n), is the dual basisof Ty (V"). The
relations (1), (2) and (3) remain valid here, while the exterior differentia-
tion of (23) gives, making use of E. Cartan’s lemma:

(24) ) TS Th.

A manifold V?** with codimension N has N second fundamental
forms ¢, actually defined by

(25) Pr = — <an, dX,-> = (u'.:a)i .
In the following we suppose that the normal connexion forms ! satisfy
(26) o} =0

(the normal connexion thus is trivial) and also suppose that it is possible
to diagonalise all the forms ¢, simultaneously. We then say that V*"
possesses lines of curvature and we may write :

@7 wp = — e

To arrive at an analogous situation as in the previous section we
suppose that it is possible to partition the indices into sets of two, say
(¢*, n + £*), and that this partition is the same for all ». Moreover we
make the hypotheses

(28) { Agx = At
w] =90, i and j € different index-groups.

In the following such a manifold will be denoted by
V§31L(21 2, R 2) .
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One readily verifies that the system of Pfaffian equations
(29) D S R e UK L b Y .__=(Dn+i*—1:(on+l*+1; ---=(uzn;0,
corresponding to 4i*, is completely integrable. Thus we again obtain

integral submanifolds (surfaces) of VIL(2, 2, ---, 2) which we shall denote
by V.*. Exterior differentiation of (27) directly leads to

(30) 2"x = constant .

Asin §2 itis possible to find the intrinsic curvature for these surfaces.
We obtain

(31) Kn.=1+%2 (lri*)z )

which by (30) is always constant. Next from the connexion (1) we infer
that V.* belongs to the three-dimensional linear subspace P; spanned
by thn points X,, X*, X,..;», f+*X, (f = factor of normalisation). We
also notice that each point X, of Vin(2, 2, -+, 2) has a neighbourhood U
which is the Riemannian product V, X V. X -+ X V,, and consequently
we have proved the

Theorem. Every manifold Vi, (2, 2, -, 2) C P™*Y is locally a
Riemannian direct product of n manifolds V. with dimension 2, con-
stant curvature K, =1+ > (A"*), and belonging to three-dimensional

subspaces of P3*". The system of Pfaffian equations corresponding to
any X;x is completely integrable and every X;x is constant.
Exterior differentiation of the trivial tangential connexion forms (28)

gives

(32) 1+ 3 dpkip =0,

when #* and j* belong to different index-groups. If VZ(2, 2, -, 2)
is of the Kenmotsu type, i.e. if

(32) e = Zr: (XY = 2n

or

(39 n= T (e,

it follows from (32) that o

(32) ; GV = 4n(2—n), ¢ = trace [ri;].

Confining ourselves to the real domain we thus notice that a Vi.(2,2) C
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Pi*¥ of the Kenmotsu type is minimal. Conversely, let us suppose that
v® (2, 2, ++, 2) is a minimal manifold. Then

=0,
and with the help of (32) we find
(36) c=2n(n-—1).

Consequently such a manifold is of the Kenmotsu type if #=2 or VZ,(2,
2, -, 2)=V.i.(2, 2)C P, and so we obtain the

Theorem. Let V5(2, 2, -+, 2) be a manifold of the Kenmotsu type.
Then we have Y, () = 4n(2 — n) and for a minimal manifold V¥(2, 2,
«++, 2) the norm rof the second fundamental form is given by ¢=2n(n —1).
Limiting ourselves to the real domain, a manifold Vi.(2, 2) C Py*Y isa
minimal manifold if and only if it is of the Kenmotsu type.

We remark that according to a theorem of Kenmotsu [6] we may say
that a minimal manifold V.2, 2) of Pi*" is a minimal hypersurface of
a totally geodesic manifold V° C P*** i.e. of a P;, and so we redis-
cover the manifolds of § 2. Indeed, we have ¢ =4 and the normal
connexion is trivial. The manifolds in question are thus open submani-
folds of a Clifford minimal hypersurface My, s—s.

The following property can also be proved immediately :

Theorem. The manifolds Vi.(2, 2, «-, 2) are symplectic having
(37) o= w'* N wn+(*
l*

as symplectic form.

Besides the manifold VZ,(2, 2, ---, 2) generated by X, we also con-
sider the manifolds generated by the points X, of the totally normal
space. Thus we obtain a set of N + 1 manifolds and from the formulae
the following theorem concerning this configuration ¢ of manifolds is
self-evident :

Theorem. All manifolds of the configuration = arve V(2 2, -+, 2).

4. On the other hand it is also possible to consider the hypersurfaces
Via(2, 2) C P:, treated in § 2, asa particular case of the following.

Let =: V**™ — P!™*! }e an isometric immersion of an orientable
C”-manifold with codimension 1. At the generating point X, of V*™™
we associate an orthonormal simplex S,...;1= {X.}, (4, B, C=0, 1, -,
#+ m + 1), such that V**™ isan integral manifold of
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W™l =,

o(u’|dw’), (§, j =1, -, n-+ m), is the dual basis of Ty (V"*™). The
relations (1), (2) and (3) also apply to this situation, and exterior differenti-
ation of (38) gives

(39) 7,?j+mu — ?i+m+1 .

Next as it is possible to diagonalise the second fundamental form

(40) Q= — < d X, an+m+1 > = (U;“""H(u‘ R
we get:
(41) WPt = el

where 2, are the principal curvatures of the hypersurface.

In addition we suppose that these principal curvatures can be ordered
into two sets, say
{ (}‘1: Ty 'ln):

()'n+1’ Y 1n+m)

and again require the tangential connexion forms ] to satisfy

(42) n, m>1

(43) w! =0, { and j € different index-groups.

Exterior differentiation of these equations gives

(44) 1+ 4%, =0, ¢ and j & different index-groups,
which implies

A=Ay = =2,
(45) [ Apgr = Appa = 0 = 2pi .

(We suppose the principal curvatures to be different from zero.) Hence
such a hypersurface (denoted by Vi:"(n, m)) has only two principal curva-
tures.

A simple calculation shows that the system of Pfaffian equations

(46) “)n+l___. ver = TR = 0’
corresponding to the principal curvature 4,, and the system
(47) (91 = eeas — (,)" = 0,

corresponding to the second principal curvatuer 4,., are both completely
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integrable. Consequently we may again consider integral submanifolds
V*(4,) and V™(4,,,) of V**™ with respective dimensions » and m and
we remark that exterior differentiation of (41) gives

(48) 4; = constant.

First of all we consider the integral submanifold V"(2,) of Vai™(n, m).
From

(49) d /\ ! = wf /\ (U,’; — (]_ + 23)(0‘ /\ W (“, j, k=1, 2, -, n)

it follows that V°(4,) has a constant curvature 1 + 2i. Analogous con-
siderations show that V™(4,,,) has a constant curvature 1+ 23,,. It also
follows, with the help of the connexion (1), that V" (4,) belongs to the
P! spanned by (X, X,, -+, X,, Xn+m+1) and that V™(1,,,) belongs to
the P»** spanned by (X, X,., ***, Xnim, Xuim+). From this we con-
clude that each point of Vi&i™(n, m) has a neighbourhood U which is
a Riemannian product V*(4,) X V™(1,.,). We summarise results in the
following

Theorem. The system of Pfaffian equations «"*' = - = """ = (),
respectively o' = - = " = 0, corresponding to the principal curvature
1, respectively A,.., of the hypersurface V2i"(n, m) is completely inte-
grable, and the principal curvatures are constant on Vin"(n, m). The
integral submanifolds V'(1,), respectively V™(l...), of the systems
have a constant curvature 1+ 25, respectively 1 + 4., and belong to a
(n+1)-, respectively (m + l)-dimensional linear subspace of P;*™'.
Each V&.™(n, m) C P;*™**' islocally a Riemannian direct product of the
manifolds V(%)) and V™(A...).

For a minimal hypersurface Va"(n, m) we have

(50) n'il -+ mln+1 = Q.

With the help of (44) we then find for the norm ¢ of the second funda-
mental form

(51) c=n+m

and so again we obtain a hypersurface of the Kenmotsu type. Conversely,

n+m

assuming that V.:"(n, m) is of the Kenmotsu type, we must have
(52) o= n+tm=TGH" =nki+ miha,
i,

which using (44) becomes :
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(53) (na} — m)(22 — 1) = 0.

We deduce that if the first factor of (53) is zero then V21"(#n, m) is minimal

and if the second factor is zero V.»"(n, m) is minimal if » = m, and so
we obtain the

Theorem. FEach minimal hypersurface Vii™(n, m) is of the Ken-
motsu type. A Viw(n, n) is a minimal hypersurface if and only if it is
of the Kenmotsu type.

Remarks. a) Previously we supposed 7, m > 1. However, the case
n>1, m =1 can be included immediately into our considerations since
then 2, remains constant, and in virtue of (44) also 4,., is constant.

b) Further we notice that the theory of the present section can be
extended in a similar way as in § 3.

c) We refer to [6] to conclude that a minimal manifold V.%5"(n, m)
is an open submanifold of a Clifford minimal hypersurface M nsu—x -

5. Inthe following three sections we shall prove some more properties
relating to the hypersurfaces VZym(n, m).
Consider the dilatation ¢: X, —> Y defined by

(54) Y =‘X,, cos ¢ + X, m+ SiD ¢, ¢ constant.
With the help of the connexion (1) and with (41) we find

(55) dY = (cos ¢ — 2; sin ¢) o' X, .
So the dual basisof Y is
ot = (cos ¢ — 4 sin c)o'.

The factor tetween parentheses is constant, so the dilatation is a homothetic
application. The second fundamental form ¢. is given by

56) ¢, = —<dY, d(— X, si Xosrs :*‘M‘Eﬁcgiz_
(56) ¢ < ( $in ¢+ Xounia €08 €)) %’cosc—-/li smc( )
The manifolds in question thus also have but two principal curvatures.
With the help of (55) we find

(57) af =0, ¢ and j € different index-groups,

which implies that the hypersurfaces Y are of the same type as the basic
hypersurface V,;"(n, m). They are locally the Riemannian direct product
of a submanifold V" of constant curvature

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 16/iss2/4
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(58) 14 (sin ¢+ 2, cos 0)2
cosc¢c — 4, sin ¢

and a submanifold V™ of constant curvature

. ) 2
(59) 1+ (sm €+ Apa cgs c)
COS € — Zyp,y SiN €

The Lipschitz-Killing curvature K and the mean curvature H of Y are:

(60) I_{=(—1)"+"‘(Sin ¢+ 4, cos c)" sin ¢+ 4,4, cos ¢\
cos ¢c—4, sin¢/ ‘cos c—2,,,5in¢/ ,

_ . i )
(61) = 1 {Msm ¢ctdcosc,  sinctin,, cos c}

n+ml cos c—2, sin ¢ COS C—2q4, SIN €
62) = 1 {(nl,+m1-,.+,)coszc——(ml.+nl,.+,)sin2c+ 2(m-+ n)sin ¢ cos c}
n+m cos’ c—sin’ ¢ — (4,-+4,,,) sin ¢ cos ¢ )

Both curvatures are of course constant.

Now suppose Vin™(n, m) is a minimal hypersurface. By virtue of
(44) and (50) we oktain

L m o [E
(63) A, = n’ Anﬂ ‘/m ,

and so
2(n 4+ m) sin ¢ cos ¢ +(n1/£ —m \/ﬁ) sin® ¢

- 73 . n .
nekn cos’c — smzc—(]/ﬂ—l/l) sin ¢ cos ¢
n m

This proves that the hypersurface Y determined by

Zin—l—m)_
my 2 — 2
n m

is always a minimal hypersurface; more precisely it is the dual hypersur-
face of Vii™(n, m) if and only if m = n. Under this latter hypothesis
we find

(65) tgec =

(66) K=(-1r, H=tg2c.

If the basic hypersurface V;"(n, m) is not minimal, (62) proves that
there always exist two minimal hypersurfaces Y, determined by
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(67) (n2—m) cos® ¢ —(mAi—mn) sin® c+2(m-+n)2, sin ¢ cos ¢ = 0.

We thus obtain the

Theorem. All hypersuvfaces Y derived from V5i™(n, m) C Prm+!
by dilatation are hypersurfaces of the same type as the basic hypersurface.
Just like the latter one they have a constant mean and Lipschitz-Killing
curvature. If V&™(n, m) s minimal there exists exactly one hypersur-
face Y that also is minimal, and which is the dual hypersurface if and
only if n=m. In this case the mean curvature of these hypersurfaces
Y is H = tg 2¢ and the Lipschitz-Killing curvature is K = (—1)

If the bastc hypersurface is non-minimal there still exist two minimal
hypersurfaces Y.

6. The straight lines L = (X X,,...;), Which are associated with the
former hypersurface (they are its normals), generate a rectilinear system
< depending on n -+ m parameters. The focal points F, given by

(68) F= X,cost+ X,,ms sin ¢,
are obtained by putting

(69) dF = pX 4+ 07X, ;s -
This implies

(70) w'(cos £ — 2sin t) = Q.

From (7) we can conclude that the rectilinear system .2 which is a normal
system, has but two focal points:

F,= (4, X, + Xowmar) (1 + )77,
(71) 1
F.' = (ln+lXo+ -Xn+m~1) (1_.‘_2:+])—2 )
or from (44):

{ F, = f(;HAXn + Xn+m+l))

Fo= f(X, = 3, Xy 7 f26t0F of normalisation).

(72)
The focal points thus are rectilinear points on the line L. Further we
immediately find :

(73) dFl = f('{l - lni-l)(w"HXnﬂ 4 e+ wn+an+m)»

(74) dF, = f(1 + ) («*'X, + - + *X,).
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So the focal point F, respectively F, describes an m-dimensional,
respectively an n-dimensional focal variety V™, respectively V". One
can derive without difficulty that all the second fundainental forms identi-
cally vanish, and so the focal manifolds are totally geodesic. We find that
(F,)= V™ is identical with the linear space spanned by the points F,,
X1, -, Xoim and (F,) =V" is identical with the linear space spanned
by the points F., X,, ---, X,. These two linear spaces are disjoint and
normal. The union of each of these subspaces with the normal L each
time gives a linear space containing the submanifolds of constant curva-
tures V*(4,) and V™,.,) of the hypersurface V2i™(n, m) under con-
sideration.

We finally remark that the points X,, ---, X,, respectively X,,, --
X,.. all generate the same linear space V”, respectively V™.

So we proved the following

.
2

Theorem. The normals L of a hypersurface Viy'(n, m) C Py *!
generate ¢ normal rectilinear system £ depending on n-+ m parameters.
On each of its elements L there exist only two focal points F, and F,,
which are rectilinear points. They gemerate two focal manifolds V™,
respectively V', which are m-dimensional, respectively n-dimensional,
linear subspaces. The spaces LUV™ and LU V" are those spaces that
contain the manifolds V™(a.) and V*(4,). V™ and V" are orthogonal
and disjoint.

Remark. Let us now consider a hypersurface V**™(n, m) C P:*™*!
having but two principal curvatures with respective multiplicities » and
m, dropping however the hypothesis «/ =0 if ¢ and j belong to different
index-groups. Also in this case the straight lines L generate a normal
rectilinear system .2 depending on n + m parameters. .2 has also
two focal varieties (F,) and (F,) which now however in general are a
V™*' respectively a V**' because 4, and 4,., are no longer necessarily
constant. For the directions

(75) w'= =" =0

corresponding to the focal point F, the linear tangent space of the system
. at any L is identical with the tangent space of the focal manifold
generated by the other focal point F,. This tangent space is identical
with the 2-osculating space of curve described by F, if (75) is satisfied.
An analogous result holds when we consider the system

(76) @tl= e = W™ =0
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corresponding to the focal point F,.

Obviously it is possible to build a V**"(n, m) starting from a normal
rectilinear system .2 C P;*™*' depending on # + m parameters and
having but two focal manifolds. The hypersurfaces in question are the
orthogonal trajectories of ..

n+m

7. We now return to the hypersurfaces Vii™"(n, m) of P**™*. We
denote by C(c;) and C(¢:) two orthonormal fields belonging to Ty, (Ver™
(n, m)) and by 6(C) Otsuki's operator [7] which in the elliptic space
may be defined by

(1) oC) = 31y rieXs.
oJ

The relative sectional curvature K(z) = K. () — 1 at X, € Vii"(n, m)
for the plane-element = determined by the fields C and C is then given
by the expression

(78) K@ =2

where

(79) P = <0(C), €><(T), T — {KC), T,
(80) G=|cFIcr—IKc, T,

Now consider the plane-element = determined by the field of curvature
K(4,), defined in §1, and the distinguished field D(p.=1) corresponding
to the distinguished 1-form of § 1. These fields are rectangular if and
only if nd,+mi,,,=0,i.e. if and only if VZ.™(n, m) is a minimal hyper-
surface. We then find for the corresponding relative sectional curvature :

2 omit,, )

We notice that this formula also holds for a V"*™(5, m) for which the
condition on the connexion forms «j is dropped. However, in the case
where the hypersurface is a V2 ™(n, m) we find

(82) A= %
and so K(z)= — 1.

If the basic hypersurface V**™(», m) is not minimal we still can
consider the same plane-element. In general we find
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(83) K(;") = A1hna1,
which for a V7%,™ (n, m) Lecomes:
(84) K = —1.

Next let us suppose that # = m and that V**(un, n) is minimal.
The dual hypersurface then also is minimal, and for the corresponding
relative sectional curvature K*(xr) we have

(85) K = — 1,
and so

K@) _
(86) K A

which gives an interpretation for the invariant 4,.
We thus proved the following

Theorem. We consider the plane-element = determined by the curva-
ture field K and the distinguished field D of a hypersurface V"*"(n, m).
The corresponding relative sectional curvature K(7) is 2,4, &f 2, and
lus1 ave the two principal curvatures of V'*"(n, m). For a hypersurface
Verm(n, m) we have K(z) = — 1, while for a minimal V**(n, n) we have
W= K@EYK* (=), if K*(=) isthe corresponding relative sectional cur-
vature of the dual hypersurface.

8. In [10] we dealt with a special case of this theory, especially for
minimal hypersurfaces. Now we shall drop the restriction of minimality
and so obtain an extension of the problem we have considered in [10].

For this consider a hypersurface V**™(n, m) C P;*"*' having but two
different principal curvatures with respective multiplicities » and m.
To begin we do not suppose the manifald to be a V7;"(n, m)-hypersurface.

According to [2] we call the submanifolds of curvature totally holono-
mous if each equation «' = 0 is completely integrable, i.e. if

(87) d Ao =e A,

where « is a 1-form. It is easy to verify that a necessary and sufficient
condition for (87) to be true is

(88) =0,
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where 7, j and % are three different indices. In this case we may write
(87) as:

(89) A A e =w\ S e

Next we suppose the exterior derivatives of two dual forms «?, «’

belonging to indices of a same index-group are conformal for that group.
By virtue of (70) this implies

(90) rii =0, 7 and j  different index-groups .

It then follows

(91) w} =0, ¢ and j € different index-groups ,

and so we obtain V7;™(n, m)-hypersurfaces. Hence we have the
Theorem. The hypersurfaces V**"(n, m) having totally holonomous

submanifolds of curvature and for which each pair of dual forms of a

same tndex-group have conformal exterior derivatives for that group are

Var™(n, m)-hypersurfaces.

In § 2 we saw that the hypersurfaces V.(2, 2) C P) are symplectic,
with the symplectic form

(92) 2= Ao+ o \ o,
A field A(h) € Ty (Veen(2, 2)) is an hamiltonian field [1], (5] if
(93) dAGRIL=0.

We now consider the special case of the field of curvature K and the
distinguished field D. Both fields are hamiltonian if and only if

(94) dA(@ =)+ dA (e —o®)=0.
For hypersurfaces V3..(2, 2) this is equivalent with

d A —e)=0,
AN (@ —of) =0,

and so we can formulate the following

(95)

Theorem. A necessary and sufficient condition for the field of curva-
ture (or resp. the distinguished field) of a symplectic hypersurface Vi.
(2, 2) to be hamiltonian is that the dual forms of a same index-group are
homologous. For hypersurfaces V.,.(2, 2) this condition is only sufficient.
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9. In the whole preceding theory we supposed at least one of the
multiplicties #n, m to be greater than 1. It might be interesting however
to mention also the case m = n = 1. We then obtain a surface V* C PS.
Such a manifold of course always is symplectic with the symplectic form

(96) Q=0 N\,

The distinguished field is hamiltonian if and only if the dual form «' and

«©® are homologous. If

(97) (l)% =0,

then the orthogonal field of the curvature field is always hamiltonian.
If in addition V* is a minimal surface, also the curvature field itself is
always hamiltonian. We remark that in the first case V?* is a <& -surfacn
(of Bianchi) and in the second one a Clifford surface.

In this respcet we return a moment to the hypersurfaces Vi, .(2, 2)
of P3. The manifolds of curvature being totally holonomous, we can
consider the integral submanifolds of

(98) o= =0, { and je& different index-groups.

Since the tangential connexion forms corresponding to two such indices
are trivial, it follows that these manifolds are <Z-surfaces. An easy
calculation proves the

Theorem. Each Vin.(2, 2) C P; is locally a Riemannian direct
product of two & -surfaces.
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