Mathematical Journal of Okayama University

Volume 7, Issue 1 1957 Article 3

JULY 1957

On strictly Galois extensions of degree pe over a division ring of characteristic p

Takesi Onodera* Hisao Tominaga[†]

Copyright ©1957 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Hokkaido University

[†]Okayama University

ON STRICTLY GALOIS EXTENSIONS OF DEGREE P_e OVER A DIVISION RING OF CHARACTERISTIC P

TAKESI ONODERA and HISAO TOMINAGA

Let K be a field and \mathfrak{G} be an automorphism group of finite order n > 1 with D as the fixed subring. Recently C. C. Faith announced the equivalence of the following two propositions [2]: 1)

- (1) If $T_{\mathbb{S}}(k) = \sum_{\sigma \in \mathbb{S}} k^{\sigma}$ is non-zero then $\{k^{\sigma} \mid \sigma \in \mathbb{S}\}$ is a basis of K/D.
- (2) D has prime characteristic p and $n=p^e$.

On the other hand, in [1], A.S. Amitsur considered cyclic division ring extensions, $^{2)}$ and proved in this case that (2) implies (1) [1, Theorem 1]. In this note, we shall prove that Amitsur's result can be extended to the case that D has prime characteristic p and $n = p^{e}$. More precisely: if K/D is strictly Galois with respect to \mathfrak{B} of order n > 1, then (1) and (2) are equivalent to each other. $^{3)}$

Of course, our result contains Faith's completely. And we suppose that the essential tools in our proof are similar to those in [2], nevertheless the details of Faith's discussion do not appear so far.

1. Group ring defined by & and D

Let D be a division ring, and \mathfrak{G} be a finite group. A ring R containing D (with the common identity) is called a group ring defined by \mathfrak{G} and D if there exist regular elements u_{σ} ($\sigma \in \mathfrak{G}$) such that $u_{\sigma}u_{\tau} = u_{\sigma\tau}$, $du_{\sigma} = u_{\sigma}d$ ($d \in D$) and $R = \sum_{\sigma \in \mathfrak{G}} u_{\sigma}D$. In what follows, for the sake of brevity, we shall write $\mathfrak{G}D$ and $\sum_{\sigma \in \mathfrak{G}} \sigma d_{\sigma}$ instead of $\sum_{\sigma \in \mathfrak{G}} u_{\sigma}D$ and $\sum_{\sigma \in \mathfrak{G}} u_{\sigma}d_{\sigma}$ respectively. Needless to say, given \mathfrak{G} and D, we can construct a group ring defined by \mathfrak{G} and D in an obvious way.

¹⁾ Numbers in brackets refer to the references cited at the end of this paper.

²⁾ He called K a cyclic extension of D if K possesses a cyclic group \emptyset of n automorphisms with D as the fixed subring, and K has a right (and so left) D-dimension n. The last requirement is superfluous for outer automorphism groups, but it is essential in our present consideration as well as in [1].

³⁾ For the terminology "strictly Galois", see the definition given in § 2.

S of order n > 1 and a division ring D. If $\sum_{\sigma \in \textcircled{S}} d_{\sigma} \neq 0$ $(d_{\sigma} \in D)$ implies that the set $\{(\sum_{\sigma \in \textcircled{S}} \sigma d_{\sigma})_{\tau} \mid \tau \in \textcircled{S}\}$ is linearly independent over D, then $\chi(D)$ (the characteristic of D) is a prime p and $n = p^{e}$.

Proof. If $\chi(D)=0$ then, setting all $d_{\sigma}=1$, $\sum_{\sigma\in \mathbb{S}}d_{\sigma}=n\neq 0$ but evidently the set $\{(\sum_{\sigma\in \mathbb{S}}\sigma d_{\sigma})_{\tau}\mid \tau\in \mathbb{S}\}$ is linearly dependent, being contradictory to the assumption. Thus $\chi(D)=p\neq 0$. Now we set $n=p^en'$, where $(p,\ n')=1$. If n'>1 then, for any prime factor q of n', there exists a q-Sylow group \mathfrak{D} of \mathfrak{S} . We set here $d_{\sigma}=1$ and 0 according as σ is in \mathfrak{D} or not. Then $\sum_{\sigma\in \mathfrak{S}}d_{\sigma}$ is a power of q and so it is not zero. On the other hand, as one will readily see, $\{(\sum_{\sigma\in \mathfrak{S}}\sigma d_{\sigma})_{\tau}\mid \tau\in \mathfrak{S}\}$ is linearly dependent. This contradiction proves n'=1.

Lemma 2. Let &D be a group ring defined by &D of order p and D of characteristic $p \neq 0$. Then &D is completely primary, that is, all the non-regular elements form an ideal.

Proof. Let σ be a generating element of \mathfrak{G} . Evidently $1-\sigma$ is a central nilpotent element of $\mathfrak{G}D$ of nilpotency index p, accordingly $A_i = \{x \in \mathfrak{G}D \mid x (1-\sigma)^i = 0\}$ is an ideal and there holds $A_0 \subset A_1 \subset \cdots \subset A_{p-1} \subset A_p = \mathfrak{G}D$. Recalling the well-known formula $\binom{p-1}{r} \equiv (-1)^r \mod p$, we obtain $(1-\sigma)^{p-1} = \sum_{r=0}^{p-1} (-1)^r \binom{p-1}{r} \sigma^r = \sum_{r=0}^{p-1} \sigma^r$. We shall prove that $N = \{\sum_{i=0}^{p-1} \sigma^i d_i \mid 1-\sigma \}$ is the ideal consisting of all the non-regular elements. If $\sum_{i=0}^{p-1} d_i \neq 0$ then $(\sum_{i=0}^{p-1} \sigma^i d_i) \cdot (1-\sigma)^{p-1} = \sum_{i=0}^{p-1} d_i \cdot \sum_{j=0}^{p-1} \sigma^j \neq 0$, whence $\sum_{i=0}^{p-1} \sigma^i d_i$ is not in A_{p-1} . Moreover this fact implies that $(\sum_{i=0}^{p-1} \sigma^i d_i) \cdot (1-\sigma)^j$ is contained in A_{p-j} but not in A_{p-j-1} ($j=0,\cdots,p-1$). Hence $\{(\sum_{i=0}^{p-1} \sigma^i d_i)(1-\sigma)^j \mid j=0,\cdots,p-1\}$ forms an independent D-basis of $(\mathfrak{G}D)$, that is, $\sum_{i=0}^{p-1} \sigma^i d_i$ is a regular element. Conversely, if $\sum_{i=0}^{p-1} \sigma^i d_i$ is regular in $(\mathfrak{G}D)$ then $(\sum_{i=0}^{p-1} \sigma^i d_i^i) \cdot (1+\sigma) + \cdots + \sigma^{p-1} = \sum_{i=0}^{p-1} d_i \cdot \sum_{j=0}^{p-1} \sigma^j$ is non-zero, whence $\sum_{i=0}^{p-1} d_i \neq 0$. As evidently N is an ideal, our proof is complete.

The above lemma is still valid for \mathfrak{G} of order p^e , but moreover we shall prove the following theorem.

Theorem 1. A group ring @D defined by @ of order n>1 and

D is completely primary if and only if $\chi(D)$ is a prime p and $n=p^c$. And if (D) is completely primary then the tatality of non-regular elements is $N=\{\sum_{\sigma\in G}\sigma d_\sigma\mid \sum_{\sigma\in G}d_\sigma=0\}=\sum_{1\neq\sigma\in G}(1-\sigma)\ D.$

Proof. In any completely primary ring, all the non-regular elements form a unique maximal one-sided ideal, which coincides with the (Jacobson) radical by [3, Theorem 1. 6. 1]. And, as is well-known, the radical of a ring with minimum condition is nilpotent. These remarks will be required in the sequel.

Necessity. To be easily verified, $\psi^*(\sum_{\sigma \in \emptyset} \sigma d^\sigma) = \sum_{\sigma \in \emptyset} d_\sigma$ defines a ring homomorphism ψ^* of D onto D with N as the kernel. Accordingly the maximal ideal N coincides with the totality of non-regular elements. Noting that $\sum_{\sigma \in \textcircled{M}} \sigma d_\sigma$ is regular if and only if the set $\{(\sum_{\sigma \in \textcircled{M}} \sigma d_\sigma)_\tau \mid \tau \in \textcircled{M}\}$ is linearly independent over D, our assertion is clear from Lemma 1.

Sufficiency. In case e=1, our assertion is Lemma 2 itself. Now we suppose e>1, and that our assertion is true for e-1. To prove our assertion, it suffices to show that N is a nil-ideal. As S is a p-group, we can find a normal subgroup S of order p. Let S^* be a (fixed) complete representative system of S=S/S, and $\overleftarrow{\sigma}$ be the residue class of $\sigma \in \textcircled{S}$ modulo S. Then ψ $(\sum_{\sigma \in \textcircled{S}} \sigma d_{\sigma}) = \sum_{\sigma \in \textcircled{S}} \overleftarrow{\sigma} d_{\sigma}$ defines a ring homomorphism ψ of SD onto SD with the kernel $M=\{\sum_{\sigma \in \textcircled{S}} \sigma d_{\sigma} \mid \sum_{\eta \in \textcircled{S}} d_{\sigma^*\eta}=0 \text{ for all } \sigma^* \in S^*\}$. At first we shall prove that M is a nil-ideal. To this end, consider an arbitrary finite set $\{\sigma_i \sum_{\eta \in \textcircled{S}} \gamma_i d_{\eta}^{(i)} \mid i=1,\cdots,m\}$ with $\sum_{\eta \in \textcircled{S}} d_{\eta}^{(i)} = 0$ where σ_i 's are in S. As is easily verified, then there holds the following: $(*) \quad \sigma_1 \sum_{\eta \in \textcircled{S}} \gamma_i d_{\eta}^{(i)} \cdots \sigma_m \sum_{\eta \in \textcircled{S}} \gamma_i d_{\eta}^{(m)} = \sigma_1 \cdots \sigma_m \sum_{\eta \in \textcircled{S}} \gamma_i^{(i)} d_{\eta}^{(i)} \cdots \sum_{\eta \in \textcircled{S}} \gamma_i^{(m)} d_{\eta}^{(m)},$ where $\gamma_i \to \gamma_i^{(i)}$ is a suitable permutation in S $(i=1,\cdots,m)$. Since each $\sum_{\eta \in \textcircled{S}} \gamma_i^{(i)} d_{\eta}^{(i)}$ is contained in the radical of SD by Lemma 2, the product (*) is zero if m exceeds the nilpotency index of the radical of SD. Making use of this fact, we can readily see that each element in M is nilpotent. Now let

 $\sum_{\sigma \in \emptyset} d_{\sigma} = 0. \quad \text{Then } \psi \left(\sum_{\sigma \in \emptyset} \sigma d_{\sigma} \right) = \sum_{\sigma \in \emptyset} \bar{\sigma} d_{\sigma} \text{ is contained in the radical of } \overline{\mathfrak{G}} D$ by our induction hypothesis, whence $(\sum_{\sigma \in \emptyset} \sigma d_{\sigma})^{t}$ is in M for some positive integer t. We obtain therefore, by the last remark, $(\sum_{\sigma \in \emptyset} \sigma d_{\sigma})^{t}$ is nilpotent, accordingly so is $\sum_{\sigma \in \emptyset} \sigma d_{\sigma}$.

2. Principal theorem

Throughout this section, let K be a division ring, and \mathfrak{G} be a finite group of automorphisms in K with D as the fixed subring. In general, as is well-known, $[K:D]_r = [K:D]_l = [K:D]$ is bounded by the order of \mathfrak{G} (see, for example, [5]). If in particular [K:D] coincides with the order of \mathfrak{G} then we say that K/D is strictly Galois with respect to \mathfrak{G} . For any $k \in K$, we set $T_{\mathfrak{G}}(k) = \sum_{\sigma \in \mathfrak{G}} k^{\sigma}$ (\mathfrak{G} -trace of k). In case $\{k^{\sigma} \mid \sigma \in \mathfrak{G}\}$ is an independent right D-basis of K, K is called a \mathfrak{G} -normal basis element (abbreviated, \mathfrak{G} -n. b. e.).

The next lemma is essential in our present consideration, and enables us to reduce our problem to a structure theorem of group rings, Theorem 1.

Lemma 3. If K/D is strictly Galois with respect to $\mathfrak{G} = \{\sigma_1, \dots, \sigma_n\}$ then K is isomorphic to $\mathfrak{S} = \mathfrak{G}D_R$ as a right \mathfrak{S} -module, where D_R means the totality of right multiplications by elements of D.

Proof. Let \mathfrak{E} be the K_R - K_R -module of all linear transformations of the left D-module K. Since $n = [K:D] = [\mathfrak{E}:K_R]_r$, we have $\mathfrak{E} = \mathfrak{B}K_R = \sum_{i=1}^n \mathfrak{P} \sigma_i K_R = \sum_{i=1}^n \mathfrak{P} K_R \sigma_i$ by [5, Satz] (or [3, pp. 159 — 161]). Evidently $\mathfrak{S} = \mathfrak{B}D_R = \sum_{i=1}^n \mathfrak{P}D_R \sigma_i$ is a ring with minimum condition. Now let $\{k_1, \dots, k_n\}$ be an independent right D-basis of K. Then it is clear that $\mathfrak{E} = \sum_{i=1}^n \mathfrak{P} k_{iR} \mathfrak{S}$, and so \mathfrak{E} is a right scalar ring of \mathfrak{E} in Kasch's sence [4, p. 453]. Hence, by [4, Satz 4], K is \mathfrak{E} -isomorphic to \mathfrak{E} .

If K/D is strictly Galois with respect to \mathfrak{G} then, as $\mathfrak{G}D_R = \sum_{\sigma \in \mathfrak{G}} \oplus \sigma D_R$, $\mathfrak{S}D_R$ is canonically isomorphic to a group ring $\mathfrak{G}D$, and so K may be considered as a right $\mathfrak{S}D$ -module by defining $k \cdot (\sum_{\sigma \in \mathfrak{G}} \sigma d_{\sigma}) = \sum_{\sigma \in \mathfrak{G}} k^{\sigma} d_{\sigma}$.

Hence, by Lemm 3, K is $\mathfrak{G}D$ -isomorphic to $\mathfrak{G}D$ by an isomorphism φ . Under this situation, there holds the following:

Corollary 1. Let K/D be strictly Galois with respect to \mathfrak{G} . If $\varphi(k) = \sum_{\sigma \in \mathfrak{G}} \sigma d_{\sigma} \ (k \in K)$ then $T_{\mathfrak{G}}(k) \neq 0$ is equivalent with $\sum_{\sigma \in \mathfrak{G}} d_{\sigma} \neq 0$, and the fact that k is $\mathfrak{G} \cdot n$. b. e. is nothing but to say that the set $\{(\sum_{\sigma \in \mathfrak{G}} \sigma d_{\sigma}) \tau \mid \tau \in \mathfrak{G}\}$ is liearly independent over D, or what is the same, that $\sum_{\sigma \in \mathfrak{G}} \sigma d_{\sigma}$ is a regular element.

⁴⁾ Similarly, for any $k \in K$, k_R means the right multiplication by k.

ON STRICTLY GALOIS EXTENSIONS OF DEGREE pe ETC.

81

Proof. Since $\varphi(k^{\tau}) = (\sum_{\tau \in \mathbb{S}} \sigma d_{\sigma})_{\tau}$, we have $\varphi(T_{\mathbb{S}}(k)) = \sum_{\sigma,\tau \in \mathbb{S}} \sigma_{\tau} d_{\sigma} = \sum_{\tau \in \mathbb{S}} \tau \cdot \sum_{\sigma \in \mathbb{S}} d_{\sigma}$. Accordingly $T_{\mathbb{S}}(k) \neq 0$ is equivalent to $\sum_{\sigma \in \mathbb{S}} d_{\sigma} \neq 0$. The rest of the proof is almost trivial.

We are now at the position to state our principal theorem.

Theorem 2. If K/D is strictly Galois with respect to \mathfrak{G} of order n > 1 then (1) and (2) are equivalent to each other:

- (1) $k \in K$ is a \mathfrak{G} -n.b.e. if and only if the \mathfrak{G} -trace of k is non-zero.
- (2) $\chi(D)$ is a prime p and n is a power of p.

Proof. By Corollary 1, our assertion is an easy consequence of Theorem 1.

REFERENCES

- [1] A.S. AMITSUR, Non-commutative cyclic fields, Duke Math. J., 21 (1954) 87-105.
- [2] C.C. FAITH, Normal extensions in which every element with nonzero trace is a normal basis element, Bull. Amer. Math. Soc., 63 (1957) 95-96.
- [3] N. JACOBSON, Structure of rings, Amer. Math. Soc. Colloquium Publ., vol. 37 (1956).
- [4] F. KASCH, Über den Endomorphismenring eines Vektorraumes und den Satz von Normalbasis, Math. Ann., 126 (1953) 447-463.
- [5] F. KASCH, Bemerkung zum Hauptsatz der Galoisschen Theorie für Schiefkörper, Archiv der Math., 6 (1955) 420-422.

DEPARTMENTS OF MATHEMATICS,
HOKKAIDO UNIVERSITY
OKAYAMA UNIVERSITY

(Received July 10, 1957)