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ON SOME EXPONENTIAL SUMS INVOLVING THE
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PROGRESSIONS

To Professor SHIN-ICHI IZUMI on his seventieth birthday
SABURG UCHIYAMA

Let d(») denote as usual the number of positive divisors of the posi-
tive integer ». In 1916 G. H. Hardy [1] studied among other things the
sum

_1
Sx(t) = ‘S;S‘Nn 7 d(n)e~ v (t > 0)

1
and proved that, if ?=~4wq? for any positive integer ¢, then
(1) Sx(t) = o(N*®)
1
and, if ¢t=4ng? for some positive integer g, then
; 1
(2) Sult) = 21D @) Ny o,
gt
where ¢ is any fixed positive number and N is tending to infinity.
The main purpose of this paper is to consider sums of the form.
def _1 .
Ulx, NY=U(x, N; &k, )= ézs n t d(n)e™=v (x >0),
15nEN
a=l(mod k)

where 2 and [/ are integers with 2 =1, 0=/ <k, and to obtain ana-
logues of (1) and (2). It is not quite difficult to show that, if x=£ (Zq%) [k
for any integer ¢, then one has for N — oo '

(3) U(x, N) = O(log N),

which is the best possible in the sense that the estimate O(log N) on the
right-hand side of (3) cannot be improved to o(log N).? On the other

hand, if & = (Zq%)/k for some integer ¢, the situation becomes rather

1) The particular case of (3) with # =1 and /=0 has also been treated by Mr. T.
Kano in a form rather different from ours.
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complicated,' though it is in fact possible to find the corresponding result
in its full generality. ® In the simplest case of (%, /) = 1 our result takes
the following form :

ol

(4) u(3, N)- 2(1*2;(‘1; B D NT 4 0(log M)
2q4

with
ogik, )= 2S(k; L, mi),
mig m
where S(k; «, v) is the Kloosterman sum, ®

(5) Sk; u, v) = Zkexp%—:i(ua+v5),
a mod &
(a,k)=1

a being defined modulo 2 by aa=1 (mod k), (¢, k) = 1. The O-term
on the right side of (4) is again found to be the best possible one. Thus,
our results (3) and (4) do not only generalize but also improve Hardy’s (1)
and (2).

Another way of generalizing (1) and (2) will be to consider the sum

det _1 .
S(x, N)=S(x, N; &k, )= :2; n 2dn; k D" (x>0),
12nEN
where d(n; k, I) denotes for =1, 0</<k, the number of positive
divisors d of » in the residue class d =/ (mod k). This is the subject
on which we discuss in [4].

1. Let k£ and !/ be fixed integers such that £ =1, 0=/ <<k We
use the letters m, n and ¢ to represent positive integers and, x and N
to denote real numbers with x>0, N =1. The constants implied in
the symbol O depend at most on %2 and /, whereas the constants in the
symbol O, may depend possibly on &, ! and «x.

Define
E(x, N)=E(x, N; b, ) = X e"Vn,

1SngN
n=lmod k)

2) In either case, we have to assume in reality that x should be greater than a constant
multiple of %3, See Theorem 2 below.

3) Here we adopt a notation for Kloosterman sums, slightly different from the usual one.
Cf [2].
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The well-known Euler-Maclaurin summation formula (cf. [3; Theorem
2.1]) will yield
25ixVy _; e!:rixy/"y —_ 1

(6)  E(x N) =4 (°

) + R(z, N)+ 0(1)

wix 2rtx?
with

: 1
+O(x > ,1 )+O(xN’+1),
mrrve |2mN? — kx|?
where
L
(7) P, Ny =22 5 Ly oxponi (22 4 2L _ 1)
27 mapps m? 4 k
and
_ kx < 1 . 5 _m(N=1)
(8) Q(x, N)_ZT 2y exp2m(xN’ — )

? et m(2mNT — kx)

Here, on the right-hand side of (7), the summation >.* indicates that the

m2u

term which corresponds to m = u (if existent) should be multiplied by
the extra factor 1/2. For the detailed derivation of (6) we refer to [4].

2. We are now going to evaluate the sum

V(zg, N)=V(x, N; k, I)= 1525\v d(n)e™=+ .

n=l(mod k)
We have
Ve, Ny = 3 enrm
1SabSN
ad=!l(mod k)
= 2 Z E e‘.!wixl/a_h + 2 - ez‘:ri.m

1fasvy a<dtsgN/a 1sasvy
ad=1(mod k) a’=t(mod k)

=2V, +V,
say, where we find

IV, < N?
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and
V,= % 2 2 gVad
al(k, b 1Sasv NIt ad<bSN/ad
(a, k=1 ab=L,(med L]

with k= k/d and I, =1/d for d|(k ).

1
For 1<ae< N?/d, (a k) =1, where d|(k, ), we define g (mod
ka) by the congruence ez =1 (mod k,); there is no loss in generality in
assuming that 0 </, @ <k, It readily follows from (6), (7) and (8),
with k= Fk, and ! = [, @, that

GV = | (x(ad)lz ﬁ) — E(x(ad)?, ad)
@d<BINjad * ad il ’ !
ab=l (mod ch)

VT 1 _ 1 N
= S N7 + Pa) - @(x(ad)®, 2T) + 0.),
where
_ 7 NV _ H
Pua) = P(x(ad), . d) P(x(ad)?, ad)
1 1
kilxa? 1

= « 1 (kx*a | mla _ 1
2 3exp2”’(4m+ )

1
Y kza kx -
232 W‘"“fﬂ m?

Hence, noticing that

LB o0 m 4 00

with Euler’s totient function ¢(k), we get

_ el gmvE 1
V. k®  2mix N*log N+ ATy IsesvRIa Pda)
Ca. k=1

9 R

— .u(zx?n ngﬁm Q (x(ad)a, _a?) + 0.(N?),

(u,kd)-l
where
_ k

(10) (pk(l) o dl%l) dd)(F) :

We have therefore
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an Vi N) =20 Nt iog N+ Pu(x, N) + 04N

K wix
with
Pn(x' N):2 2 E Pa(a).
|k, D 1saesyRild
(a.kd)=1

We note that the most delicate and difficult point in the derivation of
(11) is in the proof of

B X N 1
\. —_ = 2
(12) PUN S« (x(ad)z. &) = 0.9,
(a,kp)=1
ad sy

where A, denotes, for each d|(k, ), the set of those integers @& with
1<a<VN/d, (a k) =1, which lie within the distance N7 from
some point (2N;_m)/(kx) with 1 < m < (kx)/(2d); indeed, the proof of
(12) can be carried out along the same lines just as in [4] on the assump-

tion that x = 4k%. We replace, as we may, the second double sum on
the right side of (9) by the sum on the left side of (11), thus obtaining (11).

3. We are now in a position to evaluate the sum

Po(xs N)=2 Z Z Pd(a))
ai(k,1) iSagvyld
@ kD=1

where

S p-0=dEr g L

lsasvyd 2 kz
@ k=1 o<msyy M

Y

< .(kx’a mla
* —
> a? exp 2xt ( ™ -+ L )

VN
0<las kx
(a, ky) =1

m

with @ defined modulo k.

1
Suppose first that x 5= (2¢?)/k for any integer ¢. Then, since

2
exp( 2771'%)#:1 for all m,
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we have for any integer ¢, (c, k) = 1,

2 l—
g ex zﬂi(kxa_‘_ m a)
1sa2 N P dm k
a=c(mod ky)

—exp(20i M) 5 exp (20 B2 = 0,q1)
w=c(mod k)

uniformly in M and inm, 1 < m < (kx)/(2d), d|(k, ). It follows from
this by partial summation that

1 1 .(kx*a | mia L
* o - * 2 rg —_ )} = 4
) 5 22 a® exp 2t ( i 7 ) 0.(N%),

kx o VN
<mS 37y M 0<as;m

whence

Pz, N) = 0N

in this case.

Next suppose that x is of the form (2q2l)/k, where ¢ is an integer.
Let d beadivisorof (& ). If d ¥ g then

2
exp(zniki;:”x) =1 forall m,

so that we have for any integer ¢ with (¢, k) = 1

. (kx*a , mlay _
2 ez (G0 50 - o
a=n(mod k)

uniformly in M and in m, 1< m < (kx)/(2d). Hence, we find as before

1 2 - 1

2 13 2% arexp2ri (kx 2+ ﬂ@) = 0(N")
ke 3 WF 4m k

o<ms 3¢ M 0<as o m

for such d. The same is also true for d|qg, provided that the range of m

is restricted to 1 < m < (kx)/(2d), m t q/d.
On the other hand, if d|g and m|q/d (i.e. if dm]|q), then

+ .(kx*a , mia

*  a?exp2mg (— + —)
Zz:\/T p 4m k

D<as—kz "

(a, kD=1
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1
a 2
0<uSV(1~ Tom

e ,,§ x, €Xp2ai ( ml(:)

(c, kd) =1

S s(hs ) L () o))}

where S(k; u, v) is the Kloosterman sum defined in (5). It follows that

nk

1 2
SO* _1_ S a exp 273 (kx a mla)
kz ;

2 4m k
<msyy M w<ags ™
miqld
3 .
_ 2N k. g m <

8

< <msvqe

4 q
Skd miqld

Hence
Po(zzz ’ N) 2(1 —z)O’(q k, 1) N‘ +0(N ),
3k2 T
where
_ Nk q
(13) ola;k ) =2 % do<m‘s’|£—/d S(d dm’ )
mig

with D = (g, &, {).
We thus have established the following

Theorem 1. We have for N—

Vs, N)= 2O N3 10g N+ 0N)

if x5- (2q71)/k for any integer q, and

Vix, Ny = 21— z)Z(q 5k, D 2
3k: q*

e

s N7 log N + 0.N?)

if z= (Zq';‘)/ k for some integer q,  provided that x = 4k*. The quanti-
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ties #(!) and a(q; k, 1) are the ones defined respectively by (10) and (13).

4. Again, let £ and / be fixed integers with k=1, 0<7!<k.
It is a simple task to deduce, by partial summation, the following result
from Theorem 1.
Theorem 2. If x=(2q2)/k for any integer q, then
Uz, N)= O.log N),

1
and if x = (2¢*)/k for some integer q, then

—g . 1
Ux, N) =21 Dolgs kD) y= o 0.(log N),
kT gy

provided that x = 4k°.

We now define

W, N)= Wiz, Ni kb )= % 7 d(n)e™,
18ns8\N

A=Il{mod &)

Then, there holds the following

1
Theorem 3. If x5 (2¢%)/k for any integer q, then

(// (1) g’" iZVN
Tix

Wiz, N) =22 Nlog N + O(N),

1
whereas tf x = (297)/k for some integer q, then

]

Wz, Ny = 2L 87kas b D) gt
5k2 ¥

”’;e(f) "_z Nlog N + 0.(N)

provided that x = 4k°.

This follows again from Theorem 1 by partial summation.
Taking into account of Theorem 3, we can argue just as in [4] to
show that neither of the O-terms in the formulae in Theorem 2 can be

replaced by o(log N).

5. In conclusion we should like to examine some properties of the
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quantity o(g; &, ) defined in (13), where k=1, 0 <7<k, and ¢ =1.
At first glance the definition (13) seems to be rather unsymmetrical in
respect of the inner sum therein contained. However, in certain special
but important cases we can express ¢ (¢; &, /) in a concise form. Indeed,

if (k, /) =1 and hence D = (g, k, !)=1, then

i

o(g; b D=2 2* Stk:L, ml)
omLvy, m

m|gq

=2 Y* Sk m, L)
W<msV'y m
mlq

> Sk L,
miq m

i

ml),
whereas if (g, #) = 1 then we have D = (¢, k, {) = 1 again and

olg:; b, =2 * Sk; L, m)

<mEv g m
mlq
=8k; 1, ¢qi)-2 X* 1
o<mSVy
mlgq

= S(k; ¢, 1) d(q).

Since every Kloosterman sum has a real value, our o{(g; %, /) com-
posed thereof by (13) has always a real value, too.

We have o(g; k, I)5~0 in general. However, for certain particular
values of %, / and ¢ (g ; k, [) may vanish, of course. Thus we have,
for instance,

o(g; 2, 1)=0

if either ¢ =3 (mod 4) and r =4, or ¢ =5 (mod 8 and »r =6.

Various properties of o(g; k, !) can be derived from the properties
of Kloosterman sums, for which one may refer to an extensive study [2]
by H. Salié.
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