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ON DESARGUESIAN SPACES

YAasuo NASU

Introduction. In the paper a metric space R means a G-space® such
that for two distinct points there exists a unique geodesic which passes
through these points and any three non-colinear points lie on a 2-flat, i.e.,
which is said to be Desarguesian in H. Busemann’s sense. Let [ be a
geodesic and p and g two distinct points on [ If there exists a motion ¢
which carries p to ¢ and | into itself, @ is said a translation along . We
prove that, if for any geodesic there exists a transitive group of transla-
tions along this geodesic, the space is Minkowskian, hyperbolic or elliptic.

If R is of 2-dimensions in Menger-Uryson’s sense and Desarguesian,
the space is a manifold and the above holds [1]®. The main purpose of the
paper is to prove the above generally in finite dimensional case not less
than 3. In §1 we show that, if in Hilbert geometry a space admits transla-
tions such as in the above, the space is hyperbolic. By use of this the
above is proved in §2. In §3 we give some remarks concerned to the results
of the previous paper [4].

§ 1. Let A" be an n-dimensional affine space (# > 3). A point with
coordinates (%% +--, x") is denoted by x. Let K be a convex body with
interior points and ¥ an affine linein A". We assume that € intersects K at
two distinct points ¢ and d. Then we define the distance p (2, @) between
two points ¢; and @, on the affine segment cd to be

(1. 1) plas, &)=k |log 1=/ 2| (>0),
—Ta Ta

where a;/=(1 —z)c'+od" and a/ =(1 — )¢+ d'(¢=1, 2, -+, n). The
metric space R thus defined in the interior K°of K is said an n-dimensional
H-space and the metric is said Hilbertian. In R the affine segment a:a, is

1) A space R is said to be a G-space if the following axioms are fulfilied.

A. R is metric with distance xy (= yx). )

B. R is finitely compact, i.e., a bounded infinite set has at least one accumula-
tion point in R.

C. Given two distinct points x, z then a point y with (x y 2), i.e., different from
x and z with xy+yz2=xz exists.

D. To every point p of R there corresponds a positive number Py such that for

any two distinct points x, y in S(p, pp) (i.e., xp, yp<pp) a point 2 with (¥ y 2) exists.

E. If (x y 21), (x y 22) and yz1=y22 then z1=2,.
2) Numbers in brackets refer to the references at the end of the paper.

19

Produced by The Berkeley Electronic Press, 1962



Mathematical Journal of Okayama University, Vol. 11 [1962], Iss. 1, Art. 2

20 Yasuo NASU

a shortest connection from a, to @, (or from a, to @,). If K does not contain
a coplaner segment, @,. is a unique shortest connection.

Let [ be the open affine segment cut off by K* from the affine line £.
Then (is said a straight line. Next we prove the following

(1. 2) Theorem. Let R be an n-dimensional H-space. If for any
straight live | the space admits a transitive group of translations along
I, then R is hyperbolic.

We prove firstly Propositions (1. 3) and (1. 4) and the theorem is proved
lastly.

(1. 3) Under the same assumption as in Theorem (1. 2), the convex
surface K is differentiable.

Proof. Since K is ccnvex, K is almost everywhere differentiable. Let
p and ¢ be two distinct differentiable points on K and P and @ the support-
ing planes of K at p and ¢ respectively. We introduce projective coordinates
(&° +++, £") in such a way that the hyperplanes P and @ are represented as
£°=0 and £"=0 respectively. We assume further that the coordinates of
the points p and g are represented as (0, -+, 0, 1) and (1, O, -+, 0) respective-
ly. For the sake of brevity we assume @ has only only one point ¢ with K.

Let | be the straight line cut off by K° from the affine line through p
and ¢ and ¢ a translation along I. Let @ and b be two points on [ and
suppose that the translation @ carries ¢ to b. Further let A and B be the
hyperplanes determined by ¢, PN @ and b, P M & respectively. Then
@& carries A to B, i.e.,, A?=B, If we put

a=p+aqand b=p+ s'q,

the trnslation ¢ is represented as ¢'=ks where k is a positive constant.

Let A, and A, be the two parts of K divided by A4, i.e., we assume
that A,NA.=¢, AAJA.\U (KNA)=K and A,3p, A;>q. Simiiarly let
B, and B, be two parts divided by B such that B,\U B,\U (KN B)=K and
B, 3p, B;2¢. Then we have A%=B, (i=1, 2). This is clear from P#= P,
Q¥=@Q and A¥=B8.

In the original affine space A" the system of all affine lines through
the point p and points of A /M K formrs a cone Z and similarly the system
of all affine lines through p and points of B /M K forms a cone Z'. For
conveniernce's sake we assume ¢ <<ea'. Then the interior of Z contains that
of Z'. Let ¢ be a point of R which is not on | and r the asymptote to [
through ¢. Let C be the hyperplane determined by the point ¢ and PN Q
and ¢’ the point at which C intersects I. Consider the sequence of straight
lines {y#"} (n=1, 2, ---). Let ¢, be the point at which each r®" intersects
C. Then C Df{ec,}. Next we prove that the sequence of points {¢,} con-
verges to the point ¢’ in the sense of the metric p, i.e., in the sense of
the original affine topology.
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Let x be a point of X, and y the point at which the hyperpiane deter-
mined by x and PN\ Q intersects. Then p(x, y)—0 as x tends to p. This
is clear from that K is differentiable at p. It follows from this that the
sequence of points {c.} converges to the point ¢'.

Let d be the point distinct from p at which the affine line containing
% intersects K. Then the sequence {d¢"} converges to ¢ in the sense of the
affine topology. To prove the proposition, suppose that K is not differen-
tiable at d. Then there exists distinct supporting planes D, and D, at d. Let
r be the point at which the affine line through p and d intersects hyper-
plane Q. Further let p, and p, be the points at which D, and D, intersect
the affine line thrugoh ¢ and » and s the point at which the affine line
through ¢ and 7 intersects P/ @. Then the order of the points 7, s, p;
and p, is supposed to be srp.p,. Hence the double ratio (s7, p,p.) is positive.
By choosing D, and D, suitably, if necessary, we assume (s, pp,) 7= 1.

On the other hand the sequence of points {r#"} converges to the point
g. Let € be the affine line through ¢ and r. Then there exists a subse-
quence {2¢"} of {8¢"} which converges to an affine line through ¢ lying
on the hyperplane @. The sequence of points {p,®™} and {p,@"} converges
to ¢ and the seqnence of hyperplanes {D,@"} and {D.#"} converge to Q.
It is easy to see from this that the sequence of positive numbers {(r¢&™s@™,
D21P"p@™)) converges to 1. But each (r@™sd™, p,0"1p,#™) equals (rs, pips),
since each @™ is represented as a projective transformation. But thisis a
contradiction.

Even if @ has common points other than ¢ with the surface K, we
arrive at the same conclusion as in the above by slight modifications. Thus
we end the proof.

(1.4) Under the same assumption the surface K is strictly convex.

Proof. We use the same notations as before. Suppose indeed that the
supporting planes @ has common points other than ¢ with K. Then K has
a common segment with an affine line through g. At least one of the end
points of this segment does not coincide with g. We denote by ¢’ such an
end point. Let y be the intersection of the affine line through p and ¢’
with K% Then v is a straight line of R and an asymptote to [. Let y be a
point on Y and x a point at which the hyperplane X through PN\ @ and y
intersects [. If ¥ tends to ¢', then p(x, y)— o and if y tends to p, then
o(x, y)—0.

Let y, be a fixed point on y and x, the point of the intersection of
the hyperplane X, through P M @ and y, with the straight line [. Suppose
further that ¢ <<p' (a#=0b, a=p-+asq, b=p+s'g). Then the point ¢’ is not
necessarily invariant under ¢ but the set of points {g/¢"} (=0, +1, +2,
-++) lies on Q. Obviously each of straight lines y#~" (n=0, 1, 2, +-+) inter-
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sects X, at a point ¢,. Then the sequence of points {c,} is bounded on X.

On the other hand, if y tends to ¢, then p(x, y)— co. Hence the
sequence {c,} is not bounded. This contradicts the above. The proposition
follows from this.

Now we prove Theorem (1. 2).

_ Proof. Let A and B be hyperplanes which intersect K and such that
(K°N A) N (KN B) = ¢. Then AN B is disjoint from K. Let P and Q
be the supporting planes of K at p and g respectively. Let [ be the straight
line of R which coincides with the intersection of the affine line through p
and ¢ with K°. Let @ and b be the points at which [ intersects A and B
respectively. Then ! is perpendicular to A and B at « and b respectively.
There exists a translation ¢, which carries « to b.

Let C be a hyperplane which intersects K and C, and C, be two parts
of K divided by C such that &, C.=, and G\UC\J (KN C)=K.
Suppose further that one of C, and C, contains K /™ A and K\ B. Since
BN\ Cis disjoint from K, there exist the supporting planes S and T through
BN C. We denote by s and ¢ the common points of K with S and T re-
spectively. Let L be the straight line which coincides with the intersection
of K° with the affine line through s and ¢. Let &' and ¢ be the points at
whicht ¢ intersects B and C respectively. Then there exists a trarEIation
¢, along t such that b'@,=¢. Obviously K° N\ B is carried onto KN C
under ¢; and K° N A on to K* "\ B under @,

Under the same consideration as in the above for the hyperplanes A
and C there exists a translation @; along the straight line which is the inter-
section of K® with the affine line through the tangent points of the support-
ing planes through AN\ C. If we put = @%,%,, ¥ is a motion of R and
K°N\ A is carried into itself under #. Let A, and A, be two parts of K
divided by A such that 4, N\ A;=¢ and A4,\U A,\U (KN A)=K. It is easy
to see that the motion # carries A4, into A, and A, into A,.

On the other hand, since the motion % is represented as a projective
transformation which carries K into itself, the motion # can be repre-
sented as

_211; 1@uX"-+a

3 i=1,2 -, n
S8 X+ Qg ( 2 )

Xy =
where SV ia,,x*+a,., 50 for x K, A. Hence # is a continuous
mapping of K°'N A and by Brouwer's fixed point theorem there exists a
point fixed under #. We denote by # such a fixed point. Then we can
consider the following two cases:

i) The point 7 is a boundary point of KN A.
ii) The point 7 is an inteiror point of K* N A.
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Suppose that the case i) holds. Let {»,} be a sequence of points on
KM\ A which converges to 7 in the sense of the original affine topology
and £, the affine line which is the carrier of the straight line perpendicular
to K" M A at each 7,. Then the sequence of affine lines {€,} converges to
an affine line 2 tangent to K at ». If we replace the hyperplane at infinity
by the hyperplane A’ tangent to K at 7, then ¥ is represented as an affine
transformation, since ¥ lies on A’ and under # A’ and ?{ are carried into
themselves respectively.

Since 7 is invariant under ¥, it is easy to show that there exists on 9
a point « fixed under ¥ distinct from ». A hyperplane D through 4 N A’
is carried into a hyperplane D' throngh A M A’. Let an affine line B
through # intersects D and D’ at points d and d’ respectively. Then the
affine center of d and d' coincides with the intersection 7 of the affine line
B with the hyperplane A. We show that the tangent cone of K whose
vertx is # is tangent to K at points of A M K. To do this let B intersect
K at points ¢ and ¢. Then we show that the four points #, ¢, ¢’ and f is
in the order uefe’ or ue'fe.

Let E and E’ be the hyperplanes through ¢, AN A’and e/, AN A’
respectively and suppose that the order of the points #, ¢, ¢’ and f is uee'f.
Then (uf, ee') = (ufF, ewe'yw). Let the affine line B intersect E¢ and E'¥
at points ¢ and e¢'. Then the affine center of ¢ and e coincides with f and
similarly the affine center of ¢’ aod ¢’ is also identical with f. It is easy
to see

(uf, ee’) = (ufw, el e'y) = (uf, ee').

But this is a contradiction. For if we put e=(1—<7)f++rx and e'=(1—2")f
+z'u, the points ¢ and ¢’ are represented as (1-+¢)f— -u and (1 +<') f—z'u.
We have then

(uf, ee)= %:;/-;7 and

-
T

(uf, ee)= i:l;:, /=

Hence (uf, ee') 5~ (uf, ¢ e') unless = = r'. Thus we see uefe’ or ue'fe. It
is easy to see from this that a tangent line of K through » is tangent to
K at a point of K/ A. Our assertion follows from this. The same fact
holds in the case ii). Next we show this.

The straight line a through », which is perpendicular to A at 7, is
carried into itself under ¥. Let p and ¢ be the points at which the affine
line 9 containing a intersects K and P and @ the supporting planes of K
at p and ¢ respectively. Then p¥% =g¢q and g% = p and hence Py = @ and
Q¥ = P. It follows from this that P/ @ is contained in the hyperplane
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A. Let u be the point on the affine line A such that (pq, ru)=—1. Then
we have u =wu. If we replace the hyperplane at infinity by the hyper-
plane through PN\ @ and the point #, ¥ is represented as an affine trans-
formation. It is easy to see that the tangent cone whose vertex is # is
tangent to K at points of A/ K. The arguments are quite parallel to the
above. Thus the theorem is proved.

§ 2. Let R be an n-dimensional G-space (z > 3) and suppose that for
two distinct points there eists a unique geodesic through these points. If

for any three non-collinear points of R there exists a subset E containing
these points which is a 2-dimensional G-space under the metric of R, the
space is Desarguesian®. Such a subset E is said a 2-flat.

If R is an n#-dimensional G-space such as in the above, the space has
one of the following three properties :

I. Ris straight and topoiogically mapped onto the interior of a con-
vex subset K of an n-dimensional affine space A" in such a way that every
geodesic of R is mapped onto the intersection of K with an affine line.

II. The geodesic are great eircles and have same length. The space
is topologically mapped onto an n-dimensional projective space in such a
way that every geodesic of R is mapped onto a projecfive line.

III. R is straight and topologically mapped onto an n-dimensional
affine space A" in such a way that every geodesic of R is mapped onto an
affine line.

The space is said to be of I, II-or IIl-type according as the space
has the above properties, I, 77 or II1. Next we prove the following

(2. 1) Let R be an n-dimensional G-space of Itype (n>3). If for
any geodesic the space R admits a transitive group of translations along
this geodesic, then the space in an n-dimensional H-space.

Proff. Suppose that the space is the interior of a convex set K with
interior points. Under the above assumption there exist two distinct
supporting planes P and . Let p and ¢ be their touch points respectively.
We use the same notations as before and introduce by adding the infinite
plane to A a system of projective coordinates (£°, £, -+, £") as in § 1. Let
I be the intersection of ¥ with the convex subset K and @ be a translation
along [ such that a®=0b where a =p+oq and b = p+a'q (r<o'). Then

3) If a G-space satisfies the following conditions, we say that the space has De-
sarguesian property or the space is Desarguesian.

(1) If the geodesics g(ai, a2), g(b1, b2) and g(c1, c2) have a common point and the
intersections p (= g(a, b1) ~ glas, b)) and p (=g, 1) ~ g(by, c2)) exist, then, if two
of the three intersections exist, they coincide.

(2) If the interseciions g(@1, &) ~ glay, be), g(b, c1) » g(bz, c3) and g(ci, a1) ~ glcs,
a2) exist and are collinear and if two of the three intersections g(ai, a2) ~ glh, ba),
g(b, ba) m glc1, ¢2) and g(ei, c2) N glay, a2) exist, they coincide,
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on | the motion @ is represented as ¢'=ke(k>0). If we put
o(a, b)=1(s, ¢')=—1(s, o),
we have f{(zs, z6') = {(a, ) (z > 0) and further we have
(s, ¢')+1(a!, ') =1(s, o) fora">0o'>a.

If we put r=4'/s, we have from the above

On the other hand, the function f(1, ) is an increasing function of <.
Hence it is easily seen that lim..,f(1, )/(z — 1) exists. If we denote by k,
this limit, we have

limgsy M— —k for any ¢ >0,
g —0 G

i.e., the function f(s, ¢') is differentiable. It follows from this that the

space R is an H-space, since K does not contain a half affine line. The

proposition follows from this.

Thus we see that, if the space R is of I-type and if for any geodesic
R admits a transitive group of translations along this geodesic, then R is
hyperbolic. It is also easy to see that, if the space R is of II-type and
admits a group of translations such as in the above, then R is elliptic.

Now we consider the case where the space is of II/I-type. Then R is
straight and every geodesic is an affine line. A translation ¢ along a
straight line carries an affine line into an affine line and is a one-one
mapping of the affine space A" into itself. Hence @ is represented as an
affine transformation. Thus we see that for two distinct points ¢ and b
the affine center of these points coincides with the mid-point of these
points in the sense of the metric p. It follows from this that spheres are
convex. Since the space satisfies the parallel axiom, the space is
Minkowskian [1]. Thus we have the following

(2. 2) Theorem. Let R be an n-dimensional G-space (n > 3) and
suppose that for any two distinct points there exists a unique geodesic
through these points and any three non-collinear points lie on a 2-flat.
If for any geodesic R admits a transitive group of translations along
this geodesic, the space is Minkowskian, hyperbolic or elliptic.

If R is locally symmetric (or globally symmetric), then for any geo-
desic R admits also a transitive group of translations along this geodesic.
Hence if R is a 2-dimensional Desarguesian space or an n-dimensional
G-space (# > 3) such that any three non-collinear points lie on a 2-flat and
locally symmetric (or globally symmetric), the space is Minkowskian,
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hyperbolic or elliptic.

§3. Let p be a point of R and ¥ the system of all straight lines
through p. Then R is an »-dimensional H-space and admits a tiansitive
group of motions I such that a straight line of ¥ is carried into a straight
line of & under an element of ", the space is hyperbolic [4]. The follow-
ing is also clear.

(3. 1) Theorem. Let R be an n-dimensionsional G-space of I-iype
(n> 3) and I the system of all straight lines through a given point p. If
R admits a transitive group of motions I' such that a straight line of I
is carried into a straight line of ¥ under an element of I, then the space
is hyperbolic.

The theorem holds also for a 2-dimensional Desarguesian space which
corresponds to an m-dimensional G-space of I-type (2 = 3). When the
space R is of II- or IIl-type, even if the space admits such a group
of motions, the space is not necessarily elliptic or Euclidean. If R is
Minkowskian and admits such a group of motions, then the space is
Euclidean. Hence a space of III-type is not necessarily Minkowskian. We
can explain these circumstances by showing some examples. For example
the space constructed in [2] (See p. 61) by H. Busemann permits rotations
about the origin but is not Euclidean. It is also easy to construct a space
of II-type which permits rotations about a given point but is not elliptic.
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