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ON STRICTLY GALOIS EXTENSIONS OF DEGREE Pe
OVER A DIVISION RING OF CHARACTERISTIC P

TakESI ONODERA and HisaAo TOMINAGA

Let K be a field and & be an automorphism group of finite order
n >1 with D as the fixed subring. Recently C.C. Faith announced the

equivalence of the following two propositions [2]: 1

(1) If Tglk) = 'EEk’ is non-zero then {£° | s = &} is a basis of

K/D. ’

(2) D has prime characteristic » and »n=p°

On the other hand, in {1], A.S. Amitsur considered cyclic division
ring extensions, 2 and proved in this case that (2) implies (1) [1, Theorem
1]. In this note, we shall prove that Amitsur’s result can be extended to
the case that D has prime characteristic p and # = p°. More precisely :
if K/D is strictly Galois with respect to & of order # >1, then (1) and
(2) are equivalent to each other. ¥

Of course, our result contains Faith’s completely, And we suppose
that the essential tools in our proof are similar to those in [2], never-
theless the details of Faith's discussion do not appear so far.

1. Group ring defined by & and D

Let D be a division ring, and & be a finite group. A ring R con-
taining D (with the common identity) is called a group ring defined by
& and D if there exist regular elements u, (r = ®) such that w,u, = #,.,
du, = u,d (d € D) and R = > Ppu.D. In what follows, for the sake of

o€
brevity, we shall write @D and Zc;ad, instead of >®u.D and D) u.d,
o€ o€® o€@

respectively. Needless to say, given & and D, we can construct a group
ring defined by & and D in an obvious way.

Lemma 1. Let @D = > @sD be a group ring defined by a group
435

1) Numbers in brackets refer to the references cited at the end of this paper.

2) He called K a cyclic extension of D if K possesses a cyclic group @ of »
automorphisms with D as the fixed subring, and K has a right (and so left) D-
dimension 2. The last requirement is superfluous for outer automorphism groups, but
it is essential in our present consideration as well as in [1].

3) For the terminology “strictly Galois”, see the definition given in §2.

7
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® of order n >1 and a division ring D. If EE(sjdd # 0 (d, € D) implies
that the set {(Z(‘,sad.,)z- | r=@®} is linearly independent over D, then X(D)
43

(the characteristic of D) is a prime p and n = p°.
Proof. If X(D) =0 then, setting all d, = 1, %du‘ =n=~0 but
evidently the set {(3lsd,)r | - € ®} is linearly dependent, being contra-
oe@®

dictory to the assumption. Thus X(D) = p 5~ 0. Now we set n = p°%/,
where (p, #n') = 1. If #’ >1 then, for any prime factor ¢ of n', there
exists a ¢-Sylow group © of ® We set here d, =1 and 0 according
as o isin © or not. Then >)d, is a power of ¢ and so it is not zero.

o€

On the other hand, as one will readily see, {(3iod,)r | - € @} is linearly
LEY)
dependent. This contradiction proves n' = 1.

Lemma 2. Let ®D be a group ring defined by & of order p and
D of characteristic p 0. Then ®D is completely primary, that is, all
the non-regular elements form an ideal.

Proof. Let o be a generating element of &. Evidently 1 —¢ is a central
nilpotent element of ®&D of nilpotency index p, accordingly A;= {x € GD|
% (1 — o)' = 0} is an ideal and there holds A, C A C - C A, C A, =

®&D. Recalling the well-known formula (p ;1)5 (—1) mod. p, we obtain
»-1 p_l p-1 -3 s
1—a)? =33 (—1)’( , )a’=2«r’. We shall prove that N = {?_,;a d: |
r={ =

»=0

»-1 p—1
E d;=0} is the ideal consisting of all the non-regular elements. If § di#

—1 p—1
0 then Laidi) e (1l —a)f ' = Zd p),o- 0, whence E{aid; is not in
i=n =0 i=0

A,-,. Moreover this fact implies that (Eaaﬂ (1 — )’ is contained in

i=0

A,_;but not in A,_;_(j = 0, -+, p—1). Hence {(Zoidi)(l—rf)j | =0, -,

p—1} forms an independent D-basis of &D, that is, Za‘d is a regular

i=0

element. Conversely, if Z o'd, is regular in ®&D then (E ddhy+ 1+ ¢

f=0 i=0

+odo? = z,d Z(F‘i is non-zero, whence Ea’ 0. As evidently N

i=y i=0
is an ideal, our proof is complete.

The above lemma is still valid for & of order p°, but moreover we
shall prove the following theorem.

Theorem 1. A group ring GD defined by ®& of order n>1 and

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 7/issl/3
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D is completely primary if and only if X(D) is a prime p and n=p"
And if OD is completely primary then the tatality of non-regular ele-
ments is N = {3ad, | 23d, = 0} = >(1—a) D.

o€ € 1#0€@

Proof. In any completely primary ring, all the non-regular elements
form a unique maximal one-sided ideal, which coincides with the (Jacob-
son) radical by [3, Theorem 1. 6.1). And, as is well-known, the radical of a
ring with minimum condition is nilpotent. These remarks will be required
in the sequel.

Necessity. To be easily verified, qp*(aezc‘;sad”) = ‘;5;. d, defines a ring

homomorphism * of @D onto D with N as the kernel. Accordingly
the maximal ideal N coincides with the totality of non-regular elements.
Noting that %adq is regular if and only if the set {(‘2—_’@; ods)z | € &} is
linearly indepgndent over D, our assertion is clear from Lemma 1.
Sufficiency. In case e =1, our assertion is Lemma 2 itself. Now we
suppose e > 1, and that our assertion is true for ¢ — 1. To prove our
assertion, it suffices to show that N is a nil-ideal. As & is a p-group,
we can find a normal subgroup 9 of order p. Let S* be a (fixed) com-
plete representative system of & = ®/9, and @ be the residue class of

c €8 modulo 9. Then (> ad,) = E(]jr?d,, defines a ring homomor-
_ o€ o
phism «» of &D onto @D with the kernel M = {Eerd., | g‘édﬁ” = 0 for
456 7

all 6* = S*}. At first we shall prove that M is a nil-ideal. To this end,

consider an arbitrary finite set {o; E%-gd,‘,“ l|i=1,--, m} with 2@41,‘," =0
1€ 7€

where oy's are in &. As is easily verified, then there holds the following :
(*) a5 21' ‘r/df,”"'dm 2 ,/I,d"(m) = g, 0n Z‘ '//'(Dd,;”"‘z '/;("”dy(,m),

€D 7€9 n€H €H
where 7 — »" is a suitable permutation in © (i = 1, ---, m). Since each >}
7€

77d,'? is contained in the radical of ©D by Lemma 2, the product (%) is
zero if m exceeds the nilpotency index of the radical of ©D. Making use of

this fact, we can readily see that each element in M is nilpotent. Now let

>id; =0. Then  (30d,) = 215d, is contained in the radical of G
o€ €@ €@
by our induction hypothesis, whence (3} od,)* is in M for some positive
€@
integer . We obtain therefore, by the last remark, (3}ad,)" is nilpotent,
o€®

accordingly so is >) od,.
€@
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2. Principal theorem

Throughout this section, let K be a division ring, and & be a finite
group of automorphisms in K with D as the fixed subring. In general,
as is well-known, [K: D],=[K: D], =[K: D] is bounded by the order
of & (see, for example, [5]). If in particular [ K: D] coincides with the
order of & then we say that K/D is strictly Galois with respect to &.
For any k € K, we set Ty (k) = %k’ (®-trace of k). In case {¥” | o € G}

ot

is an independent right D-basis of K, k is called a &-normal basis ele-
ment (abbreviated, ®-n. b. e.).

The next lemma is essential in our present consideration, and enables
us to reduce our problem to a structure theorem of group rings, Theorem
1.

Lemma 3. If K/D is strictly Galois with respect to & = {a), +++-- R
a,} then K is isomorphic to &=8Dy as a right S-module, where Dy
means the totality of right multiplications by elements of D.V

Proof. Let & be the Ky-K,-module of all linear transformations of
the left D-module K. Since # = [K: D] = [&: K;],, we have ¢ = QK,

= {'ﬁ:@m Ky = ﬁ:g;z{m by [5, Satz] (or [3, pp. 159 — 161]). Evidently &
- =1
— & Dp— ;: @Dra, is a ring with minimum condition. Now let {&,, -+, k.}

be an independent right D-basis of K. Then it is clear that & = ii‘,(-{;km@i,
=1

and so & is a right scalar ving of & in Kasch’s sence [4, p.453]. Hence,
by [4, Satz 4], K is ©-isomorphic to &.

If K/D is strictly Galois with respect to & then, as 8D, = > @oDp,
o€

@Dy is canonically isomorphic to a group ring ®D, and so K may be

considered as a right &D-module by defining % » (2_. odys) = > k°d,.
€@

Hence, by Lemm 3, K is &D-isomorphic to $D by an isomorphism ¢.
Under this situation, there holds the following :

Corollary 1. Let K/D be strictly Galois with respect to &. If
olk) = Lad (k € K) then Tglk)+0 is equivalent with Zd #+0, and
the fact that kis &-n. b.e. is nothing but to say that the set {(E ady) 7 |

v € ®} isliearly independent over D, or what is the same, that E@o‘d
o€

is a regular element.

4) Similarly, for any 2 K, kxr means the right multiplication by &.
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Proof. Since ¢(k') = (2] ad.):, we have o(Tg(k)) = Diocd, =S¢
€@ . 7€@ €@

2.ds. Accordingly Tg(k) 5% 0 is equivalent to %}Ed, 5= 0, The rest of the
o a

proof is almost trivial.
We are now at the position to state our principal theorem.

Theorem 2. If K/D is strictly Galois with respect to & of order
n>1 then (1) and (2) are equivalent to each other :
(1) k= K isa OGn.b.e. if and only if the O-trace of k is non-
zero.
(2) X(D) is a prime p and n is a power of p.
Proof. By Corollary 1, our assertion is an easy consequence of
Theorem 1.
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