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STRUCTURE OF MINIMAL NON-COMMUTATIVE
ZERO-INSERTIVE RINGS

LIQIONG XU AND WEIMIN XUE

INTRODUCTION

Throughout this paper, rings are associative rings but need not have an
identity. The field with p" elements is denoted by GF(p") for a prime p and
a natural number n.

It is known that: (1) a minimal non-commutative ring contains 4 elements
and up to isomorphism there are two such rings, [GFO(Z) GF(;(2)] and

[g?g; g] , and (2) a minimal non-commutative ring with identity contains
GF(2) GF(2)

0 GF(2)|"
A ring R is called zero-insertive [7] if for all a,b,r € R, ab = 0 im-

8 elements and up to isomorphism there is only one such ring, [

plies arb = 0, and R is called zero-commutative [2, 7] if for all a,b €

R,ab = 0 implies ba = 0. One notes that every zero-commutative ring
GF(2) GF(2) d GF(2) 0

0 o [**¢|GgF@) o
zero-insertive but neither of them is zero-commutative. (Zero-insertive rings

is zero-insertive. However, the rings [

with identity which are not zero-commutative are given in Example 7.) We
conclude that [GI:)(Z) GP(;@)] and [g?g; g] are the two minimal non-
commutative zero-insertive rings. These two rings do not have an identity.

In this paper, the structure of minimal non-commutative zero-insertive
rings with identity is obtained. The main Theorem 8 states that a mini-
mal non-commutative zero-insertive ring with identity has 16 elements and
up to isomorphism there are five such rings. Since only one of these five
rings is zero-commutative, it follows that a minimal non-commutative zero-
commutative ring with identity contains 16 elements and up to isomorphism
there is only one such ring. Although we are unable to have a complete list
of minimal non-commutative zero-commutative rings without identity, we
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show that such rings have 16 elements and they are nilpotent with charac-
teristic 2 or 4.

1. PRELIMINARIES
A ring R is normal if each idempotent of R lies in the center.

Lemma 1. Every zero-commutative ring R is normal.

Proof. Let e = € € R and r € R. Since e(r —er) = 0, we have (r—er)e =0,

so re = ere. Similarly, er = ere. Hence re = er.

A ring R is called right (left) duo if every right (left) ideal of R is an
ideal, and it is called duo if it is both right and left duo.

Lemma 2. Every duo ring R is normal.

Proof. Let e = €2 € R and r € R. Since eR is an ideal, we have re € eR, so

2

re = ea for some a € R. Hence ere = ea = ea = re. Similarly, ere = er,

hence re = er. O

Lemma 3. Every zero-insertive ring R with identity is normal.

Proof. Let e = € € R. Since e(1 — e) = 0, we have er(1 — e) = 0 for each

r € R, so er = ere. Similarly, re = ere. Hence re = er. O

If Ris aring and a € R, we let r(a) = {r € Rlar = 0} and l(a) =
{r € R|ra = 0} be the right annihilator and the left annihilator of a in R,
respectively. Applying [7, Lemma 1] we see that a ring R is zero-insertive
if and only if r(a) (equivalently I(a)) is an ideal for each a € R. Hence we

have the following two corollaries.
Corollary 4. Every right (left) duo ring is zero-insertive.
Corollary 5 ([3]). Every right (left) duo ring with identity is normal.

In view of Lemma 2 and Corollary 5, we give the following example.

GF(p) GF(p)
0 0

Example 6. The ring [ is right duo, hence zero-insertive

by Corollary 4, but it is not normal, so it is neither zero-commutative nor
left duo by Lemmas 1 and 2. This shows that the condition "with identity” in

GF(p) 0] is left duo

both Lemma 3 and Corollary 5 is essential. Similarly, [ GF(p) 0
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and zero-insertive, but it is not normal end hence neither zero-commutative

nor right duo.

It was proved in [11, Proposition 3] that a finite right duo ring with iden-
tity is left duo. The condition "with identity” is necessary by the above
example.

A ring R is called a minimal non-commutative zero-insertive (zero-com-
mutative) ring if R has the smallest order |R| among the non-commutative
zero-insertive (zero-commutative) rings.

Recall that any finite ring, with or without identity, is a direct sum of
rings of prime power order. Consequently, a finite indecomposable ring
has prime power order. For a finite ring R, we let |R| denote the order
of R, and let X (R) denote the characteristic of R. If R = [[;c; R; is a
product of rings then R is zero-insertive (zero-commutative) if and only
if each R; is zero-insertive (zero-commutative). It follows that mimimal
non-commutative zero-insertive (zero-commutative) rings are indecompos-
able, so they have prime power orders. It was proved in [5] that a fi-
nite ring R is commutative if |R| has square free factorization. It was
proved in [10] that if R is a non-commutative ring with |R| = p? then
R = [GF(; (») GI‘;) (p)] or [g?gg 8] . From Example 6 we can conclude

that a minimal non-commutative zero-insertive ring has 4 elements and up

GF(2) GF(Z)] and [GF(Z) 0

to isomorphism [ 0 0 GF(2) 0] are the two such rings.

2. MAIN REsULT

In this section we consider minimal non-commutative zero-insertive
(zero-commutative) rings with identity. In [4] Eldridge proved that: (1) a
finite ring R with identity is commutative if |R| has cube free factorization,

and (2) if R is a non-commutative ring with identity and |R| = p* then

~ |GF(p) GF(p)
R_[ o(p GF(z)

Lemma 3. Consequently, a minimal non-commutative zero-insertive (zero-

], which is not normal hence not zero-insertive by

commutative) ring with identity has at least 16 elements.
Next we construct five distinct non-commutative zero-insertive rings with
identity, each of which has 16 elements, so they are minimal non-commutative

zero-insertive rings with identity.
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Example 7. We let R[z,y| denote the polynomial ring over a ring R with
non-commutative indeterminates ¢ and y, and the ideal of R[z,y] gener-
ated by S C R[z,y] is denoted by < S >. Let R = GF(2)[z,y]/ <
3,98 yr,2? — zy,y® — zy >. Let Zy = Z/AZ = {0,1,2,3}, and Ry =
Zy[z,y]/ < 23,93, yz, 2% — 2y, 22 —2,4%2—2,22,2y >. Let R be the ring of all
matrices of the form [g abz] over the field GF(4).Let Ry = GF(2)[z,y]/ <

28,42, yz, 22 —zy > and Rs = Za[z,v]/ < 23,%, yz, 22 — 2y, 2% - 2,22,2y >.
It is easy to see that each R; is a non-commutative ring with identity and
|R;| = 16. In [12] we proved that Ri, Ry and Rz are the 3 non-isomorphic
minimal non-commutative duo rings with identity. By Corollary 4 and
the above discussion, Ry, Ry and Rs3 are minimal non-commutative zero-
insertive rings with identity. We note that both R4y and Rs are also zero-
insertive, so they are also minimal non-commutative zero-insertive rings
with identity. Since X(R4) = 2 and X(Rs) = 4, we have Ry 2 Rs.Now
neither Ry nor Rs is duo, so we conclude that R; 2 R; for all i # j in
{1,2,3,4,5}.

In the above example, we gave five non-isomorphic minimal non-commu-
tative zero-insertive rings with identity. The next theorem asserts that they
are all the such rings, up to isomorphism. We let J(R) denote the Jacobson

radical of a ring R.

Theorem 8. A minimal non-commutative zero-insertive ring with identity
is a local ring with 16 elements, and if R is such a Ting then R = R; for

somei=1,2,3,4,5 , where the R;’s are the rings tn Ezample 7.

Proof. Since zero-insertive rings with identity are normal rings by Lemma
3 and finite normal rings with identity are direct sums of local rings, we
see that minimal non-commutative zero-insertive rings with identity, being
indecomposable, must be local rings. Hence, we have the first assertion by
Example 7.

To prove the second one, we assume that R is a local non-commutative
zero-insertive ring with identity and |R| = 16.

If R/J(R) = GF(8), |J(R)| = 2 and J(R) is a vector space over the
field R/J(R) with 8 elements, which is impossible. So we have that either
R/J(R) = GF(2) or R/J(R) = GF(4).
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If R/J(R) = GF(2) then |J(R)| = 8. We claim that 2j = 0 for all j €
J(R). To prove this, we may assume that X(R) = 4, then J(R) contains a
non-zero central element 2 so our claim follows from the non-commutativity
of R. Now J(R) is a non-commutative nilpotent algebra of dimension 3 over
GF(2), so it follows from [8, Theorem 2.3.6] that J(R) has a basis {a, b, c}
such that cJ(R) = J(R)c = 0,a® = ab= c,ba = 0, and b*> = 0 or c. Assume
b> = c. Then R = R, if X(R) = 2. If X(R) = 4, we view Z4 = {0,1,2,3}
as a subring of R, then since 2 € J(R) we have ¢ = 2, and thus R & R,.
Similarly, if 4> = 0 then R = R4 or R = R5.

Now let R/J(R) = GF(4) then |J(R)| = 4. We have that J(R)? = 0,
for if J(R)® = 0 and J(R)"~! # 0, then J(R)""! is a vector space over
R/J(R) = GF(4) and so |J(R)*~!| > 4. Since R is non-commutative, it
follows from [10, Theorem2] that X (R) = 2. Hence R = Rj3 by [10, Theorem
3. O

We note that the ring R3 in Example 7 is zero-commutative, but none of

Ry, Ry, R4 and Rj5 in Example 7 is zero-commutative.

Corollary 9. A minimal non-commutative zero-commutative ring with iden-
tity has 16 elements and up to isomorphism there is only one such ring, the

ring R3 in Ezample 7.

3. ZERO-COMMUTATIVE RINGS WITHOUT IDENTITY

The structure of minimal non-commutative zero-insertive rings is given
at the end of Section 1, and the structure of minimal non-commutative
zero-insertive (zero-commutative) rings with identity is given in Theorem 8
(Corollary 9). In this final section we consider minimal non-commutative
zero-commutative rings without identity.

It is known that there are 52 non-isomorphic rings of order 8 (see [1],
[9]), and we note that none of them is non-commutative zero-commutative.
Next we give three nilpotent non-commtative zero-commutative rings with
16 elements, so they are minimal non-commtative zero-commutative rings
without identity.

An additive group (S,+) is of (ni1,...,n¢)-type if (S,+) =51 @®...0 S5
where S; is a cyclic group of order n; .
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Example 10. Let o : GF(4) — GF(4) be the automorphism via a — a®.
Let GF(4)[z, 0] be the skew polynomial ring, i.e., GF(4)[z,0] = GF(4)[z] as
abelian groups and the multiplication is given as an extension of: (az')(bz?) =
aci(b)zit! where axt,bzi € GF(4)[z,0]. Let R =< & >= {aZ + bz%|a,b €
GF(4)} be the ideal of GF(4)[z,0]/ < 2% > generated by z. Then R is a
non-commutative zero-commutative ring with |R| = 16, and R® = 0.

Let S =< &,§ > be the ideal of Z4[z,y]/ < 22, 9%, zy — 22,y — 2y > gen-
erated by {Z,5}. Then (S,+) = (Z) ® (§) is of (4,4)-type, so |S| = 16.We
note that S is a non-commutative zero-commutative ring with S = 0.

Let T =< Z,§ > be the ideal of Zy[z,y]/ < z%,y%,zy —2z,2y > generated
by {Z,5}. Then (T,+) = (%) ® (§) ® (¥Z) is of (4,2,2)-type, so |T| = 16.
We note that T is a non-commutative zero-commutative ring with T3 = 0.

Since (R, +) 1s of (2,2,2,2)-type, (S,+) is of (4,4)-type,and (T, +) is of
(4,2,2)-type, we see that RZ S 2T 2 R.

The rings R, S, and T in the above example are minimal non-commtative
zero-commutative rings without identity, moreover they are nilpotent. More

general results are given as follows.

Proposition 11. An indecomposable finite normal ring R without identity

is nilpotent.

Proof. (1) Let e = €2 € R. Since e lies in the center, both eR and r(e) are
ideals of R and R = eR @ r(e). Since R is an indecomposable ring without
identity, we have e = 0.

(2) Let 0 # a € R. Since R is a finite ring, we have a* = a’ for some
j > 1i. Then @' = o = ala’~* = a*(a’ )2 = ... = a’a’a® for some k > 1. It
follows that a** is an idempotent, and so a***¥ = 0 by (1).

We have proved that R is a nil ring. Now it is well-known that a finite

nil ring is nilpotent. O

Corollary 12. Let R be an indecomposable finite ring without identity. If

R s zero-commutative, then R is nilpotent.
Proof. By Lemma 1 and Proposition 11. O

We can not give the structure of minimal non-commutative zero-commuta-
tive rings without identity, but our concluding theorem gives some properties

of such rings.
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Theorem 13. If R is a minimal non-commutative zero-commutative ring
without identity, then |R| = 16 and R is nilpotent with X(R) =2 or 4.

Proof. We have |R| = 16 by Example 10 and the discussion preceding it.
Using Corollary 9 we see that R must be indecomposable, so R is nilpotent
by Corollary 12.

Since R is not commutative, X (R) # 16.

Suppose X(R) = 8. Then (R,+) must be of (8,2)-type. Let (R,+) =
(a) & (b), where |a] = 8 and |b] = 2. (|- | denotes the order of an element
in a group.) Since R is non-commutative and zero-commutative, we have
0 # ab # ba # 0. Hence |ab| = |ba] = 2. Since a is nilpotent, we have
ab # b # ba. So we only have ab = 4a and ba = 4a + b, or ab = 4a + b and
ba = 4a. In the first case we obtain: aba = 4a? and aba = 4a®+ab, so ab = 0,
which is a contradiction. The second case also derives a contradiction by
similarity. Therefore X (R) # 8. a
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