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NOTE ON THE ISOMORPHISM CLASS GROUPS
OF HOPF GALOIS EXTENSIONS

Hiroaxt KOMATSU and Atsusai NAKAJIMA

Let R be a commutative ring with identity and let H be a finite Hopf
algebra over R. For a commutative ring extension S/R, the notion of Galois
H-object S over R was introduced by S. U. Chase and M. E. Sweedler in [1],
and H is called a Galois Hopf algebra of S/R. This is a generalization of a
separable Galois extension and a purely inseparable extension. If a field K
is a Galois extension of a subfield & with Galois group G, then G is uniquely
determined. On the other hand, A. Hattori pointed out in [3] that the purely
inseparable field extension K = k[X]/(X?—r) of k of characteristic p has
two essentially distinct Galois Hopf algebras H(0,p) and H(1, p) defined
below in the sense of Chase and Sweedler [1]. In this note we show that
the group of isomorphism classes of Galois objects Gal(k, H(0, p)) and
Gal(k, H(1, p)) are isomorphic and give some results with related topics.

In the following, all algebras, morphisms and tensor products are taken
over a fixed commutative ring R unless otherwise stated. H is a Hopf algebra
which is a finitely generated projective R-module.

Now for the convenience of readers, we review the definitions of Galois
objects and related notations according to [1]. A commutative algebra S is
called an H-comodule algebra if there exists an algebra morphism ps: S —
S & H such that (ps ® I)ps =(I®A)ps and ( I ® ¢) ps = I, where I is the
identity morphism and A, ¢ are coalgebra structure morphisms of H. For
H-comodule algebras S and T with structure morphisms ps and pr respectively,
a morphism ¢: S — T is called an H-comodule algebra morphism if ¢ is an
algebra morphism such that pr¢ =( ¢ ®I)ps. S is called a Galois H-object
over Rif R=S,=1s5s € S|psls) = s ® 11, the invariant subalgebra of S
under ps. S is a faithfully flat R-module and the morphism y: S& S —
S ® H defined by y(x ® y) = (x ® 1) ps(y) is an isomorphism. Two Galois
H-objects S and T are called isomorphic if there exists an H-comodule
algebra isomorphism ¢ from S to T. Let S and T be Galois H-objects with
structure morphisms ps and pr, respectively. Consider the morphism

(I® )(ps®@ [)—I® pr: S®T-> SQR TRXRH,

where 7 is the twist morphismx @ y - y ® x. Then the subalgebra S-T =
kerl(I®7 )(ps ® I)—I®pr| of S&® T is a Galois H-object and the H-
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comodule structure on S-T is givenby I ® pr=(I ® 7)(ps ® I). Then in
the set of isomorphism classes of Galois H-objects Gal(R, H), we can define
the product

[SI[T] =[S -T] ([S].[T] € Gal(R, H)),

where [X] is the isomorphism class of Galois H-objects which are isomorphic
to X, and Gal(R, H) is an abelian group with identity element [H]. These
notions are also defined by usual action (cf. [1], [5]).

In the following R is a commutative algebra over the prime field GF(p)
(p +0). For an element u in R, we denote by H(u,p™), the free Hopf
algebra over R with basis |1, &.---, 87 ~'| whose Hopf algebra structure is
defined as follows :

algebra structure : 8" =0,
coalgebra structure : A(8) = § ®1+1 ® §+u(6® ), (8) =0,
antipode : A(8) = 7 7'(—1)%'"'s"

Then in H(1, p™), if we put o= 8+1, then (o) is a cyclic group of order
p” and H(1, p™) = R{o), where R{g) is the group algebra of {s). On the
other hand, H(0, p™) is the algebra which is generated by derivation & of
nilpotency index p™. In general H(1, p™) and H(0, p™) are non-isomorphic
Hopf algebras.

For an R-algebra S = R[X]/AX*—s) = R[x](s € R), we define a
morphism ps: S = S ® H(0,p) by ps(x) = x ® 1 +1 ® §. Then it is easy
to check that ps gives an H(0, p)-comodule algebra structure on S and S is a
Galois H(0, p)-object over R (cf.[1. p. 35. Example 4.11]). We set the
above type of Galois H(0, p)-object by [x;s]. Then we have the following
which was proved in [5, Lemma 2.1 and Th. 2. 2].

Theorem 1. Let S= [x;s] and T = [y:t] be Galois H(O, p)-objects
defined as above.

(1) Let ¢: S — T be a morphism of Galois H(0, p)-object. Then ¢ is
an isomorphism if and only if there exists an element r in R such that s—t =
r®. When this is the case, ¢ is defined by ¢(x) = y+r.

(2) S-T=[z;s+12].

Proof. (1) By pr¢= (¢ ® I)ps. we have ¢(x) = y+r for some r in
R. Since ¢ is an algebra morphism, s—t = r? is clear.

(2) By the definition of the product S -7, the subalgebra 4 of S&Q T
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generated by the element z = x® 14+1® y over R is contained in S- T and
2° = s+1t. Since A is a Galois H(0, p)-object in ST, Aisequalto S-T
by [1, Th. 1.12].

Since R is an algebra over GF(p), R® = |r°|r € R| is an additive
subgroup of the additive group R, and by [5, Th. 1.4], if S is a Galois
H(0, p)-object over R, then S is isomorphic to [x ; s] for some s in R. Thus
we have the following

Corollary 2. Gal(R, H(0, p)) is isomorphic to R/R” as groups.

Next we consider a Galois H(1, p)-object. For S = R[X]/(X°—s) =
R[x], we define an H(1, p)-comodule structure on R[x] by p(x) = x ® .
Then by [1, pp. 36 —39], R[x] is a Galois H(1, p)-object if and only if x”
is invertible in R. We set this type of Galois H(1, p)-object by {x;s). Let
gal(R, H(1, p)) be the set of isomorphism classes of Galois H(1, p)-objects
(x:s). Then we have the following which is similar to Th. 1 and Cor. 2.

Theorem 3. Let S=<{x;s)and T= (y:t) be Galois H(1, p)-objects
defined as above.

(1) Let ¢: S — T be a morphism of Galois H(1, p)-object. Then ¢ is
an isomorphism if and only if there exists an invertible element r in R such
that s = r°t. When this is the case ¢ is defined by ¢(x) = ry.

(2) §:T={(z;st)

Proof. (1) By prp=(¢ ® I)ps, we have ¢(x) = ry for some r in R.
Since ¢ is an algebra isomorphism, 7 is invertible and s = 7*%.

(2) It is easy to see that the element x ® y in S- T generates a sub-
algebra A which is a Galois H(1, p)-object. Then by [1, Th. 1.12], A is
equal to S+ T.

Corollary 4. gal(R, H(1,p)) is a subgroup of Gal(R, H(1.p)) and
gal(R, H(1, p)) is isomorphic to U(R)/U(R)*, where U(R) is the unit group
of R.

In [1, Example 4. 16], S. U. Chase proved the following theorem. Let
R be an arbitrary commutative ring and let G be a cyclic group of order =.
Then there exists a one-to-one correspondence between Galois RG-objects and
pairs (I, #), where I is an invertible R-module and 8: I & I ® --- @I
(n-times) —» R is an R-module isomorphism. Therefore, gal(R, H(1, p))
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does not equal Gal(R, H(1, p)) for a certain ring R and if R is a field,
gal(R, H(1, p)) equals Gal(R, H(1, p)).
By Cor. 2 and Cor. 4, we have the following

Corollary 5. Let k be a field of characteristic p. Then the following
conditions are equivalent:

(1) k is a perfect field.

(2) Gal(k, H(0, p)) = 0.

(3) Gal(k, H1,p)) = 1.

In general, we have the following

Theorem 6. If k is a field of characteristic p, then Gal(k, H(O, p)) is
isomorphic to Gal(k, H(1, p)) as groups.

Proof. Let k be an infinite field and let K be an extension field of &.
First we show that #tk < #(U(K)/U(k)). where #X is the cardinality of X.
Let x be an element in K which does not contained in k. For elements a, b
in k, we assume that U(k){(x+a) = U(k)(x+b). Then there exists an
element ¢ in U(k) such that x+a = ¢(x+5b) and so (1 —¢)x+(a—cb) = 0.
Since 1—c and a—cb are contained in k, we have ¢ =1 and a = cb.
Therefore a = b and thus #k < #(U(K)/U(k)). Now in the proof of the
theorem, we may assume that k& #+ k°. Since k/k” and U(k)/U(k)* are ele-
mentary abelian p-groups, it suffices to show that #(k/k®) = #(U(k)/U(k)*).
As vector spaces over k°, we have #4° < #(k/k®) < #k. But since k is iso-
morphic to k° and the fact we have just shown above, #k = #(k/k°) =
#(Uk) /UK )®).

For a separable field extension, we have the following example which was
given in [5, Remark 2].

Example 7. Let k£ be the prime field GF(2). Then the polynomial
X*4+ X+1 is separable irreducible in k[X] and so K = k[ X]AX'+X+1) is
a cyclic 2%-extension of £ with Galois group (o) of order 4. Thus K is a
Galois k{o)*-object over k, where k{c)* = Homu(k{s), k) is the dual Hopf
algebra of the group algebra k{s). On the other hand, let H be a free k-module
with basis |1, D, D? D*|. The Hopf algebra structure of H is defined by
D'=D, AD)=D®1+1®D. &(D) =0 and A(D) =—D. Then by
[5, Th. 1.3], K is a Galois H-object of k and we can see that 22 = 0 or
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2' =1 for any z € H*. Thus k(o) is not isomorphic to H* as Hopf algebras.
This shows that K = k[X]/AX*+ X+1) has two non-isomorphic Galois Hopf
algebras k{s)* and H.

For the above Hopf algebras R{s)* and H, the isomorphism class groups
Gal(R, R{¢)*) and Gal(R, H) were also computed for an arbitrary commutative
algebra R over GF(2). Since R{s)= H(1,2?), then by [4, Th. 3.2.4],

there is a group isomorphism
Gal(R, R{(¢)*) = Ri/M,,
where R = RX R, the cartesian product of R with addition defined by
(s1. 1)+ (52, 1) = (51452, 515+ L+ 1)

and M, = {(r*+7r, 7(r*+7)+s(1+s))|r.s € RI. On the other hand, by
[5, Th. 2. 2], there is a group isomorphism

Gal(R,H) = R/lr*+7r|r € R .

If we take R= GF(2), then M, =(0,0)and|r'+r|r € Rl =0 and so
Gal(GF(2), GF(2){o)*) = GF(2) X GF(2) which is a cyclic group of order
4 by definition of addition, and Gal(GF(2), H) = GF(2). Therefore

Theorem 7. Under the above notations, Gal(GF(2), GF(2){s)*) is not
isomorphic to Gal(GF(2), H).

For a separable field extension with characteristic 0. the similar example
was obtained in [2. Example 2. 3] and they showed that for the rational
number field Q. the field extension Q[+ 2 ]/Q has two different type of Galois
Hopf algebras H, and H,. But it is not known that the isomorphism class
groups Gal(Q, H,) and Gal(Q, H,) are isomorphic or not.
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