Mathematical Journal of Okayama University

Volume 6, Issue 2	1956	Article 7
March 1957		

On generating elements of Galois extensions of division rings

Takesi Nagahara*

*Okayama University

_

Copyright ©1956 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

ON GENERATING ELEMENTS OF GALOIS EXTENSIONS OF DIVISION RINGS 1)

Takasi NAGAHARA

In his paper [2], F. Kasch proved the next theorem: If a division ring K is Galois and finite over a division subring L and the center of $V_{\kappa}(L)$ is separable over the center of K then $K = L [k, uku^{-1}]^{(2)}$ with some $k, u \in K$.

Afterwards he obtained also the following theorem [3, Satz 14]: If a division ring K is Galois and finite over a division subring L, then K = L[k, h] with some k, $h \in K$. Moreover, if either $V_{\kappa}(L) = C$ or $V_{\kappa}(L) \subset L$, then K = L[k] with some $k \in K$, where C is the center of K.

The purpose of this note is to give an ultimate sharpening of the above theorems: Let K be a division ring which is Galois and finite over a division subring L, D be an intermediate subring of K/L, and \Im be the totality of L-inner automorphisms in K. If $\{x\}\Im \setminus D$ is finite for each $x \in D$, then $D = L[k, uku^{-1}]$ with some k, $u \in D$. In particular, $K = L[k, uku^{-1}]$ with some k, $u \in K(\S3)$. And in this connection, we shall prove also that a division ring K has a single generating element over a division subring L of K under somewhat weaker assumption than those in the latter half of [3, Satz 14](§2).

In this note, we wish to make use of the same notations and terminologies as in $[4]^{3}$.

1. Preliminaries.

Throughout this note, K will be a division ring, L be a division subring of K, and D be an intermediate division subring of K/L. Moreover, C will be the center of K, Z be that of L, and H will mean $V_{\kappa}(V_{\kappa}(L))$. If K is finite over L, then the total group of K/H is the totality of L-inner automorphisms of K. And clearly $Z = L \cap V_{\kappa}(L), \quad V_{H}(H) = V_{V_{\kappa}(L)}(V_{\kappa}(L)).$

¹⁾ The author wishes to express his best thanks to Prof. M. Moriya and Mr. H. Tominaga for their kind encouragements and advices.

²⁾ In general, for any subset S in K, L[S] signify the subring of K generated by S over L, which was denoted by L(S) in the previous papers [4], [5].

³⁾ See [4, §1].

Lemma 1. Let R be a proper division subring of K, and a be an element in K such that $ab \neq ba$ for some b in K\R.

(1) There exist at most two c's in $C \cap R$ with $(b+c) a (b+c)^{-1} \in R$.

(2) If a is in R then there exists at most one c in $V_{R}(a)$ with $(b+c) a (b+c)^{-1} \in R.$

Proof. At first we remark that if c', c'' are different elements in $V_R(a)$ then $(b + c') a (b + c')^{-1} \neq (b + c'') a (b + c'')^{-1}$. For, if not, (b + c') $a (b+c')^{-1} = (b+c'') a (b+c'')^{-1} = a'$ imply that (c'+c'') a = a' (c'+c''), whence a = a'. But $(b + c') a (b + c')^{-1} = a$ leads to a contradiction ba = ab.

(1) Now we suppose $(b+c_i) a (b+c_i)^{-1} = a_i \in \mathbb{R}$ with different c_i 's in $C \cap R$ (i = 1, 2, 3). Then $ba + c_1a = a_1b + a_1c_1$, $ba + c_2a = a_2b + a_2c_2$ and $ba + c_3a = a_3b + a_3c_3$, whence $(c_1 - c_2) a = (a_1 - a_2) b + (a_1c_1 - a_2c_2)$ and $(c_1-c_3) a = (a_1-a_3) b + (a_1c_1-a_3c_3)$. Hence we have $a = (c_1-c_2)^{-1} (a_1-a_2)$ $b + (c_1 - c_2)^{-1} (a_1c_1 - a_2c_2), a = (c_1 - c_3)^{-1} (a_1 - a_3) b + (c_1 - c_3)^{-1} (a_1c_1 - a_3c_3),$ and so $0 = \{(c_1 - c_2)^{-1} (a_1 - a_2) - (c_1 - c_3)^{-1} (a_1 - a_3)\} b - \{(c_1 - c_2)^{-1} (a_1 c_1 - a_2 c_2) + (c_1 - c_3)^{-1} (a_1 - a_3)\} b - \{(c_1 - c_2)^{-1} (a_1 c_1 - a_2 c_3) + (c_1 - c_3)^{-1} (a_1 - a_3) \} b - \{(c_1 - c_3)^{-1} (a_1 c_3 - a_3) + (c_1 - c_3)^{-1} (a_1 c_3 - a_3) \} b - \{(c_1 - c_3)^{-1} (a_1 c_3 - a_3) + (c_1 c_3 c_3) + (c_1 c_3 c_$ $-(c_1 - c_3)^{-1} (a_1c_1 - a_3c_3)$. Since b is not in R, we must have: (i) $(c_1 - c_2)^{-1} (a_1 - a_2) - (c_1 - c_3)^{-1} (a_1 - a_3) = 0$,

(ii) $(c_1 - c_2)^{-1} (a_1c_1 - a_2c_2) - (c_1 - c_3)^{-1} (a_1c_1 - a_3c_3) = 0.$

From (i) $\times c_1$ – (ii), we obtain

182

 $(c_1 - c_2)^{-1} (c_1 - c_2) a_2 = (c_1 - c_3)^{-1} (c_1 - c_3) a_{31}$

whence $a_2 = a_3$. But this is a contradiction by the remark at the beginning.

(2) Suppose that $(b+c_1) a (b+c_2)^{-1} = a_1 \in R$ and $(b+c_2) a (b+c_2)^{-1}$ $=a_2 \in R$ with some different c_1 , c_2 in $V_R(a)$. Then $ba - a_1b = a_1c_1 - c_1a$, $ba - a_2b = a_2c_2 - c_2a$, whence we obtain $b = (a_2 - a_1)^{-1} \{(a_1c_1 - c_1a) - (a_2c_2 - a_2) \}$ c_2a) $\in R$, being contradictory.

Lemma 2. If $[K: L] \leq \infty$ and there exists only a finite number of intermediate subrings of K/L[k'] for some k' then K=L[h', k']with some h'. If moreover K is really non-commutative then K = $L[k, uku^{-1}]$ with some k, $u \in K$.

Proof. We may, and shall, consider only the case where $L[k'] \neq K$ and L[k'] is infinite. Choose such an element h' that [L[h', k']: L[k']]is as great as possible. Then we have L[h', k'] = K. For, if not, there exists some $x \in K \setminus L[h', k']$. And the infiniteness of L[k'] and our assumption that there exists only a finite number of intermediate subrings of K/L[k'] imply that there holds $L[h' + y_1x, k'] = L[h' + y_2x, k']$ for some different $y_1, y_2 \in L[k']$. Then we readily see $L[h' + y_1x, k'] =$ L[h', k', x], being contrary to the maximality of [L[h', k']: L[k']].

Now we shall prove the second part (under the assumption that L[k']

is a proper infinite subring of K.) At first we shall show that there exist some h, k such that K = L[h, k], L[k] = L[k'] and $hk \neq kh$. Obviously it suffices to consider the case where h'k' = k'h'. We distinguish here three cases: (I) $L \not\subset V_{\kappa}(k')$. For any $l \in L \setminus V_{\kappa}(k')$, set h = h' + l, k = k'. (II) $L \not\subset V_{\kappa}(h')$. For any $l' \in L \setminus V_{\kappa}(h')$, set h = h', k = k' + l'. (III) $L \subset V_{\kappa}(h', k')$. There exist some $l_1, l_2 \in L$ such that $l_1 l_2 \neq l_2 l_1$. Set $h = h' + l_1, k = k' + l_2$.

Next we note that $V_{L(k)}(k)$ is infinite. For, if it is finite, so is $V_{L(k)}(L[k])[k]$. And so $[L[k]: V_{L(k)}(k)] = [V_{L(k)}(L[k])[k]: V_{L(k)}(L[k])] < \infty$, whence L[k] (= L[k']) is finite, being contradictory. We can find therefore such $v \in V_{L(k)}(k)$ that $(h+v) k (h+v)^{-1}$ is not contained in any proper subring of K over L[k], by using repeatedly Lemma 1 (2). This completes our proof.

In the rest of this note, K will be Galois and finite over L. and \mathfrak{G} , \mathfrak{F} will mean the total group of K/L, the totality of all L-inner automorphisms contained in \mathfrak{G} respectively. Then K is Galois over H and the total group of K/H coincides with \mathfrak{F} .

Lemma 3. (1) $L[V_{\kappa}(L)] = L \times_z V_{\kappa}(L).$

(2) $V_{H}(H) = C$ implies $K = H \times_{c} V_{\kappa}(L)$.

(3) $D \cap C[Z] = Z \times_{Z \cap C} (D \cap C), \quad [V_{\kappa}(L) : Z \cap C] \leq \infty.$

Proof. (1) is true without any assumption, and (2) is a direct consequence of [1, Theorem 7.3F]. Now we shall prove (3). As $\mathfrak{G}_{c[z]}$ (the restriction of \mathfrak{G} on C[Z]) is the Galois group of C[Z]/Z and \mathfrak{G}_c is the Galois group of C[Z]/Z and \mathfrak{G}_c is the Galois group of $C/Z \cap C$, σ_c is identity if and only if $\sigma_{c[z]}$ is the identity, where σ is an arbitrary automorphism in \mathfrak{G} . We obtain therefore $[C: C \cap Z] = \text{order of } \mathfrak{G}_c = \text{order of } \mathfrak{G}_{c[z]} = [C[Z]: Z]$, whence $C[Z] = Z \times_{z \cap c} C$. Let $\{z_1, z_2, \ldots, z_n\}$ be a $Z \cap C$ -basis of Z and $d = \sum_{i=1}^n z_i c_i$ an arbitrary element of $D \cap C[Z]$ where c_i 's are in C, then $\sum_{i=1}^n z_i c_i = d = \sum_{i=1}^n z_i c_i^{\sigma}$ for each $\sigma \in \mathfrak{G}(K/D)$. Since C is normal, we obtain $c_i = c_i^{\sigma}$, that is, c_i 's are contained in D, and so $D \cap C[Z] = Z \times_{z \cap c} (D \cap C)$. The latter part is easy.

Lemma 4. If $K \supset D_1 \supset D_2 \supset L$, then $[D_1: V_{D_1}(Z)] \ge [D_2: V_{D_2}(Z)]$. Proof. Clearly there holds $[D_1: V_{D_1}(Z)] = [V_{D_1}(D_1) [Z]: V_{D_1}(D_1)]$ and $[D_2: V_{D_2}(Z)] = [V_{D_2}(D_2) [Z]: V_{D_2}(D_2)]$. Now we shall prove $[V_{D_1}(D_1) [Z]: V_{D_1}(D_1)] \ge [V_{D_2}(D_2) [Z]: V_{D_2}(D_2)]$. Let S be a (finite

184

independent) $V_{D_2}(D_2)$ -basis of $V_{D_2}(D_2)[Z]$ contained in Z. Then, if S is not linearly independent over $V_{\kappa}(D_2)$ there exists a minimal subset $T = \{z_1, \ldots, z_l\}$ of S which is not linearly independent over $V_{\kappa}(D_2)$. Hence there holds that $a = z_1 + \sum_{i=2}^{n} z_i d_i = 0$, where $d_i \in V_{\kappa}(D_2)$ $(i = 2, \ldots, t)$. Clearly, there is some d_j $(2 \leq j \leq t)$ which does not belong to $V_{D_2}(D_2)$ and so, there exists some automorphism σ in $\bigotimes (K/D_2)$ such that $d_j^{\sigma} \neq d_j$ (if $d_j^{\tau} = d_j$ for all τ in $\bigotimes (K/D_2)$ then $d_j \in V_{\kappa}(D_2) \cap D_2 = V_{D_2}(D_2)$). We can easily see that $d_i^{\sigma} \in V_{\kappa}(D_2)$ $(i = 2, \ldots, t)$. From $a^{\sigma} - a = 0$, it follows that $\{z_1, \ldots, z_t\}$ is a proper subset of T which is not linearly independent over $V_{\kappa}(D_2)$ but this contradicts the choice of the subset T. Therefore, S is linearly independent over $V_{\kappa}(D_2)$. Since $V_{D_1}(D_1) \subset V_{\kappa}(D_1) \subset V_{\kappa}(D_2)$, S is linearly independent over $V_{D_1}(D_1)$. As $S \subset V_{D_1}(D_1) [Z]$, we obtain $[V_{D_1}(D_1)[Z]: V_{D_1}(D_1)] \ge [V_{D_2}(D_2)[Z]$:

2. Generating elements of K over L.

Lemma 5. If $V_{II}(H) = C$ and $L \supseteq Z$, then K = L[k] with some $k \in K$.

Proof. We may, and shall, assume that Z is infinite (For, in case Z is finite, S is outer and so, our assertion is true without any restriction ([5], [7])). As $V_{\kappa}(L)$ is Galois and finite over Z, we obtain $V_{\kappa}(L)$ $= Z[v_1, v_2]$ with some v_i 's in $V_{\kappa}(L)$ by [3, Satz 14]. Further, noting that H is outer Galois over L[C], there exists a normal basis $\{h^{\tau}; \tau \in$ (b) (H/L[C]) of H over L[C], and so H = L[C, h]. As $\sum_{\tau \in (\mathfrak{g})(H/I(C))} h^{\tau}$ is contained in L[C], we may assume that $\sum_{r \in (0): H/L(O)} h^r = 1$. Since $L \supseteq Z$, there exist some d_1 , d_2 in L such that $d_1 d_2 \neq d_2 d_1$. Then, 1, d_1 , d_2 are $V_{\kappa}(L)$ -independent. Now we set $\mathfrak{H} = \bigcup_{0 \neq x \in \mathbb{Z}} \mathfrak{G}_x$, where $\mathfrak{G}_x = \mathfrak{G}(K/K)$ $L[d_1v_1 + d_2v_2 + xw + h])$ and w is a primitive element of C over $C \cap Z$. Let σ be an arbitrary automorphism in \mathfrak{H} . As σ is contained in some \mathfrak{G}_x $(x \in Z), \quad d_1 v_1 + d_2 v_2 + xw + h = d_1 v_1^{\sigma} + d_2 v_2^{\sigma} + xw^{\sigma} + h^{\sigma}.$ Then if $h^{\sigma} = h$, we have $d_1(v_1^{\sigma} - v_1) + d_2(v_2^{\sigma} - v_2) + (xw^{\sigma} - xw) = 0$. Noting that $\{v_1^{\sigma} - v_1, v_2^{\sigma} - v_2^{\sigma}\}$ $v_2^{\sigma} - v_2$. $xw^{\sigma} - xw \} \subset V_{\kappa}(L)$ and 1, d_1 , d_2 are $V_{\kappa}(L)$ -independent, we can readily see $w^{\sigma} = w$. Conversely if $w^{\sigma} = w$, σ is contained in $\mathfrak{G}(K/L[C])$. As $d_1v_1 + d_2v_2 + xw + h = d_1v_1^{\sigma} - d_2v_2^{\sigma} - xw - h^{\sigma}$, we have $d_1(v_1 - v_1^{\sigma}) + d_2$ $(v_{\sigma} - v_{\sigma}^{\sigma}) = -h + h^{\sigma} = l \in L[V_{\kappa}(L)] \cap H = L[C].$ Recalling $\sigma \in \mathfrak{G}(K/L[C]),$

185

 $h^{\sigma} = h^{r_0}$ for some $\tau_0 \in \mathfrak{G}(H/L[C]) = \mathfrak{G}(K/L[C])_H$. As $\sum_{\tau \in \mathfrak{G}(H/L(C))} h^{\tau} = 1$, we have $-h + h^{\sigma} = \sum h^r l$. If $h \neq h^{\sigma}$ then l = -1, which contradicts the fact that 1, d_1 , d_2 are $V_K(L)$ -independent. Thus we have proved that, for any $\sigma \in \mathfrak{H}$, $h^{\sigma} = h$ is equivalent with $w^{\sigma} = w$.

Next we shall prove that there exists some $\mathfrak{G}_{x_0}(x_0 \in \mathbb{Z})$ such that h^{σ} =h for each σ in \mathfrak{G}_{x_0} . In case $h^{\sigma} = h$ for all σ in \mathfrak{H} , we have nothing to prove. Therefore, we shall assume that there exist σ 's in \mathfrak{D} such that $h^{\sigma} \neq h$ (accordingly $w^{\sigma} \neq w$ by the last remark). Now we set $\{h\} \mathfrak{b} = \{h^{\sigma_1}\}$ $=h, h^{\sigma_2}, \ldots, h^{\sigma_m}$ ($\subset H$) and $\{w\}$ $\mathfrak{D} = \{w_1 = w, w_2, \ldots, w_n\}$ ($\subset C$), where σ_i is in \mathfrak{G}_{x_i} . (Note that m, n > 1.) As Z is infinite, we can choose a nonzero element x_0 in Z such that $x_j(w-w_i) \neq x_0$ $(w-w_l)$ $(i, l=2, \ldots, n;$ $j = 1, 2, \ldots, m$). Then $h^{\sigma} = h$ for all σ in \mathfrak{G}_{x_0} . For, if not, there exists some σ in \mathfrak{G}_{x_0} such that $d_1 v_1 + d_2 v_2 + x_0 w + h = d_1 v_1^{\sigma} + d_2 v_2^{\sigma} + x_0 w_1 + h^{\sigma_j}$ with some $i \neq 1$, $j \neq 1$. On the other hand, $d_1v_1 + d_2v_2 + x_jw + h = d_1v_1^{\sigma}$ $+d_2 v_2^{\sigma_j} + x_j w_i + h^{\sigma_j}$ for some $l \neq 1$. Hence we have $x_0 (w - w_i) - x_j (w)$ $(w_{1}-w_{i}) = d_{1} (v_{1}^{\sigma}-v_{1}^{\sigma}) + d_{2} (v_{2}^{\sigma}-v_{2}^{\sigma}), \text{ which shows } x_{0} (w-w_{i}) - x_{j} (w-w_{i})$ = 0, for 1, d_1 and d_2 are $V_{\kappa}(L)$ -independent. But this is a contradiction. Thus $h^{\sigma} = h$ and so $w^{\sigma} = w$ for all σ in \mathfrak{G}_{x_0} by the above remark, which implies $v_1^{\sigma} = v_1$, $v_2^{\sigma} = v_2$ for all σ in \mathfrak{G}_{x_0} . Hence, by Galois theory, v_1, v_2, w, h are contained in $L[d_1v_1+d_2v_2+x_0w+h]$, whence we have $L[d_1v_1+d_2v_2+x_0w+h] \supset L[V_{\kappa}(L), h] = H[V_{\kappa}(L)] = K$ by Lemma 3 (2).

Corollary 1. If $V_H(H) = C$, $L \supseteq Z$ and D is a subring of K which is normal over L, then D = L[d] with some d in D.

Proof. Since D is normal over L, D is Galois and finite over L. As $D^3 = D$, either $D \subset H$ or $D \supset V_{\kappa}(L)$ by [4, Lemma 2]. In case $D \subset H$, $D = L\lfloor d \rfloor$ by [5, Corollary 3]. On the other hand, if $D \supset V_{\kappa}(L)$, we can readily see all the assumptions in Lemma 5 are fulfilled with respect to K/L. And so our proof is a direct consequence of Lemma 5.

Corollary 2. If $L \supseteq Z$ then $V_{\kappa}(V_{H}(H)) = L[k]$ with some $k \in V_{\kappa}(V_{H}(H))$.

Proof. If we set $V_{\kappa}(V_{H}(H)) = T$ then T is clearly normal over L, whence T is Galois and finite over L. Since $[V_{H}(H): C] \leq \infty$, we have $V_{\kappa}(T) = V_{\kappa}(V_{\kappa}(V_{H}(H))) = V_{H}(H)$. As $T \supset V_{\kappa}(H) = V_{\kappa}(L) = V_{\tau}(L)$, $T \supset$ $V_{\kappa}(L) \supset V_{\kappa}(T)$ and $V_{\tau}(T) = V_{\kappa}(T) = V_{H}(H)$, we can apply Lemma 5 to T/L instead of K/L.

Produced by The Berkeley Electronic Press, 1956

Lemma 6. If v is a non-zero element of $V_p(Z)$, there exist some element d in D and some finite subset $\{z_1, \ldots, z_n\}$ of Z such that D $=\sum_{i=0}^{n} d^{\tilde{z}_{i}} V_{L}(Z) \text{ and that } d^{\tilde{z}_{i}}v + d^{\tilde{z}_{2}}v_{2} + \ldots + d^{\tilde{z}_{n}}v_{n} = 1 \text{ with some } v_{i}\text{ 's in}$ $V_D(Z)$, where \tilde{z}_i are inner automorphisms generated by z_i $(i=1,\ldots,n)$. **Proof.** By Lemma 3 (3), $Z \cap C \subset D \cap C \subset V_D(D)$ and $[V_R(L)]$: $Z \cap C$] $\leq \infty$. Since $V_{\kappa}(L) \supset V_{D}(D)$ and $V_{\kappa}(L) \supset Z$, we have $[V_{D}(D)[Z]]$: $V_{\mathcal{D}}(D) \leq [V_{\mathcal{K}}(L): Z \cap C] \leq \infty$. As $V_{\mathcal{D}}(V_{\mathcal{D}}(D) [Z]) = V_{\mathcal{D}}(Z)$ and $[V_D(D) [Z]: V_D(D)] \leq \infty$, it follows that $V_D(V_D(Z)) = V_D(D) [Z]$ and so $V_D(V_D(Z_D)) = V_D(Z)$, that is, D is finite and Galois over $V_D(Z)$ and the total group of $D/V_D(Z)$ is inner. Furthermore, since $V_D(V_D(Z))$ $= V_D(D) [Z] \subset V_D(Z)$, the ring \mathfrak{D} of endomorphisms of D generated by $\mathfrak{G}(D/V_p(Z))$ and $V_p(Z)_r^{(1)}$ is \mathfrak{D} -isomorphic with D by [3, Satz 9]. Now we can choose a $V_D(D)$ -basis $\{z_1, \ldots, z_n\}$ of $V_D(D)[Z]$ from $Z: V_D(D)[Z]$ $=\sum_{i=1}^{n} \bigoplus z_i \ V_D(D).$ Clearly there holds $\sum_{i=1}^{n} \tilde{z}_i \ D_r = \sum_{i=1}^{n} \bigoplus \tilde{z}_i \ D_r$, and so $\sum_{i=1}^{n} \tilde{z}_i$ $(V_D(Z))_r = \sum_{i=1}^{n} \bigoplus \tilde{z}_i (V_D(Z))_r$. Since $[D: V_D(Z)] = [V_D(D) [Z]: V_D(D)]$, $\mathfrak{D} = \sum_{i=1}^{n} \tilde{z}_i (V_D(Z))_r$ by [3, Satz 10]. As \mathfrak{D} is \mathfrak{D} -isomorphic to D, there exists an element d' in D which corresponds to 1 of $\sum_{i=1}^{n} \tilde{z}_i (V_D(Z))_r = \mathfrak{D}$ under this isomorphism. Then $D = \sum_{i=1}^{n} \bigoplus d^{i} V_{D}(Z) = V_{D}(Z) [d']$ and we have $\sum_{i=1}^{n} d^{i} v_i' = 1$ with some v_i' 's in $V_D(Z)$. Here without loss of generality, we may assume that v_1' is non-zero, then $d = d' v_1' v^{-1}$ is clearly a required one.

Theorem 1. (1) If v is a non-zero element of $V_D(Z)$, then there exists some element d in D such that $L[d] \ni v$ and $D = V_D(Z)[d]$. (2) If $V_D(Z) \subset H$, then D = L[d] with some d in D.

Proof. (1) By Lemma 6, there exists an element $d \in D$ and elements $\{z_1, \ldots, z_n\}$ in Z such that $D = \sum_{i=1}^{n} d^{\tilde{z}_i} V_D(Z) = V_D(Z)[d]$ and that $d^{\tilde{z}_1}v + d^{\tilde{z}_2}v_2 + \ldots + d^{\tilde{z}_n}v_n = 1$ with some v_i 's in $V_D(Z)$. Clearly $D \supset L[d]$, and so, by Lemma 4, $[D: V_D(Z)] \ge [L[d]: V_{L(d)}(Z)]$ and $L[d] \supset \{d^{\tilde{z}_1}, \ldots, d^{\tilde{z}_n}\}$. As $\{d^{\tilde{z}_1}, \ldots, d^{\tilde{z}_n}\}$ is $V_D(Z)$ -independent, it is a fortiori $V_{I(d)}(Z)$ -independent. Accordingly $\{d^{\tilde{z}_1}, \ldots, d^{\tilde{z}_n}\}$ is a $V_{L(d)}(Z)$ -basis of

186

¹⁾ $V_D(Z)_r$ denotes the totality of right multiplications determined by elements of $V_D(Z)$.

187

L[d]. Noting that $L[d] \ni 1$, $d^{\tilde{z}_1}v + \sum_{l=2}^{n} d^{\tilde{z}_l}v_l = 1 = \sum_{i=1}^{n} d^{\tilde{z}_i}v_i'$ for some v_i' 's in $V_{L(a)}(Z)$. As $d^{\tilde{z}_i}$'s are $V_D(Z)$ -independent, we have $v = v_1' \in V_{L(a)}(Z)$ $\subset L[d]$, that is, $L[d] \ni v$. (2) In this case, $V_D(Z) = L[d']$ with some d' in $V_D(Z)$ by [5, Corollary 3]. Accordingly $D = V_D(Z)$ [d] for some d in D with $L[d] \ni d'$ by (1). Since $L[d] \supset L[d', d] = V_D(Z)$ [d] = Dand trivially $L[d] \subset D$, we have D = L[d].

Corollary 3. If $V_H(H) = C[Z]$, $L \supseteq Z$ and $V_D(Z)$ is a subring of K which is normal over L, then D = L[d] with some d in D.

Proof. We shall denote $V_D(Z) = T$. Since T is normal over L, either $T \subset H$ or $T \supset V_{\kappa}(L)$ by [4, Lemma 2]. If $T \subset H$, then D = L[d] for some $d \in D$ by Theorem 1 (2). If $T \supset V_{\kappa}(L)$ then $V_T(L) = T$ $\cap V_{\kappa}(L) = V_{\kappa}(L)$, that is, the center of $V_T(L)$ is $C[Z] = V_H(H)$ (= center of $V_{\kappa}(L)$). Since $C[Z] \subset V_{\kappa}(L) \subset T = V_D(Z)$, we may easily see that $C[Z] \subset V_T(T) \subset V_{V_T L}(V_T(L)) = C[Z]$, whence $C[Z] = V_T(T)$. Applying Lemma 5 to T/L, we have $V_D(Z) = L[d']$ for some $d' \in V_D(Z)$ and hence, D = L[d] for some $d \in D$ by Theorem 1 (1).

Corollary 4. If $V_{\kappa}(L) = C[Z]$ and D is an intermediate subring of K/L, then D = L[d] with some $d \in D$.

Proof. Clearly $V_D(Z) \subset H = V_K(C[Z])$, and so D = L[d] with some $d \in D$ by Theorem 1 (2). In particular, if $V_K(L) \subset L$, that is, $V_K(L) = Z$, then D = L[d] with some $d \in D$.

Corollary 5. Let L be finite over Z. Then we have the following: (1) If $V_{\kappa}(L)$ is commutative, then D = L[d] with some $d \in D$.

(2) If $L \supseteq Z$ and D is a subring of K which is normal over L, then $D = L \lfloor d \rfloor$ with some $d \in D$.

Proof. As $[L : Z] \leq \infty$, we have $[K : C] \leq \infty$ (Cf. 4, p. 10), whence K is inner Galois over C. We obtain therefore $V_{\mathcal{K}}(V_{\mathcal{K}}(L)) = V_{\mathcal{K}}(V_{\mathcal{K}}(L[C])) = L[C] \subset L \times_Z V_{\mathcal{K}}(L)$, and so $V_{\mathcal{H}}(H) = C[Z]$. (1) If $V_{\mathcal{K}}(L)$ is commutative, then D = L[d] with some d in D by Corollary 4. (2) If D is normal over L, then so is $V_{\mathcal{V}}(Z)$, and hence D = L[d]with some d in D by Corollary 3.

Lemma 7. If L is a field and $L \not\subset C$, then K = L[d] for some $d \in K$.

Proof. We set $L \cap C = C_0$. Then, $[K: C] < \infty$ and $[C: C_0] < \infty$, whence $[K: C_0] = [K: C]$ $[C: C_0] < \infty$. Let \widetilde{K} be the group of

188

TAKASI NAGAHARA

all inner automorphisms generated by non-zero elements of K and let ${\mathfrak G}$ be the total group of K/L. Then, C_0 is the fixed subring of $[\widetilde{K}, \mathfrak{G}]$ in K where $[\widetilde{K}, \ {}^{\textcircled{S}}]$ is the group of automorphisms generated by \widetilde{K} and ${}^{\textcircled{S}}$, that is, K is finite and Galois over C_0 . If C_0 is finite then K is a finite field and so, K = C which contradicts $L \not\subset C$. Therefore, C_0 is an infinite field. We consider a maximal subfield M of K which is separable over C. Since C is separable over C_0 , M is separable over C_0 . Therefore, there is an element $d_1 \in M$ such that $M = C_0[d_1]$. Further, there exists only a finite number of subfields $\{W_1, W_2, \ldots, W_n\}$ of M which properly contain C. As $V_{\kappa}(M) = M$, there exists an element d_2 such that $K = M[d_2] = C_0 [d_1, d_2]$. Now, let a be an element of $L \setminus C$. Then, we may assume without loss of generality that $ad_2 \neq d_2a$. For, if not, we can use $d_1 + d_2$ in place of d_2 . As $K_i = V_{\kappa}(W_i) \supset M$ and $W_i \supseteq C$ for $i = 1, 2, ..., n, d_2$ is contained in none of K_i 's. Since C_0 is infinite, we can choose by Lemma 1 an element $c \in C_0$ such that $(d_2+c) a (d_2+c)^{-1}$ $\notin K_i \ (i = 1, 2, ..., n)$. Hence we have $K = C_0[d_1, (d_2 + c) a (d_2 + c)]$ $(c)^{-1}$]. Clearly, $K = (d_2 + c)^{-1}K(d_2 + c) = C_0[(d_2 + c)^{-1}d_1(d_2 + c), a]$ $= C_0[a] [(d_2 + c)^{-1} d_1 (d_2 + c)] = L [(d_2 + c)^{-1} d_1 (d_2 + c)] = K, \text{ whe-}$ nce K = L[d] for $d = (d_2 + c)^{-1} d_1(d_2 + c)$.

Remark. In case L = Z, H = L[C] and so $V_H(H) = C[Z]$.

Combining Lemma 7 with Corollaries 3, 4, we can easily obtain the following :

Theorem 2. Under the assumption that K is non-commutative and $V_{\mathbb{H}}(H) = C[Z], K = L[d]$ with some d if and only if $L \not \subset C$.

Corollary 6. Under the assumption that K is non-commutative and K is inner Galois over L, K = L[d] with some d if and only if $L \supseteq C$.

Proof. Clearly, $H = V_{\kappa}(V_{\kappa}(L)) = L$, and so, we obtain $C \subset V_{\mu}(H) = V_{L}(L) = Z$. Hence, our assertion is an immediate consequence of Theorem 2.

Combining Lemma 7 with Corollary 5, we can easily obtain the following:

Corollary 7. Let L be finite over Z and K be non-commutative, then D = L[d] with some $d \in K$ if and only if $L \not\subset C$.

189

3. Two conjugate generating elements of K over L.

Theorem 3. If $V_{\kappa}(L)$ is commutative, then $D = L[k, uku^{-1}]$ with some k, $u \in D$.

Proof. If $V_{\kappa}(L)$ is finite, then D = L[d] with some d in D by [5, Corollary 2]. If $V_D(Z) \subset H$, then D = L[d] with some d in D by Theorem 1 (2). In both cases, the theorem holds clearly true. Hence we shall assume that $V_{\kappa}(L)$ is infinite and $V_{D}(Z)$ is not contained in H. Then clearly $L \cap C$ is infinite, D is non-commutative and $V_{\kappa}(L) \supseteq$ $V_{\kappa}(V_{\nu}(Z))$. Since $V_{\kappa}(L) \supset V_{\kappa}(V_{\nu}(Z)) \supset Z$ and $V_{\kappa}(L)$ is separable over Z, so it is over $V_{\kappa}(V_{\nu}(Z))$. Then there exists only a finite number of subfields $\{W_1, \ldots, W_n\}$ of $V_{\kappa}(L)$ which properly contain $V_{\kappa}(V_{\nu}(Z))$. Let $\{t_1, \ldots, t_n\}$ be chosen such as $t_i \in W_i \setminus V_{\mathcal{K}}(V_D(Z))$. Since L is infinite, we can select from $V_D(Z)$ an element d such that $d^{\tilde{i}_i} \neq d(i = 1, 2, ..., n)$, by making use of the same method as in the proof of [2, Hilfssatz 1]. Then $V_{V_{K}(L)}(d) = V_{K}(V_{D}(Z))$. Moreover, by Theorem (1), there exists some $f \in D$ such that $D = V_p(Z)[f]$ and $L[f] \ni d$. And so, $V_{\kappa}(L[f]) =$ $V_{\kappa}(L[f,d]) = V_{V_{\kappa}(L)}(f,d) = V_{V_{\kappa}(L)}(f) \cap V_{V_{\kappa}(L)}(d) = V_{V_{\kappa}(L)}(f) \cap V_{\kappa}(V_{D}(Z))$ $= V_{\mathcal{K}}(V_{\mathcal{D}}(Z)[f]) = V_{\mathcal{K}}(D).$ Thus, we have $V_{\mathcal{K}}(V_{\mathcal{K}}(L[(f])) \supset D \supset L[f]).$ Clearly, $V_{\kappa}(V_{\kappa}(L[f]))$ is outer Galois over L[f] so that there exists only a finite number of intermediate subrings of D/L[f]. Hence, by Lemma 2, $D = L[k, uku^{-1}]$ for some k, u in D.

Lemma 8. If D is left set-wise invariant by \Im , then $D = L[k, uku^{-1}]$ with some k, $u \in D$.

Proof. By [4, Lemma 2], either $D \subset H$ or $D \supset V_{\kappa}(L)$. In the first case, D has a single generating element over L by [5, Corollary 3]. Now, we shall assume that $D \not\subset H$, so that $D \supset V_{\kappa}(L)$ $(=V_{D}(L))$ and D is non-commutative. We set $D_{1} = V_{D}(V_{D}(L))$, then D is inner Galois over D_{1} . If $D_{1} \supseteq V_{D}(D)$, then $D = D_{1}[d]$ by Corollary 6. Since $V_{D}(L) = V_{\kappa}(L)$, it follows that $L \subset D_{1} \subset H$, whence $V_{\kappa}(L[d]) = V_{V_{\kappa}(D)}(d) = V_{\kappa}(D_{1}[d]) = V_{\kappa}(D)$. Hence $V_{\kappa}(V_{\kappa}(L[d])) \supset D \supset L[d]$. Clearly, $V_{\kappa}(V_{\kappa}(L[d]))$ is outer Galois over L[d]. So that, all the assumptions in Lemma 2 are satisfied with respect to D/L[d]. Hence $D = L[k, uku^{-1}]$ for some $k, u \in D$ by Lemma 2.

On the other hand, if $D_1 = V_D(D)$, then $L \subset D_1 = V_D(D)$, and so $Z = V_L(L) = L$, $V_K(L) \subset D \subset V_K(V_D(D) \subset V_K(L)$. Hence $D = V_K(L)$. As is easily seen, $V_K(L)$ is Galois over Z. Moreover, $V_D(D) = C[Z]$ is

separable over Z. We have therefore $D = V_{\kappa}(L) = Z[k, uku^{-1}]$ with some k, $u \in D$ by [5, Lemma 4].

Theorem 4. If, for any $x \in D$, $\{x\}\Im \setminus D$ is finite, then $D = L[k, uku^{-1}]$ for some k, $u \in D$. In particular, $K = L[k, uku^{-1}]$ for some k, $u \in K$.

Proof. In case $\mathfrak{G}(K/L)$ is almost outer, all the restrictions in this theorem are superfluous and D = L[d] for some $d \in D$ by [5, Corollary]. On the other hand, in case $\mathfrak{G}(K/L)$ is not almost outer, by making use of the same method as in the proof of [5, Principal Theorem], we obtain that D is left set-wise invariant by \mathfrak{F} . Hence $D = L[k, uku^{-1}]$ for some $k, u \in D$ by Lemma 8.

And we can readily see.

Corollary 8. Let K/L be Galois, $\mathfrak{G}(K/L)$ be locally finite-demensional. If D is an intermediate subring of K finite over L such that, for any $x \in D$, $\{x\}^{\mathfrak{G}\setminus D}$ is finite, then $D = L[k, uku^{-1}]$ with some k, $u \in D$.

REFERENCES

- [1] E. ARTIN, C. NESBITT and R. THRALL: Rings with minimum condition, Ann Arbor (1944).
- [2] F. KASCH: Über den Satz vom primitiven Element bei Schiefkörper, J. reine und angew. Math., 180 (1951), 150-159.
- [4] T. NAGAHARA and H. TOMINAGA : On Galois theory of division rings, Math. J. Okayama Univ., 6 (1956) 1-21.
- [5] NAGAHARA : On primitive elements of Galois extensions of division rings, Math. J. Okayama Univ., 6 (1956) 23-28.
- [6] N. NOBUSAWA: An Extension of Krull's Galois theory to division rings, Osaka Math. J., 7 (1955), 1-6.

DEPARTMENT OF MATHEMATICS, Okayama University

(Received March 3, 1957)

190