Note on a paper by J. S. Frame and G. de B. Robinson

Masaru Osima*

*Mathayama University

Copyright ©1956 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou
NOTE ON A PAPER BY J. S. FRAME
AND G. DE B. ROBINSON

MASARU OSIMA

1. Introduction. J. S. Frame and G. de B. Robinson have proved [1] the following

1.1 Let p be a prime. The number of p-regular diagrams with n nodes is equal to the number of p-regular classes of the symmetric group S_n and hence to the number of modular irreducible representations of S_n.

A diagram is called p-regular if no p of its rows are of equal length, otherwise p-singular.

Recently this result was refined by G. de B. Robinson [5] as follows:

1.2 The number of p-regular diagrams in a given block is equal to the number of modular irreducible representations in that block.

The author has also obtained 1.2 independently by a simple method. We shall also give an alternative proof of 1.1 by our method.

2. Remarks on diagrams. Let $[\alpha] = [\alpha_1, \alpha_2, \ldots, \alpha_n]$ be a diagram with n nodes that contains α_i nodes in its i-th row. We denote the number of nodes in the j-th column of $[\alpha]$ by a_j'. We have evidently

$$\sum_{j=1}^{k} a_j' = n, \quad a_1' \geq a_2' \geq \ldots \geq a_k' > 0 \quad (k = \alpha_i).$$

We set

$$\rho_j = a_j' - a_{j+1}' \quad (j = 1, 2, \ldots, k - 1),$$

$$\rho_k = a_k'.$$

Then $[\alpha]$ is completely determined by a set of non-negative integers $\{\rho_j\}$ since

$$a_j' = \sum_{i=j}^{k} \rho_i \quad (j = 1, 2, \ldots, k).$$

It follows from our definition that $[\alpha]$ is p-regular if and only if every ρ_j is less than p. We see also that $[\alpha]$ is p-regular if and only
if $|\alpha|$ does not contain a p-hook of leg length $p - 1$.

If $[\alpha]$ is p-singular, then there exists at least one ρ_j greater than p. We set

$$
2.1 \quad \rho_j = \rho_j^{(1)} \cdot \rho_j^{(2)} \quad 0 \leqslant \rho_j^{(1)} < p.
$$

Then $[\alpha]$ is completely determined by $\{\rho_j^{(1)}\}$ and $\{\rho_j^{(2)}\}$. Let $[\alpha^{(1)}]$ and $[\alpha^{(2)}]$ be the diagrams determined by $\{\rho_j^{(1)}\}$ and $\{\rho_j^{(2)}\}$ in the above sense respectively. Since $\rho_j^{(1)} < p$, $[\alpha^{(1)}]$ is p-regular and $[\alpha^{(2)}]$ is not vacuous for a p-singular diagram $[\alpha]$. If $[\alpha^{(2)}]$ has a nodes, then $[\alpha^{(1)}]$ has $m = n - ap$ nodes. Moreover we see easily that $[\alpha^{(1)}]$ is obtained by removing a p-hooks of leg length $p - 1$ successively from $[\alpha]$. Since the p-regular diagram $[\alpha^{(1)}]$ is determined uniquely by $[\alpha]$, we shall call $[\alpha^{(1)}]$ the p-regular diagram corresponding to $[\alpha]$. We have the

Lemma 1. $[\alpha]$ and $[\alpha^{(1)}]$ have the same p-core.

Example. If $[\alpha] = [6, 4, 3^3, 1^4]$ for $p = 3$, then $[\alpha^{(1)}] = [6, 4, 1]$ and $[\alpha^{(2)}] = [3, 1^2]$. $[\alpha]$ and $[\alpha^{(1)}]$ have the same p-core $[\alpha_0] = [3, 1^2]$.

Let $[\beta]$ be a given p-regular diagram with m nodes and let $[\gamma]$ be an arbitrary diagram with a nodes. Then $[\beta]$ and $[\gamma]$ determine uniquely a diagram $[\alpha]$ with $n = m + ap$ nodes such that

$$
2.2 \quad [\beta] = [\alpha^{(1)}], \quad [\gamma] = [\alpha^{(2)}].
$$

Hence if we denote by $k(n)$ the number of diagrams with n nodes, i.e. the number of classes of S_n, then for a given p-regular diagram $[\beta]$ with m nodes there exist exactly $k(a)$ diagrams $[\alpha]$ with n nodes such that $[\alpha^{(1)}] = [\beta]$. Therefore we obtain the

Lemma 2. Let $h(n)$ be the number of p-regular diagrams with n nodes. Then

$$
2.3 \quad h(n) = k(n) - \sum_{a=1}^r h(n - ap)k(a),
$$

where $n = tp + r$, $0 \leqslant r < p$.

3. **Proof of 1.1.** Let us denote by $k'(n)$ the number of p-regular classes of S_n. We then have [2, Lemma 3]

$$
3.1 \quad k'(n) = k(n) - \sum_{a=1}^r k'(n - ap)k(a).
$$
Certainly the theorem is true for \(n = 1 \). We shall assume that \(1.1 \) is true for \(m < n \). We then have

\[
h(n - ap) = k'(n - ap) \quad (a = 1, 2, \ldots, t).
\]

It follows immediately from 2.3 and 3.1 that \(h(n) = k'(n) \). This proves 1.1.

4. Proof of 1.2. Let \(B \) be a block of weight \(b \) having a given \(p \)-core \([a_0]\). The number \(l(b) \) of ordinary irreducible representations in \(B \) and the number \(l'(b) \) of modular irreducible representations in \(B \) are independent of the \(p \)-core and we have \([2; 3; 4]\)

\[
l'(b) = l(b) - \sum_{a=1}^{p} l'(b - a)k(a).
\]

If we denote by \(g(w) \) the number of \(p \)-regular diagrams in a block of weight \(w \) having a given \(p \)-core \([a_0]\), then we see by Lemma 1 that

\[
g(b) = l(b) - \sum_{a=1}^{b} g(b - a)k(a).
\]

Certainly 1.2 is true for \(b = 1 \). We shall assume that 1.2 is true for \(w < b \). Then 4.1 and 4.2 yield \(g(b) = l'(b) \). Since \(l'(b) \) is independent of the \(p \)-core, \(g(b) \) is also independent of the \(p \)-core. This completes the proof of 1.2.

References

Department of Mathematics, Okayama University

(Received September 3, 1956)