Mathematical Journal of Okayama University

Volume 40, Issue 1

1998

Article 11

JANUARY 1998

Structure of Minimal Non-Commutative Zero-Insertive Rings

Liqiong Xu* Weimin Xue[†]

Copyright ©1998 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Fujian Normal University

[†]Fujian Normal University

Math. J. Okayama Univ. 40 (1998), 69-76 [2000]

STRUCTURE OF MINIMAL NON-COMMUTATIVE ZERO-INSERTIVE RINGS

LIQIONG XU AND WEIMIN XUE

Introduction

Throughout this paper, rings are associative rings but need not have an identity. The field with p^n elements is denoted by $GF(p^n)$ for a prime p and a natural number n.

It is known that: (1) a minimal non-commutative ring contains 4 elements and up to isomorphism there are two such rings, $\begin{bmatrix} GF(2) & GF(2) \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} GF(2) & 0 \\ GF(2) & 0 \end{bmatrix}$, and (2) a minimal non-commutative ring with identity contains

8 elements and up to isomorphism there is only one such ring, $\begin{bmatrix} GF(2) & GF(2) \\ 0 & GF(2) \end{bmatrix}$.

A ring R is called zero-insertive [7] if for all $a,b,r\in R$, ab=0 implies arb=0, and R is called zero-commutative [2, 7] if for all $a,b\in R,ab=0$ implies ba=0. One notes that every zero-commutative ring is zero-insertive. However, the rings $\begin{bmatrix} GF(2) & GF(2) \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} GF(2) & 0 \\ GF(2) & 0 \end{bmatrix}$ are zero-insertive but neither of them is zero-commutative. (Zero-insertive rings with identity which are not zero-commutative are given in Example 7.) We conclude that $\begin{bmatrix} GF(2) & GF(2) \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} GF(2) & 0 \\ GF(2) & 0 \end{bmatrix}$ are the two minimal non-commutative zero-insertive rings. These two rings do not have an identity.

In this paper, the structure of minimal non-commutative zero-insertive rings with identity is obtained. The main Theorem 8 states that a minimal non-commutative zero-insertive ring with identity has 16 elements and up to isomorphism there are five such rings. Since only one of these five rings is zero-commutative, it follows that a minimal non-commutative zero-commutative ring with identity contains 16 elements and up to isomorphism there is only one such ring. Although we are unable to have a complete list of minimal non-commutative zero-commutative rings without identity, we

1

This research is supported by the National Natural Science Foundation of China, and the Scientific Research Foundation for "Bai-Qian-Wan" Project, Fujian Province.

LIQIONG XU AND WEIMIN XUE

show that such rings have 16 elements and they are nilpotent with characteristic 2 or 4.

1. Preliminaries

A ring R is normal if each idempotent of R lies in the center.

Lemma 1. Every zero-commutative ring R is normal.

Proof. Let
$$e = e^2 \in R$$
 and $r \in R$. Since $e(r - er) = 0$, we have $(r - er)e = 0$, so $re = ere$. Similarly, $er = ere$. Hence $re = er$.

A ring R is called *right* (*left*) *duo* if every right (*left*) ideal of R is an ideal, and it is called *duo* if it is both right and left duo.

Lemma 2. Every duo ring R is normal.

70

Proof. Let $e = e^2 \in R$ and $r \in R$. Since eR is an ideal, we have $re \in eR$, so re = ea for some $a \in R$. Hence $ere = e^2a = ea = re$. Similarly, ere = er, hence re = er.

Lemma 3. Every zero-insertive ring R with identity is normal.

Proof. Let
$$e = e^2 \in R$$
. Since $e(1 - e) = 0$, we have $er(1 - e) = 0$ for each $r \in R$, so $er = ere$. Similarly, $re = ere$. Hence $re = er$.

If R is a ring and $a \in R$, we let $r(a) = \{r \in R | ar = 0\}$ and $l(a) = \{r \in R | ra = 0\}$ be the right annihilator and the left annihilator of a in R, respectively. Applying [7, Lemma 1] we see that a ring R is zero-insertive if and only if r(a) (equivalently l(a)) is an ideal for each $a \in R$. Hence we have the following two corollaries.

Corollary 4. Every right (left) duo ring is zero-insertive.

Corollary 5 ([3]). Every right (left) duo ring with identity is normal.

In view of Lemma 2 and Corollary 5, we give the following example.

Example 6. The ring $\begin{bmatrix} GF(p) & GF(p) \\ 0 & 0 \end{bmatrix}$ is right duo, hence zero-insertive by Corollary 4, but it is not normal, so it is neither zero-commutative nor left duo by Lemmas 1 and 2. This shows that the condition "with identity" in both Lemma 3 and Corollary 5 is essential. Similarly, $\begin{bmatrix} GF(p) & 0 \\ GF(p) & 0 \end{bmatrix}$ is left duo

http://escholarship.lib.okayama-u.ac.jp/mjou/vol40/iss1/11

STRUCTURE OF MINIMAL NON-COMMUTATIVE ZERO-INSERTIVE RINGS

71

and zero-insertive, but it is not normal and hence neither zero-commutative nor right duo.

It was proved in [11, Proposition 3] that a finite right duo ring with identity is left duo. The condition "with identity" is necessary by the above example.

A ring R is called a *minimal non-commutative zero-insertive (zero-commutative) ring* if R has the smallest order |R| among the non-commutative zero-insertive (zero-commutative) rings.

Recall that any finite ring, with or without identity, is a direct sum of rings of prime power order. Consequently, a finite indecomposable ring has prime power order. For a finite ring R, we let |R| denote the order of R, and let X(R) denote the characteristic of R. If $R = \prod_{i \in I} R_i$ is a product of rings then R is zero-insertive (zero-commutative) if and only if each R_i is zero-insertive (zero-commutative). It follows that minimal non-commutative zero-insertive (zero-commutative) rings are indecomposable, so they have prime power orders. It was proved in [5] that a finite ring R is commutative if |R| has square free factorization. It was proved in [10] that if R is a non-commutative ring with $|R| = p^2$ then $R \cong \begin{bmatrix} GF(p) & GF(p) \\ 0 & 0 \end{bmatrix}$ or $\begin{bmatrix} GF(p) & 0 \\ GF(p) & 0 \end{bmatrix}$. From Example 6 we can conclude that a minimal non-commutative zero-insertive ring has 4 elements and up to isomorphism $\begin{bmatrix} GF(2) & GF(2) \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} GF(2) & 0 \\ GF(2) & 0 \end{bmatrix}$ are the two such rings.

2. Main Result

In this section we consider minimal non-commutative zero-insertive (zero-commutative) rings with identity. In [4] Eldridge proved that: (1) a finite ring R with identity is commutative if |R| has cube free factorization, and (2) if R is a non-commutative ring with identity and $|R| = p^3$ then $R \cong \begin{bmatrix} GF(p) & GF(p) \\ 0 & GF(p) \end{bmatrix}$, which is not normal hence not zero-insertive by Lemma 3. Consequently, a minimal non-commutative zero-insertive (zero-commutative) ring with identity has at least 16 elements.

Next we construct five distinct non-commutative zero-insertive rings with identity, each of which has 16 elements, so they are minimal non-commutative zero-insertive rings with identity.

Example 7. We let R[x,y] denote the polynomial ring over a ring R with non-commutative indeterminates x and y, and the ideal of R[x,y] generated by $S \subseteq R[x,y]$ is denoted by $\langle S \rangle$. Let $R_1 = GF(2)[x,y]/\langle$ $x^3, y^3, yx, x^2 - xy, y^2 - xy >$. Let $\mathbb{Z}_4 = \mathbb{Z}/4\mathbb{Z} = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}\}$, and $R_2 =$ matrices of the form $\begin{bmatrix} a & b \\ 0 & a^2 \end{bmatrix}$ over the field $GF(4).Let \ R_4 = GF(2)[x,y]/<$ $x^3, y^2, yx, x^2 - xy >$ and $R_5 = \mathbb{Z}_4[x, y]/< x^3, y^2, yx, x^2 - xy, x^2 - \bar{2}, \bar{2}x, \bar{2}y >$. It is easy to see that each Ri is a non-commutative ring with identity and $|R_i| = 16$. In [12] we proved that R_1, R_2 and R_3 are the 3 non-isomorphic minimal non-commutative duo rings with identity. By Corollary 4 and the above discussion, R_1, R_2 and R_3 are minimal non-commutative zeroinsertive rings with identity. We note that both R4 and R5 are also zeroinsertive, so they are also minimal non-commutative zero-insertive rings with identity. Since $X(R_4) = 2$ and $X(R_5) = 4$, we have $R_4 \ncong R_5$. Now neither R_4 nor R_5 is duo, so we conclude that $R_i \ncong R_j$ for all $i \neq j$ in $\{1,2,3,4,5\}$.

In the above example, we gave five non-isomorphic minimal non-commutative zero-insertive rings with identity. The next theorem asserts that they are all the such rings, up to isomorphism. We let J(R) denote the Jacobson radical of a ring R.

Theorem 8. A minimal non-commutative zero-insertive ring with identity is a local ring with 16 elements, and if R is such a ring then $R \cong R_i$ for some i = 1, 2, 3, 4, 5, where the R_i 's are the rings in Example 7.

Proof. Since zero-insertive rings with identity are normal rings by Lemma 3 and finite normal rings with identity are direct sums of local rings, we see that minimal non-commutative zero-insertive rings with identity, being indecomposable, must be local rings. Hence, we have the first assertion by Example 7.

To prove the second one, we assume that R is a local non-commutative zero-insertive ring with identity and |R| = 16.

If $R/J(R) \cong GF(8)$, |J(R)| = 2 and J(R) is a vector space over the field R/J(R) with 8 elements, which is impossible. So we have that either $R/J(R) \cong GF(2)$ or $R/J(R) \cong GF(4)$.

STRUCTURE OF MINIMAL NON-COMMUTATIVE ZERO-INSERTIVE RINGS

73

If $R/J(R)\cong GF(2)$ then |J(R)|=8. We claim that 2j=0 for all $j\in J(R)$. To prove this, we may assume that X(R)=4, then J(R) contains a non-zero central element 2 so our claim follows from the non-commutativity of R. Now J(R) is a non-commutative nilpotent algebra of dimension 3 over GF(2), so it follows from [8, Theorem 2.3.6] that J(R) has a basis $\{a,b,c\}$ such that cJ(R)=J(R)c=0, $a^2=ab=c$, ba=0, and $b^2=0$ or c. Assume $b^2=c$. Then $R\cong R_1$ if X(R)=2. If X(R)=4, we view $\mathbb{Z}_4=\{\bar{0},\bar{1},\bar{2},\bar{3}\}$ as a subring of R, then since $\bar{2}\in J(R)$ we have $c=\bar{2}$, and thus $R\cong R_2$. Similarly, if $b^2=0$ then $R\cong R_4$ or $R\cong R_5$.

Now let $R/J(R) \cong GF(4)$ then |J(R)| = 4. We have that $J(R)^2 = 0$, for if $J(R)^n = 0$ and $J(R)^{n-1} \neq 0$, then $J(R)^{n-1}$ is a vector space over $R/J(R) \cong GF(4)$ and so $|J(R)^{n-1}| \geq 4$. Since R is non-commutative, it follows from [10, Theorem2] that X(R) = 2. Hence $R \cong R_3$ by [10, Theorem 3].

We note that the ring R_3 in Example 7 is zero-commutative, but none of R_1, R_2, R_4 and R_5 in Example 7 is zero-commutative.

Corollary 9. A minimal non-commutative zero-commutative ring with identity has 16 elements and up to isomorphism there is only one such ring, the ring R_3 in Example 7.

3. Zero-Commutative Rings without Identity

The structure of minimal non-commutative zero-insertive rings is given at the end of Section 1, and the structure of minimal non-commutative zero-insertive (zero-commutative) rings with identity is given in Theorem 8 (Corollary 9). In this final section we consider minimal non-commutative zero-commutative rings without identity.

It is known that there are 52 non-isomorphic rings of order 8 (see [1], [9]), and we note that none of them is non-commutative zero-commutative. Next we give three nilpotent non-commutative zero-commutative rings with 16 elements, so they are minimal non-commutative zero-commutative rings without identity.

An additive group (S,+) is of $(n_1,...,n_t)$ -type if $(S,+)=S_1\oplus\ldots\oplus S_t$ where S_i is a cyclic group of order n_i .

74

LIQIONG XU AND WEIMIN XUE

Example 10. Let $\sigma: GF(4) \longmapsto GF(4)$ be the automorphism via $a \longmapsto a^2$. Let $GF(4)[x,\sigma]$ be the skew polynomial ring, i.e., $GF(4)[x,\sigma] = GF(4)[x]$ as abelian groups and the multiplication is given as an extension of: $(ax^i)(bx^j) = a\sigma^i(b)x^{i+j}$ where $ax^i, bx^j \in GF(4)[x,\sigma]$. Let $R = \langle \bar{x} \rangle = \{a\bar{x} + b\bar{x}^2 | a, b \in GF(4)\}$ be the ideal of $GF(4)[x,\sigma]/\langle x^3 \rangle$ generated by \bar{x} . Then R is a non-commutative zero-commutative ring with |R| = 16, and $R^3 = 0$.

Let $S=\langle \bar{x}, \bar{y} \rangle$ be the ideal of $\mathbb{Z}_4[x,y]/\langle x^2, y^2, xy - \bar{2}x, yx - \bar{2}y \rangle$ generated by $\{\bar{x}, \bar{y}\}$. Then $(S, +) = (\bar{x}) \oplus (\bar{y})$ is of (4, 4)-type, so |S| = 16. We note that S is a non-commutative zero-commutative ring with $S^3 = 0$.

Let $T=<\bar x, \bar y>$ be the ideal of $\mathbb{Z}_4[x,y]/< x^2, y^2, xy-\bar 2x, \bar 2y>$ generated by $\{\bar x, \bar y\}$. Then $(T,+)=(\bar x)\oplus(\bar y)\oplus(\bar y\bar x)$ is of (4,2,2)-type, so |T|=16. We note that T is a non-commutative zero-commutative ring with $T^3=0$.

Since (R, +) is of (2, 2, 2, 2)-type, (S, +) is of (4, 4)-type, and (T, +) is of (4, 2, 2)-type, we see that $R \ncong S \ncong T \ncong R$.

The rings R, S, and T in the above example are minimal non-commutative zero-commutative rings without identity, moreover they are nilpotent. More general results are given as follows.

Proposition 11. An indecomposable finite normal ring R without identity is nilpotent.

Proof. (1) Let $e = e^2 \in R$. Since e lies in the center, both eR and r(e) are ideals of R and $R = eR \oplus r(e)$. Since R is an indecomposable ring without identity, we have e = 0.

(2) Let $0 \neq a \in R$. Since R is a finite ring, we have $a^i = a^j$ for some j > i. Then $a^i = a^j = a^i a^{j-i} = a^i (a^{j-i})^2 = \ldots = a^i a^i a^k$ for some $k \geq 1$. It follows that a^{i+k} is an idempotent, and so $a^{i+k} = 0$ by (1).

We have proved that R is a nil ring. Now it is well-known that a finite nil ring is nilpotent.

Corollary 12. Let R be an indecomposable finite ring without identity. If R is zero-commutative, then R is nilpotent.

Proof. By Lemma 1 and Proposition 11.

We can not give the structure of minimal non-commutative zero-commutative rings without identity, but our concluding theorem gives some properties of such rings.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol40/iss1/11

6

STRUCTURE OF MINIMAL NON-COMMUTATIVE ZERO-INSERTIVE RINGS

75

Theorem 13. If R is a minimal non-commutative zero-commutative ring without identity, then |R| = 16 and R is nilpotent with X(R) = 2 or 4.

Proof. We have |R| = 16 by Example 10 and the discussion preceding it. Using Corollary 9 we see that R must be indecomposable, so R is nilpotent by Corollary 12.

Since R is not commutative, $X(R) \neq 16$.

Suppose X(R)=8. Then (R,+) must be of (8,2)-type. Let $(R,+)=(a)\oplus(b)$, where |a|=8 and |b|=2. ($|\cdot|$ denotes the order of an element in a group.) Since R is non-commutative and zero-commutative, we have $0\neq ab\neq ba\neq 0$. Hence |ab|=|ba|=2. Since a is nilpotent, we have $ab\neq b\neq ba$. So we only have ab=4a and ba=4a+b, or ab=4a+b and ba=4a. In the first case we obtain: $aba=4a^2$ and $aba=4a^2+ab$, so ab=0, which is a contradiction. The second case also derives a contradiction by similarity. Therefore $X(R)\neq 8$.

REFERENCES

- [1] V.G. Antipkin and V.P. Elizarov, Rings of order p^3 , Siberian Math. J. 23 (1982), 457-464.
- [2] T. Cheatham and E. Enochs, C-commutativity, J. Austral. Math. Soc. (Ser. A) 30 (1980), 252-255.
- [3] R.C. Courter, Finite dimensional right duo algebras are duo, Proc. Amer. Math. Soc. 84 (1982), 157-161.
- [4] K.E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 75 (1968), 512-514.
- [5] D.B. Erickson, Orders for finite noncommutative rings, Amer. Math. Monthly 73 (1966), 376-377.
- [6] R. Gilmer and J. Mott, Associative rings of order p³, Proc. Japan Acad. 49 (1973), 795-799.
- [7] J.M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ. 32 (1990), 73-76.
- [8] R. Kruse and D. Price, Nilpotent Rings, Gordon and Breach, New York, 1969.
- [9] Keqin Liu, A recursive method for determining the structure of finite associative rings (Chinese. English summary), J. Math. (Wuhan) 2 (1982), 57-74.
- [10] R. Raghavendren, Finite associative rings, Compositio Math. 21 (1969) 195-229.
- [11] Weimin Xue, On strongly right bounded finite rings, Bull. Austral. Math. Soc. 44 (1991), 353-355.
- [12] Weimin Xue, Structure of minimal noncommutative duo rings and minimal strongly bounded non-duo rings, Comm. Algebra 20 (1992), 2777-2788.

LIQIONG XU
DEPARTMENT OF MATHEMATICS
FUJIAN NORMAL UNIVERSITY
FUZHOU, FUJIAN 350007
PEOPLE'S REPUBLIC OF CHINA

76

LIQIONG XU AND WEIMIN XUE

WEIMIN XUE
DEPARTMENT OF MATHEMATICS
FUJIAN NORMAL UNIVERSITY
FUZHOU, FUJIAN 350007
PEOPLE'S REPUBLIC OF CHINA
e-mail address: wmxue@fjtu.edu.cn
(Received August 3, 1999)