Linearly compact dual-bimodules

Yoshiki Kurata* Shigeyuki Tsuboi†

*Yamaguchi University †Yamaguchi University

LINEARLY COMPACT DUAL-BIMODULES

Dedicated to Professor Kentaro Murata on his 70th birthday

YOSHIKI KURATA and SHIGEYUKI TSUBOI

Let R and S be rings with identity and $_RQ_S$ an (R, S)-bimodule. In the previous paper [3], it is shown that if Q_S is quasi-injective and the canonical ring homomorphism $\lambda: R \to \operatorname{End}(Q_S)$ is surjective, then the pair of functors

$$H' = \operatorname{Hom}_R(-, Q) : _RM \to NS$$

and

$$H'' = \operatorname{Hom}_S(-, Q) : NS \to _RM$$

defines a duality between $_RM$ and NS, where $_RM$ is the full subcategory of R-mod of finitely generated Q-torsionless R-modules and NS is the full subcategory of $\operatorname{mod}S$ whose objects are all the S-modules N such that there exists an exact sequence of the form $0 \to N \to Q^n \to Q'$ for some $n > 0$ and some set I.

In this note, we shall give, in the first section, some characterizations of self-cogenerators and then point out that the linearly compactness of a ring is very closed to the existence of some kind of left dual-bimodules. Characterizing these left dual-bimodules, in the second section, we shall show that, for a left dual-bimodule $_RQ_S$ with Q finitely generated, Q_S quasi-injective and λ surjective, Q_S is linearly compact if and only if the duality mentioned above can be extended to a duality between $_RFG$ and \overline{NS} (see below for the definition).

1. An S-module Q_S will be called a self-cogenerator provided that every right S-module isomorphic to a submodule of a factor module of $Q^a, n = 1, 2, \cdots$, is Q-torsionless [7, Definition 3.1]. Trivially each cogenerator in $\operatorname{mod}S$ is a self-cogenerator. First, we shall give some characterizations of self-cogenerators. As is easily seen, we have

Lemma 1. Let Q_S be an S-module. Suppose that

$$0 \to N' \to N \to N'' \to 0$$

is an exact sequence of right S-modules such that N' and N'' are Q-torsionless and Q is N-injective. Then N is Q-torsionless.

Lemma 2. Let Q_S be a quasi-injective S-module. Suppose that every
factor module of \(Q \) is \(Q \)-torsionless. Then every factor module of \(Q^n \) is also \(Q \)-torsionless for \(n = 1, 2, \ldots \).

Proof. We may show the case where \(n = 2 \). Let \(Q' \) be any submodule of \(Q^2 \) and let \(p : Q^2 \to Q \) be the canonical projection. Then the induced homomorphism \(\bar{p} : Q^2/Q' \to Q/p(Q') \) is an epimorphism with \(\text{Ker} \ \bar{p} \) \(Q \)-torsionless. By assumption \(Q/p(Q') \) is \(Q \)-torsionless and hence \(Q^2/Q' \) is also \(Q \)-torsionless by Lemma 1.

An \((R, S)\)-bimodule \(Q \) will be called a left dual-bimodule provided that \(\ell_R \ell_S(A) = A \) for every left ideal \(A \) of \(R \) and \(r_\ell \ell_S(Q') = Q' \) for every \(S \)-submodule \(Q' \) of \(Q \) (see [3]). A ring that has the double annihilator property ([1, Exercise 24.11]) will be called a dual ring. Hence a dual ring \(R \) is a left dual-bimodule regarded as an \((R, R)\)-bimodule. It is also a right dual-bimodule by defining symmetrically. In [3, Lemma 1.3], it is shown that if \(_S Q_S \) is a left dual-bimodule, then every factor module of \(Q_S \) is \(Q \)-torsionless. Hence we have

Corollary 3. Let \(_S Q_S \) be a left dual-bimodule with \(Q_S \) quasi-injective. Then \(Q_S \) is a self-cogenerator.

Proposition 4. Let \(_S Q_S \) be an \((R, S)\)-bimodule with \(Q_S \) quasi-injective and \(\lambda \) surjective. Then the following conditions are equivalent:

(1) \(Q_S \) is a self-cogenerator.

(2) Every factor module of \(Q^n \) is \(Q \)-torsionless for \(n = 1, 2, \ldots \).

(3) Every factor module of \(Q_S \) is \(Q \)-torsionless.

(4) \(\ell_R \ell_S Q' = Q' \) for every submodule \(Q' \) of \(Q_S \).

(5) \(N_S = \{| N_S | 0 \to N \to Q^n \text{ is exact for some } n > 0 \} \).

(6) Every submodule of \(Q^n \) is \(Q \)-reflexive for \(n = 1, 2, \ldots \).

Proof. (1) \(\Rightarrow \) (2) and (2) \(\Rightarrow \) (3) are evident. The equivalence of (3) and (4) follows from [3, Lemma 1.3] and (3) \(\Rightarrow \) (5) follows from Lemma 2.

(5) \(\Rightarrow \) (6). Let \(N_S \) be a submodule of \(Q^n \). Then \(N \subseteq N_S \) and \(0 \to N \to Q^n \to Q^m \) is exact for some \(m > 0 \) and \(I \). Since \(Q_S \) is \(Q \)-injective and \(Q \)-reflexive, \(Q \) is \(Q^n \)-injective and \(Q^m \) is \(Q \)-reflexive. Hence by [3, Lemma 3.1], \(N \) must be \(Q \)-reflexive.

(6) \(\Rightarrow \) (1) also follows from [3, Lemma 3.1].

Remarks. (1) The equivalence of (1) and (3) of Proposition 4 has already shown in [5, Lemma 1.1].
(2) In case Q_S is a finitely cogenerated cogenerator, then a right S-module N is finitely cogenerated if and only if there is an $n > 0$ such that $0 \to N \to Q^n$ is exact by [1, Exercise 10.3]. For example, each dual-bimodule μQ_S with Q_S injective and λ surjective is a finitely cogenerated cogenerator as an S-module by [3, Proposition 1.8 and Lemma 3.5].

Corollary 5. For a ring R with R_R injective, the following conditions are equivalent:

1. R_R is a self-cogenerator.
2. Every finitely generated right R-module is torsionless.
3. Every cyclic right R-module is torsionless.
3'. Every simple right R-module is torsionless.
4. $\nu R(\mathfrak{a}) = A$ for every right ideal A of R.
5. $\mu R = |N_R| N_R \to N \to R^n$ is exact for some $n > 0$.
5'. $\mu R_R = |N_R| N_R$ is finitely cogenerated.
6. Every submodule of R^n_R is reflexive for $n = 1, 2, \ldots$.
6'. Every finitely cogenerated right R-module is reflexive.

Proof. (3) \Rightarrow (3') and (3') \Rightarrow (3) are evident and (3') \Rightarrow (3') follows from [1, Proposition 18.15].

Assume (5). Then since (3) and (5) are equivalent, R_R is an injective cogenerator and hence is a finitely cogenerated cogenerator by [6, Satz 3]. Assume (5'). Then since R is in N_R, R_R is finitely cogenerated and injective. Hence it is a finitely cogenerated cogenerator again by [6, Satz 3]. Therefore, the equivalence (5) and (5') follows from Remarks (2).

(6) \Leftrightarrow (6') \Leftrightarrow (3') are evident. Hence (6) and (6') are equivalent.

A ring R is a cogenerator ring in case both μR and R_R are cogenerators [1, Exercise 24.10].

Corollary 6. For a ring R with R_R injective, the following conditions are equivalent:

1. R is a dual ring.
2. μR and R_R are self-cogenerators.
3. R is a cogenerator ring.

Proof. (1) \Rightarrow (3). As we shall show in Corollary 11, if R is a dual ring, then R_R injective is equivalent to μR being injective. Hence, from Corollaries 3 and 5 (1) \Rightarrow (3) follows.
(3) \Rightarrow (2) is evident.

(2) \Rightarrow (1). To prove (1) \Rightarrow (4) of Proposition 4, it is sufficient to assume that λ is surjective. Hence, in Corollary 5 (1) \Rightarrow (4) is always valid. Thus (2) implies (1).

Let N_S be an S-module, $(x_i)_t$, an indexed set of elements of N and $(N_i)_t$ an indexed set of submodules of N. Then the set of congruences $|x \equiv x_i \pmod{N_i}|$ is said to be solvable (finitely solvable), if there is a y in $N(a y_F$ in N for each finite subset F of I) such that $y-x_i$ in N_i for each i in I. If every finitely solvable set of congruences in N is solvable, then N will be called linearly compact ([7, Definition 2.1]). Using this notion we can characterize left dual-bimodules.

Proposition 7. Let $\mathfrak{g}Q_S$ be an (R, S)-bimodule with Q_S linearly compact quasi-injective and λ an isomorphism. Then the following conditions are equivalent:

1. Q is a left dual-bimodule.
2. Q_S is a self-cogenerator and has essential socle.

Moreover, if this is the case, $\mathfrak{g}Q$ is injective and $\mathfrak{g}R$ is linearly compact.

Proof. (1) \Rightarrow (2) follows from Corollary 3 and [3, Proposition 1.8].

(2) \Rightarrow (1). By [7, Lemma 3.7] every cyclic left R-module is Q-torsionless. Hence by Proposition 4 and [3, Lemma 1.2] Q is a left dual-bimodule.

The last part follows from (2) by [7, Lemmas 3.5 and 3.7].

Corollary 8. For a ring R with R_S linearly compact and injective, the following conditions are equivalent:

1. R is a dual ring.
2. R_S is a self-cogenerator and has essential socle.
3. $\mathfrak{g}R$ is a self-cogenerator and has essential socle.

Proof. As is remarked in the proof of Proposition 7, (2) implies that $\mathfrak{g}R$ is linearly compact and injective. Hence, again by Proposition 7, (3) is equivalent to R being a dual ring.

As a consequence of Proposition 7 and [7, Theorem 3.10], we have

Theorem 9. A ring R is left linearly compact if and only if there exists a left dual-bimodule $\mathfrak{g}Q_S$ such that Q_S is linearly compact quasi-injective and λ
is surjective.

2. A subcategory of the module category will be called \textit{finitely closed} if it is closed under submodules, factor modules and finite direct sums \cite[p. 465]{4}. Let $_S Q_S$ be an \((R, S)\)-bimodule. Following \cite{7}, consider the full subcategory of $R\text{-mod}$ consisting of all modules isomorphic to factor modules of submodules of R^n for $n = 1, 2, \ldots$. This is the full subcategory consisting of all modules isomorphic to submodules of factor modules of R^n for $n = 1, 2, \ldots$ and hence is equal to

$$|_{_{R}M}|0 \to M \to M'$$ is exact for some $M' \in _{_{R}}FG|.$

As is easily seen, this is the smallest one of the finitely closed subcategory containing either R or $_{_{R}}FG$. We shall denote this by $_{_{R}}\overline{FG}$, where $_{_{R}}FG$ means the full subcategory of finitely generated left R-modules.

Similarly, the full subcategory of mod-S consisting of all modules isomorphic to factor modules of submodules of Q^n for $n = 1, 2, \ldots$ coincides with one consisting of all modules isomorphic to submodules of factor modules of Q^n for $n = 1, 2, \ldots$. This is the smallest one of the finitely closed subcategory containing either Q or the class of S-modules

$$|N_S|0 \to N \to Q^n$$ is exact for some $n > 0|.$

By Proposition 4 this is the smallest one of the finitely closed subcategory containing N_S in case Q_S is a quasi-injective self-cogenerator and λ is surjective. Hence we shall denote this by \overline{N}_S. Furthermore, \overline{N}_S also coincides with

$$|N_S|N' \to N \to 0$$ is exact for some $N' \in N_S|.$

We are now ready to characterize those left dual-bimodules mentioned in Theorem 9 by means of a duality.

\textbf{Theorem 10.} Let $_S Q_S$ be a left dual-bimodule with $_S Q$ finitely generated and λ surjective. Then the following conditions are equivalent:

1. Q_S is a linearly compact quasi-injective module.
2. The pair (H', H') defines a duality between $_S\overline{FG}$ and \overline{N}_S.
3. $_S Q$ is an injective cogenerator.

\textbf{Proof.} (1) \Rightarrow (2) follows from Proposition 7 and \cite[Theorem 3.8]{7}.

(2) \Leftrightarrow (3). Assume (2). Then since $_S Q \in _S\overline{FG}$, we can apply \cite[Exercise 20.5]{1} to show that, for each $M \in _S\overline{FG}$, σ_M is an epimorphism by a
similar way as in [1, Theorem 23.5]. In particular, every cyclic R-module is Q-reflexive by [3, Lemma 1.2] and thus Q_3 is quasi-injective by [3, Theorem 3.2]. Furthermore, if $N \subseteq N_3$, then $H'(N)$ is in $\mathfrak{F}\mathfrak{G}$ and hence $\sigma_{H';N}$ is an epimorphism, which shows that $N(\subseteq H'H(N))$ is Q-reflexive [1, Proposition 20.14]. In particular, every factor module of Q_3 is Q-reflexive. Hence, by [2, Theorem 10], $\mathfrak{F}Q$ is an injective cogenerator.

(3) \iff (1) follows from [2, Theorem 10] and [7, Theorem 3.6].

The following corollary follows from Theorem 10 and [3, Lemma 3.5].

Corollary 11. For a dual ring R, the following conditions are equivalent:

(1) R_3 is linearly compact and is injective.
(2) $\mathfrak{F}R$ is linearly compact and is injective.
(3) $\mathfrak{F}R_3$ defines a duality between $\mathfrak{F}\mathfrak{G}$ and $\mathfrak{F}\mathfrak{G}_R$.
(4) $\mathfrak{F}R$ is injective.
(5) R_3 is injective.

Finally, we shall remark that a cogenerator ring is also a dual ring satisfying the equivalent condition of Corollary 11 [1, Exercise 24.12].

References

Department of Mathematics

Yamaguchi University

Yoshida, Yamaguchi 753

(Received October 15, 1991)