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'DISCRETE ANALYTIC DERIVATIVE EQUATIONS
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SHIH-TONG TU

1. Introduction. This paper is concerned to discuss about the general

2
solution of the discrete analytic derivative equations —= oF ~aK*F (2)=0b(2)

a 9
. . . BF(0) _ _ .
with the initial conditions o = C, and F(0)= C,. Throughout this paper,

we need a few definition and some notations, such as “discrete analytic
function”, “region”, ‘“derivative”, “line integral”, “convolution”, “double
dot integral”, “A(R)”, “+”; and “L”; these are mentioned in [1].

In [2], Duffin and Duris has discussed about the general solution of
discrete derivative equation of the first order with constant coefficient. If

a' =16, then the general solution of F(z) —aF(2) =b(z) with F(0)=C

where b(z)E A(R) is F(z2)=C e(z, a)+5 e(z—t, a) : b(t)0t where C is an

2+a) 2+az-) is known as the discrete

arbitrary constant, and e(z, @)=

exponential function which is introduced ay Ferrand [3].

Afterwords, in [1], present author has developed a theory to general
case, if K(z)€A(R), R contains the origin and eh’[ K(0)+ K(k)]#8 for
h==+1 or +1, then there exists a unique analytic function F(z) in R, such

OF(Z) —aK(2)*F(z) with F(0)= C, where b(z)=A(R). For the type of
F (z) oF (0) _

that

second order equations —aK+F(z)=0b(z) with =C, and F(0)

=, Wwe have analogous propertles to the first order.

Py
2. Discrete derivative equations of the type 96—5-' —aK(z)xF(z)=0.

In [4], Hayabara has shown the following theorem in operational sense.
Theorem 1. 1. fEA(R)

=t l" A LY : n N
o (|t [ 0ot ot = [ =0 st
0 o

where z“*P=(n-\ l)S 1%, 2@ =1.
0
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In [5], Duffin and Duris have solved a discrete Volterra integral equi-

tions,
Theorem 2. 1. f(2), K(z)€A(R) where R contains the origin
2. ah[ G(0)+ G(h)]5%44 for h=:k1 or =i
&> there exists a unique function F(z)€ A(R)
such that F(2)=f(2)+a go G(z—1t): F(5)ot.
And the solution can be calculated by stepping formula (1).

. 1 -
(V) Fleth)= et G(h)]{!lf(z—l—h)-{-ah[G\O)TG(lz)]F(z)

+4aS: Gla+h--1) : F(t)t)

with F(0)=7(0).
Theorem 3. 1. K(z)EA(R) where R contains the origin
2. 16—ak*[ K(0)4- K(h)]=0

= (2) E;—f‘—aK*F(z:) 0 with -%O)*——Cz and F(0)=C,

has no solution for z=h if C,=0, C,50 or C%0, C,=0.

Proof. Suppose, there exists a solution of (2) for z=5h, with C,=1),
C5=0 or C,550, C,=0. Let M(z)=K+F(z2), from (2) we have

s L 5?
o mep={TE0: BB _c, ;o M _akppy .y c,
N 0z 2

o0z
aF(h) _ —
By the definition of the derivative (see [1]), we have——* Py [F (h)—C,]
— Cz-
Therefore, %[F h—CJ—C= ah S K(h—1t) : F(t)ot+ C,

_%[K(O)-I—K(h)] [F(R)+Cl+C,

e. {16 —ai’[ K(0)-\- K(h)] } F(h)={16--ak*[ K(0)-+ K(h)]} C,-16/C,. Hence,
16 —ah’[ K(0)+ K(h)]1=0 and if for C,=0, C,5-0 it contradicts to assump-
tion. For C,5=0, C,=0 it is also a contradiction. Thus, this proves the
theorem.

Theorem 4. Let K(2) be discrete analytic in R containing the origin.
And if 16—ah®*[ K(0)-I- K(h)]5~0 for h equals to one of the values *1or *i.
Then there exists a unique function F(z) discrete analytic in R such that
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8*F

-
0z’

aK+*F(2)=0 with F(0)=C, and 6%5.)= C,. Aad the solution of (2)
can be calculated by the following stepping formula:

_ 1 P ;
() Flath)=—mmrorT K(k)]{IGECz(z - B)+ C] +al*[ K(0)

-+ K(h)]F(2)-+ 1642 G(z-+h—1): F(t)Bt}

where G(z2)=z*K(2).
Proof. Suppose, (2) has a solution in R and let K(2)*F(z)=M(2).

oF : N
a—f:‘) - aSUM(t)oH- C..

Then we obtain
and F(z)=a5: g ! M(2)otit, + C,+ Cyz.
0,JO

By using Theorem 1, it becomes discrete Volterra integral equation,
such as F(2) =a55(z~t) : M(#)ot+ Cyz+- Cy=Cyz+ C; -+ aGxF(2)-+-+- (4).
0
For a fixed chain (z, **-, 2,) from 0 to z in R, we have
L F(z2)=L (Gz+C)+a Lgo G(z—1) : F(t)ot
Since, L (Cyz-+C;)=0 (assume a+0)
we can obtain the following four expressions (see [5] pp. 210—211)
{4—ai[ G(0)-- G()]}L F(2)=0
or {44+a[G0)+ G(—1)]}L F(z)=0
or {4+ai[ G(O)=+- G(—)]}L F(z)=0
or {4—a[GO)+ GQ)IIL F(z)=0.

But, G(0)=0 and G(h)=g"(lz-t): K(t)r?t=-’§[K(0)+K(h)]

Hence, above four expressions become the following forms respectively.
{16+ai[ K(0)+ K()]}L F(2)=0

or  {16-+a[K(0)+ K(—1)]}L F(2)=0

or {16—ai[K(0)+ K(—1)]}L F(2)=0

or {16—a[K(0)+ K(1)]}L F(z)=0.

Thus. if 16—ah®[ K(0)+ K(h)]1540 for % equal to one of the values -1 or

+4, then LF(z)=0. This proves that if (2) has a solution in R, then

this solution is discrete analytic in . By theorem 2, there exists a unique
solution F(z) of (4) discrete analytic in R. And F(z) is uniquely deter-
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mined by the following stepping formula,

1 L © . .
F+ = e G(h)]{4[Cz(z - 1)+ s +ah[ GO)+ GU)IF ()

+4aS: Gla+h—1): F(1)t. )

On the other hand, we.can rewrite F(z-+#) into the following form.

1 3
16 "‘aha[I{(O) + I('(h)] {16[C2(Z+ h) -+ C]] +ah [K(O)

+ K(h)]IF(2)-- lﬁai:G(z+k—t) : F(t)&‘t}

where G(2)=2z+K(2).

(3) is the required stepping formula for finding the unique solution F(x)
of (2). Now it remains to prove that the function F(z) which is obtained
uniquely from (3), is exactly a solution of (2). Throughout the following
proof, we use some notations. K(n)=K(n)+ K (n—1) where 2 is a posi-
tive integer. And let B=16—aK(1), from (3) we obtain BF(1)=16((,
+C,)+aC, K(1). Substituting F(1) into (2), we easily see that (2) hes
a solution for z2=1. Before we prove that (2) has a solution for z=2, 3,
4, ceeee- , we need the following lemmas. The first is easy from (3).

(3) F(z-+h)=

Lemma 1.

n-1

(5)  Gl=SiR(ni—i)+ %k’(n)

(6)  BF(n+1)=16[Cn-+1)+ Cl-+aK(1)F (n)
7+l j—-1 __ —_ n+l __ —
+4a3] J,z;iK(j—i)F(n—j+2)+az+iK(j)F(n~j+2)
j=2 i= J=

Lemma 2. p=4
(1) E=F(p—2)[12K(1)+7K(2) +2K(3)]+[8G(3)—12K(1)—5K(2)

— K3)1F(p—3)—4GR)F(p—4)+8LG(HF(1) + -+ + GA4)F(p—3)]
~4=[5(p+1)F(1(+---+ GAF(p—2)1+{K(p+1)F @)+
+ K(4)F(p—2)} —4[G(p—1)F(1)+ - -+ GA)F (p—4)]=0.

Proof. Rearranging the left-hand side into the polynomial with
respect to F (), where i=0,1, ---, p—2. We see easily that every coeffici-
ent of the term F(i) equals zero. Thus, this lemma is proved.

Lemma 3. For n=2, we have

)] 4{F(n)—3F (n—1)+4F (n—2)—4F (n—3)+ - +(—1)""'4F (1)
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+(—1)2F(0)+(—1)"C,}
=aqgK+F(n)+aK«F(n—1), where 6—2%0) =G,

Proof. It holds for n=2. Suppose, (8) is true for n=p.

(9)  4{F(p)—3F(p—1)+4F(p—2)—4F(p—3)+ - +(—1)""4F(1)
+(—1)P2F0)+(—1)"C,}
=aqK+F(p)+aK*F(p—1).

We want to claim that

(10) 4{F(p+1)—3F(p)+-+(—1)""4F(1)+(—1)""2F(0)+(—1)**'C,}
=aK+F(p+1)+aK+F(p).

From (9) and (10), we get

(11) 4{F(p+ 1)~2F(p)—i—F(p—1)}=a§:HK(p+1—t) - F ()t

-1
—FZaSPK( p—1): F(t)at+aj:'K( p—1—1t): F(Dt.
0
Therefore, for proving (10), it is sufficient to show (11).

Since S?{(p~t) : F(¢)ot —TLK(p z,.)F(z), where z,=v,

we have

TV=Right-hand side of (11)——— (P+1DFA)+-- +I_{E(4)F(p—2)}

I—"_\

?(3)f(p—1)+%[1?(2)+21?(1)]F(p)

.s:-l:: .Jala

KF(p+1).

Let V=Left-hand side of (11).
Then, rewriting (11) into the form

4 (W—V)=—BF(p+1)-+16[2F (p)—F(p—1)]
+o{SRG+3F (p—j—0)+F (p—2)K@+F(p—DIKE)
+3K(2)+3KW] +F (AL K@) +3KD]} ,

from (6), we get
4 W—V)=2BF(p)—16[Cip+1)+ C]+F(p—1){—9aK(1)—2a K(2)—16}
~aF(p—2){ —TKQ1)—2K(2)}—4a{ G(p+1)F(1)+---

Produced by The Berkeley Electronic Press, 1969



Mathematical Journal of Okayama University, Vol. 14 [1969], Iss. 2, Art. 4

116 Sum-Tone TU
+ GWF (p—2)) +al K(p+DF (1) -+ K@) F(p—2)].

Again, from (6), we have

4 W—V)=—BF(p—1)--16(C{p—1)+ C)+ F(p—2){17a K(1) +8a K(2)
+2a K(3)} +8a{ G(p)F (1)+ -+ G@F (p—3)} +8a G3)F(p—3)
—4a{ C(p+1)FQ) -+ -+ CAF(p—2)} +~a[ K(p+1)F Q) + -
+ E@F(p—2)].

Using (6) again, we obtain

4(W—V)=aE. By Lemma 2, we have proved this lemma.

2
Lemma 4. If b F(" —aK+*F(n—1)=0 then ag—z(zn)—aK*F(n)

Proof. By the definition of the derivative, we have
ZF(n)_ (aF(n)_ﬁ?F(n —1)) _8*F(n—1)

92t 0z 0z 82t

=P~ Fi—1) ~2EE=D) Ko (n 1) e
¢z

=4{F(n)—3F(n——1) FAF(n—2)— e = (—1) AF(1) 4+ (—1)'2F(0)

+(~1 N s 1),

From (8), we obtain 9 F(n) —aK+F(n)=0. Thus, Lemma 4 is proved.

In conclusion, we have proved that (2) has a solution for the points
on the positive x-axis. Also, we can prove that (2) has a solution for the
points on the positive y-axis. By using similar process, we have that (2)
has a solution F(z) for the points on the real and imaginary axes. Follow-
ing the remark of Duffin [6], a function fEA(R) is uniquely determined
by its values on the real and imaginary axes. Therefore, Theorem 4 is
proved.

3. Discrete derivative equations of the type 6{7_2(5) —aK(2)*F(2)
=p(z).

Theorem 5. Let K(z) be discrete analytic in R containing the origin.
And if 16—ah’'[ K(0)-+ K(k)1540 for h equals to one of the values +1 or
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+i. Then there exists a unique function F(z) discrete analytic in R,
such that

2 n
(12) o°F aK+F(2)=b(z) with F(0)=C, and %ﬁo)= Cy, where b(2) =

ng~
A(R). And the solution of (12) can be calculated by the following
stepping formula :

(13) F(z+h)= 1

16—ak’[ K(0)+ K(£)]
k[ K(0)+ K(h)1F(z)+ IGaS:G(z Fh—f): F@)t}

{16[ Cz+h)+ Ci+ H(z+1)]

with a—;ﬁ;(T(n =b(0), where H(z)=2z+b(z) and G(z)=z+K(2).

Proof. Let M(z)= K*F(z), from (12) we have
F(z)=S S“[aM(t>+b(t)]atat, 4Gt Coz
0

0
- g (2—1) : [aM()~b(£))ot + Coz+ C,
0

i.e.

(14) F(2)= Cuz+ C,+ H(z)+aG+F ().

This is a discrete Volterra integral equation. Since K(z)& A(R), Cz--
C,+~H(z)€A(R) and 16—ak’[ K(0)+ K(#)]5-0 is equivalent to ai[ G(0)
4-G(h)] =44, and by Theorem 2 we obtain that there exists a unique

discrete analytic solution F(2) of (14). And the solution can be calculated
by the following stepping formula.

1
4—ah[GO)+G(R)]

¥ G(k)]F(z)+4a§:G(z—l—h—t) : F(ot}

Flz+h)= {4[c,(z+ 1)+ C,+ H(z+ k)] -+ ah[ G(O)

On the other hand, we can rewrite F(z--h) into the form (13). Thus (13)
is the required stepping formula for finding the unique solution F(z) of
(12). With the similar proof of Theorem 4, we see that the function F(2)
which is obtained uniquely from (13) is exactly a soluton of (12).
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