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COMMUTATIVITY OF RINGS WITH POWERS
COMMUTING ON SUBSETS

Hiroaki KOMATSU

Throughout this paper R will represent a ring with an identity ele-
ment 1, and the commutator ideal of R will be denoted by D(R). As usual,
for z, y € R, we shall write [z,y] = zy — yz.

In [5], the author and H. Tominaga proved the following: If, for each
z, y € R, there exist relatively prime positive integers m, n such that
[z™,y™] = 0 = [z", "], then R is commutative. In [1], H. E. Bell, M. Janjié
and E. Psomopoulos established some related commutativity theorems with
the commutativity of powers assumed only for elements of some proper
subset of R.

The purpose of this paper is to generalize the results of [1]. For
example, Theorem 4.3 contains the following: Let A be a proper left ideal
of R. Suppose that, for each z, y, z € R\ A4, there exist relatively prime
positive integers m, n such that [s¥,¢*] = 0 for all s, t € {z,y,2} and
k € {m,n}. Then R is commutative.

1. Preliminaries. A ring R with 1 is called a unitary ring,
a subring of R containing 1 of R is called a unitary subring of R, and
a ring homomorphic image of a unitary subring of R is called a unitary
factorsubring of R.

If R contains the minimum nonzero ideal I, we shall call I the heart
of R. For X C R, we shall denote by (X) the subring of R generated by
X.

The next theorem improves [6, Satz] and plays a central role in this

paper.

Theorem 1.1. Let R be a unitary ring. If R is not commutative,

then there exists a unitary factorsubring of R which is of type (i), (ii), (iii),
(iv), or (v):

M) (GF(p) GF(p)

0 GF'(p))" where p is a prime number.
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0 o(a)
with a nontrivial automorphism o.

(i) My(K) = {(a A ) |a, B e K}, where K 1is a finite field

(iii) A noncommutative division ring.

(iv) A domain generated by 1 and a simple radical subring.

(v) A finite ring S = (1,z,y) such that D(S) is the heart of S and
(z,y) is nilpotent.

Proof. |6, Satz| states that there exists a unitary factorsubring of R
which is of type (i), (ii), (iii), (iv), (v) or (vi), where
(vi) Aring S = (1,z,y) such that D(S) is the heart of S, {z,y)D(S)
= D(S){z,y) = 0 and the set of all nilpotent elements of (z,y) is a
commutative ideal of S.

However, by [4, Proposition 2|, a ring of type (vi) does not exist.

Remark 1.2. Let R be a ring of type (v), i.e., R = (1,z,y) is a
finite ring such that D(R) is the heart of R and T = (z,y) is nilpotent.
We shall show that

(a) the characteristic of R is a power of a prime number, and

(b) TD(R) = D(R)T = 0. '

Since R has the heart, R is directly indecomposable, which implies
(a). Since T is a nilpotent ideal of R, TD(R) is an ideal properly contained
in D(R). Hence we have TD(R) = 0; similarly D(R)T = 0.

2. P-subset. We shall denote by W the set of all words in X, Y,
namely products of factors each of which is X or Y (together with 1). A
subset A of R is called a P-subset of R if, for each z, y € A, there exist
wy, ..., wp € W and positive integers ny, ..., n, with (n1,...,n,) =1
such that either wi(z,y)[z™,y™] =0 (i =1, ..., r) or wi(z,y){(zy)™ —
(yz)"} =0 (i=1,..., ). We assume that an empty set is a P-subset.

Our first result is the following

Theorem 2.1. Let R be a unitary ring. If R is a union of two
P-subsets, then R is commutative.

In preparation for the proof, we need some lemmas.
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_ (GF(p) GF(p)
Lemma 2.2. Let R = 0 GF(p)

ber. If a # B € GF(p), then neither

(o 8) (@ 6)) = {6 8) 6 )}

Proof. This is obvious.

), where p is a prime num-

are P-subset.

Lemma 2.3. Let R = M,(K), where K is a finite field with a

. : _ (> B = (¢ 7
nontrivial eutomorphism o. Put z = (0 (@) and y = (0 o(a))’

where a, B, v € K such that o(a) # o and B # . Then {z,y} is not a
P-subset.

Proof. We can calculate

07 = (o) - o) S22 (0 )

ola) —a
(o(a®) — az")—-Ll(w—l(a(:(;;;_g_v (3 (1)) if 0(a?) # o?

(zy)" - (yz)" = 0 1
na?=D(g(a) — a)(8 - 7) (0 0) if 0(a?) = a?.
Since z and y are invertible, we get the assertion.

As usual, an element z in R is said to be regular if z is not a divisor
of zero.

Lemma 2.4. Let z and y be regular elements in R. If {z,y} is a
P-subset of R, then there exists a positive integer n such that [z",y] = 0.

Proof. There exist positive integers ny, ..., n, with (ny,... ,n;) =1
such that either (1) [z™,y™] =0 (i =1, ..., r) or (2) (zy)™ = (yz)™
( =1, ..., r). There exist nonnegative integers m;, ..., m, such that
k= mmn +-+msns, | = mgpngy1+-+++myn,, and 1 = k - [
(1<s<r).
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Case (1): Put n = ny--+n,. Then we have [z",y"{] = 0 for all i. Therefore,
we have [z, y]y’ = [z, y'*] = [z",y*] = 0. Hence [z, y] = 0.

Case (2): Since [z, (zy)™] = z((zy)™ — (yz)™) = 0 for all i, we have
zlz, yl(zy)' = [z, z)(zy) = [z, (z9)'] = [z, (zy)*] = 0. Hence [z,y] = 0.

Lemma 2.5. Let R be a unitary ring and T a nilpotent subring of
R such that T[T\T) =0 = [T,T|T. Letz,ye€T. If{l+2z,14+y} isa
P-subset of R, then [z,y] = 0.

Proof. Noting that both 1 + z and 1 + y are invertible, there
exist positive integers ny, ..., n, with (n1,...,n,) = 1 such that either
[(1+2)™, (1+y)™] =0 (G =1,...,7) or ((1+z)(1+y))™ = ((1+y)(1+z))™
(i=1,...,7). Since T[T,T) = 0 = [T, T)T, we see that [(1 4+ z)™,(1+
y)™] = nilz,y] and (1 +2)(1+ )" — (1 +9)(1 +2))™ = nifz,y).
Therefore, we can get the assertion.

Proof of Theorem 2.1. The assumption of Theorem 2.1 is inherited
by all unitary factorsubrings. In view of Theorem 1.1, it suffices to show
that R is not of type (i), (ii), (iii), (iv), or (v). We assume that R = AUB,
where A and B are P-subsets of R.

. , 10y (1 1) (11
Suppose that R is of type (i). Put F = {(0 0), (0 O)’ (0 1)}

Since R = AU B, one of AN F and BN F contains at least two elements.
But, this contradicts Lemma 2.2.
Suppose that R is of type (ii). We choose a € K such that o(e) # «, and

put F = {(‘g g(oa)), (3 g(la)), (g 0(‘;)) } Then one of ANF and

B N F contains at least two elements, which contradicts Lemma 2.3.
Suppose that R is of type (iii) or (iv). Let z and y be arbitrary elements
in R. If both z and y belong to A or B, then, by Lemma 2.4, there exists
a positive integer n such that [z",y] = 0. Now, assume that z € A and
y€B. Ifz+y € A, then, by Lemma 2.4, there exists a positive integer n
such that [z”,z + y] = 0, and so [z",y] = 0. Similarly, if z + y € B, then
we have [y", z] = 0 with some positive integer n. Hence, R is commutative
by [3, Theorem], a contradiction.

Finally, suppose that R is of type (v). Then R = (1,z,y), D(R) is the
heart of R, and T = (z,y) is nilpotent. By Remark 1.2 (b), we have
TDR)=0=D(R)T. Put F={l+z,14+y,1+z+y} Then one of
ANF and BN F contains at least two elements, which contradicts Lemma
2.5.
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3. P(h,r)-subset. A subset A of R is called a P*-subset of R if, for

each z, y € A, there exist wy, ..., w, € W and positive integers nq, ...,
n, with (n1,...,n,) = 1 such that wi(z,y)((zy)™ — (yz)%) =0 (i = 1,
ceey T)-

Let h and r be positive integers. A subset A of R is called a P(h,r)-
subset of R if, for each F' C A consisting at most h elements, there exists
a set NV of r pairwise relatively prime positive integers and -w:(;;] EW
(z,y € F,n € N) such that either wg,)(:c,y)[x",y"] =0(z,y€ F,neN)
or wly)(@,9)((ey)" - (y2)") = 0 (z,y € F, n € N).

For a positive integer n, we consider the following condition:

Q'(n) For each z, y € R, [z,y| has the additive order which is relatively
prime to n.

In this section, we shall prove the following theorems.

Theorem 3.1. Let R be a unitary ring satisfying Q'(2). Suppose
that A is an additive subgroup of R excluding 1. If R\A is a P*-subset of
R, then R is commutative.

Theorem 3.2. Let R be a unitary ring satisfying Q'(2). Suppose
that A is an additive subgroup of R ezcluding 1. If R\ A is a P(2,3)-subset
of R, then R is commutative.

Theorem 3.3. Let R be a unitary ring satisfying Q'(6). Suppose
that A is an additive subgroup of R ezcluding 1. If R\ A is a P(3,2)-subset
of R, then R is commutative.

To prove these, we need some lemmas.
The next lemma is easy and well known.

Lemma 3.4. Let R be a ring and A a proper additive subgroup of
R. If R\ A is commutative, then R is commutative.

Lemma 3.5. Let ¢ be a ring homomorphism from a unitary subring
R’ of R onto a noncommutative ring S. Let A be an additive subgroup of R
ezcluding 1. If R\A is a P-subset of R then ¢(ANR') is a proper additive
subgroup of S.

Produced by The Berkeley Electronic Press, 1997
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Proof. Put B=@(ANR'). If B=0, then S is a union of two P-
subsets ¢(R'\A) and {0}. But, this is impossible by Theorem 2.1. Hence
B # 0. On the other hand, 1+ B is a P-subset of S, because 1+ (ANR') C
R\ A. Therefore, if B = S then S is a P-subset of S, which is impossible
again by Theorem 2.1. Hence B # S.

GF(p) GF(p)

0  GF(p)
greater than 2. If A is a proper additive subgroup of R, then R\ A is not a
P-subset of R.

Lemma 3.6. LetR = ( ), where p is a prime number

Proof. Suppose that R\A is a P-subset of R.

Further, suppose that ((1) g) g A for some o« € GF(p). Then, by
Lemma 2.2, both ((1] a+02‘1) and ((1) a-[i)-l) belong to A. Hence,
we have

)1 ") 75 )es
a contradiction. Therefore, all é g) belong to A.

Since A is a proper additive subgroup of R, A coincides with

(GF(‘)(;D) Glz)fp)).

. - 1 0 1 1
On the other hand, it is easy to see that { (0 _1) , (0 _1) } ( - R\A)

is not a P-subset of R, a contradiction.

Lemma 3.7. Let R = My (K), where K is a finite field with a
nontrivial automorphism o. If A is a proper additive subgroup of R, then
R\ A is not a P-subset of R.

Proof. Suppose that R\ A is a P-subset of R.

o 0 ) ¢ A for some a € K. If o{a) = a, then,

Further, suppose that (0 o(a)

. n 0 atn 0
for n € K with o(n) # 7, one of (0 O'(TI)) and < 0 olat 7))) does

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 39/iss1/5
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not belong to A. Hence, we may assume that o{a) # o. By Lemma 2.3, we

a 0
see that (0 )) € A for all 0 # 8 € K. It follows that (O a(a)) =

B
o
a a+l L
([) o(a) ) ( ) - (0 O’(O)) € A, a contradiction. Hence, we

can write
a B
A:{(O a(a))\aeK,ﬁeB},

where B is a proper additive subgroup of K.
We can choose two different elements v and § in K\ B. Then, by Lemm 2.3,

a v a 6 .
a subset {(0 g(a)), (0 a(a))} of R\ A is not a P-subset, a contra-
diction.

Lemma 3.8. Let z and y be regular elements in R.
(a) If {z,y} is a P*-subset of R, then [z,y] = 0.
b) If{z,y} is a P(2,3)-subset of R, then [z,y] = 0.

Proof.

(a) This was proved in Lemma 2.4.

(b) There exist pairwise relatively prime positive integers {, m, n such
that either (i) [z',4] = [2™,y™] = [z",y"] = 0 or (i) (zy)' = (yz)},
(zy)™ = (yz)™, (zy)™ = (yz)". In case of (ii), {z,y} is a P*-subset, and
so [z,y] = 0 by (a). We consider the case (i). By the proof of Lemma 2.4,
we see that [z!™, y] = [z™",y] = [z™,y] = 0. Since (Im,mn,nl) = 1, the
same argument of the proof of Lemma 2.4 shows that [z,y] = 0.

Corollary 3.9. Let R be a domain and A o proper additive sub-
group of R. If R\A is a P*-subset or a P(2,3)-subset of R, then R is

commutative.

Proof. This is obvious by Lemmas 3.4 and 3.8.

Lemma 3.10. Let z, y be tnvertible elements of R. If {z, y, zy} is
a P(3,2)-subset of R then [z,y] = 0.

Proof. This is a combination of [2, Lemma 1] and Lemma 3.8 (a).
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Lemma 3.11. Let R be a noncommutative division 7ing and A a
proper additive subgroup of R. If R\ A is a P(3,2)-subset of R, then A is
not a subring of R and the additive group R/A has an element of order 2.

Proof. By Lemma 3.4, there exist z, y € R\ A such that [z,y] # 0.
By Lemma 3.10, we have

zy € A.

Since (1+z)y =y+zy &€ A and [1 +z,y] # 0, we have 1+ € A again by
Lemma 3.10, and similarly 1 + y € A. Then, we see that (1 +z)(1 +y) =
(1+z)+zy+y & A. Thus A is not a subring of R. '
Sincezx g Aand 1+ 2z € A, wehavel ¢ A, and so 2+y € A. Now suppose
that 2z ¢ A. Then, we see that z(2+ y) = 2z + zy € A. By Lemma 3.10,
this induces a contradiction [z,2 + y] = 0. Thus 2z € A.

Lemma 3.12. Let R be a ring of type (iv) which has characteristic
p greater than 3. If A is a proper additive subgroup of R, then R\ A is not
a P(3,2)-subset of R.

Proof. R = GF(p) ®T as additive group, where T is a simple radical
ring. Suppose that R\A is a P(3,2)-subset of R. If 1 + T C A, then we
havel € Aand T' C A, and so 4 = R, a contradiction. Hence, there exists
t € T such that

1+t ¢ A

Now, suppose that (14+7")\ 4 is commutative. Let z, y be arbitrary elements
inT. ,

Casel. 1+z¢& A, 1+ y¢& A: Our supposition implies that [z,y] = 0.
Case 2. 1+2 ¢ A, 1+y € A: Since 1+t € A, we have [z,t] = 0 by case 1.
Further,2+y+t = (1+y) + (1 +t) € A implies that 1 +271(y +¢) € A.
Therefore, we have [z,y + ¢] = 0 by case 1. Hence [z,y] = 0.

Case 3. 1+z€ A, 14+ y & A: Similar to case 2.

Cased. 1+ € A, 1+y € A: Since 1+t ¢ A, we have [t,y] = 0 by case 2.
By the same way of the proof of case 2, we can see that 1+27 (z +t) ¢ 4
and [z + t,y] = 0. Hence [z,y] = 0. Thus we have shown that T is
commutative, a contradiction.

Therefore, there exist z, y € T such that

l+z¢ A, 1+y¢€ A, and [1+2,1+y] #0.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 39/iss1/5
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By Lemma 3.10, we have (1 + z)(1 +y) € A. Since 2+ z)(1 +y) =
1+y)+(Ql+z)(1+y) ¢ Aand 2+2,14+y] #0, wehave 2+ z € 4
again by Lemma 3.10; similarly 2+y € A. Since 1+z ¢ A, we have 1 ¢ A,
and so 3+ z & A. On the other hand, since R has characteristic p > 3,
1+ y & A implies that 2(1 + y) & A. Therefore, we have (3+ z)(1 +y) =
2(1+y)+(1+z)(1+y) € A. Hence, by Lemma 3.10, we have [3+z,1+y] = 0,
a contradiction.

Lemma 3.13. Let R be a ring of type (v), and A a proper additive
subgroup of R. If R\A is a P-subset of R, then the characteristic of R is
a power of 2 and there ezists a € A such that a®> & A.

Proof. R is a finite ring (1,z,y) such that T = (z,y) is nilpotent

and TD(R) = 0 = D(R)T. For X C T, we shall denote by C(X) the
centralizer of X in T.
Now, suppose that 1 € A. Then T' € A. By Lemma 3.4, there exists
t € T\(AU C(T)). Since 1+t & A, we have 1 + (T\C(t)) C A by
Lemma 2.5. This together with 1 € A implies that T\C(¢) C A, and so
T C A, which is a contradiction. Thus we have shown that

1¢ A.

Let u and v be elements in T such that [u,v] # 0. If 1 + (T\C(T)) C A4,
then we have 1 + v, 1 + v, 1 + u + v € A, which implies a contradiction
1=(1+u)+(1+v)—(1+u+v) € A Hence, there exists z € T\C(T)
such that 1 + z € A. By Lemma 2.5, we have

1+ (T\C(z)) C A.

Let y € T\C(z). Then we have 1 +y € A. Since 1 ¢ A, we see that
142y ¢ A. Hence, we have

2y € C(z)

by Lemma 2.5, i.e., 2[z,y] = 0. Noting Remark 1.2 (a), this shows that the
characteristic of R is a power of 2.
We see that [y, z] = y[y,z] + [y, 7]z = 0, i.e., y*> € C(z). Hence

2y +y? € C(z).

Since y+ C(z) C T\C(z), we have 1+ (y+ C(z)) C A. This together with
1+ y € A implies that C(z) C A. Accordingly, 2y + y?> € A. Hence, we
have (1 +4)2 =1+ (2y +y?) ¢ A.
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Proof of Theorem 8.1. In view of Theorem 1.1 and Lemma 3.5, it
suffices to show that if a unitary ring R satisfying @Q'(2) contains a proper
additive subgroup A such that R\ A is a P*-subset of R then R cannot be
of type (i), (ii), (iii), (iv), or (v). This was proved by Lemmas 3.6, 3.7, and
3.13 and Corollary 3.9.

Proof of Theorem 3.2. In view of Theorem 1.1 and Lemma 3.5, it
suffices to show that if a unitary ring R satisfying Q'(2) contains a proper
additive subgroup A such that R\ A is a P(2,3)-subset of R then R cannot
be of type (i), (ii), (iii), (iv), or (v). This was proved by Lemmas 3.6, 3.7,
and 3.13 and Corollary 3.9.

Proof of Theorem 3.3. In view of Theorem 1.1 and Lemma 3.5, it
suffices to show that if a unitary ring R satisfying @'(6) contains a proper
additive subgroup A such that R\ A is a P(3,2)-subset of R then R cannot
be of type (i), (ii), (iii), (iv), or (v). This was proved by Lemmas 3.6, 3.7,
3.11, 3.12, and 3.13.

4. Q-subset. A subset A of R is called a Q*-subset of R if, for
each z, y € A, there exists a nonnegative integer ¥ and positive integers
N1, ..., ne with (n1,... ,n,) = 1 such that :rk((xy)"*' - (yz)"") =0(:=1,
ceey T).

Let h and r be positive integers. A subset A of R is called a Q(h,r)-
subset of R if, for each F' C A consisting at most h elements, there exists
a nonnegative integer & and a set N of r pairwise relatively prime positive
integers such that either z*[z",y"] = 0 (z, y € F, n € N) or z*((zy)" -
(yz)*) =0 (z,y € F, n € N).

We shall prove the following theorems.

Theorem 4.1. Let R be a unitary ring and A an additive subgroup
of R excluding 1. Suppose that a® € A for alla € A. If R\A is a Q*-subset
of R, then R is commutative.

Theorem 4.2. Let R be a unitary ring and A an additive subgroup
of R ezcluding 1. Suppose that a®> € A for alla € A. If R\A is a Q(2,3)-
subset of R, then R is commutative.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 39/iss1/5
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Theorem 4.3. Let R be a unitary ring and A a proper left ideal of
R. If R\A is a Q(3,2)-subset of R, then R is commutative.

We need the following lemma. A subset A of R is called a Q-subset
of R if, for each z, y € A, there exists a nonnegative integer k& and positive
integers ny, ..., n, with (ny,...,n,) = 1 such that either z¥[z" y™] =0
(i=1,...,7) or zF((zy)™ — (yz)™) =0 (i=1,..., 7).

GF(p) GF(p)

0 GF(p)
ber. If A is a proper additive subgroup of R and a®? € A for all a € A, then
R\ A is not a Q-subset of R.

Lemma 4.4. Let R = ( ), where p is a prime num-

Proof. Suppose that R\ A is a Q-subset of R.

N 10 (10 11
We claim that (O 0) € A. In fact, if (0 0) & A, then both (0 0)

and (1 1) belong to A by Lemma 2.2. Hence

0 1
A={(‘(’]‘ g) Ia, 5eGF(p)}.

1 2 1 1)°
Accordingly, we have (0 1) = (0 1) € A, a contradiction.

. 11 11 11
Next, we claim that (O 0) cA If (0 0) ¢Z A, then we have (0 1) €

a 8

A by Lemma 2.2. Hence A = {(0 3

) | a, Be GF(p)}, which induces
a contradiction.

We have thus shown that A = (GF(‘D) GF(p)

0 0 ) However, it is easy too

see that { (é }) , (g (1)) } ( - R\A) is not a @-subset, a contradiction.

Proof of Theorem 4.1. In view of Theorem 1.1 and Lemma 3.5, it
suffices to show that if a unitary ring R contains a proper additive subgroup
A suchthat a® € A foralla € Aand R\ A is a Q*-subset of R then R cannot
be of type (i), (ii), (iii), (iv), or (v). This was proved by Lemmas 3.7, 3.13,
and 4.4 and Corollary 3.9.
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Proof of Theorem 4.2. In view of Theorem 1.1 and Lemma 3.5, it
suffices to show that if a unitary ring R contains a proper additive subgroup
A such that a? € A for all a € A and R\A is a Q(2, 3)-subset of R then R
cannot be of type (i), (ii), (iii), (iv), or (v). This was proved by Lemmas 3.7,
3.12, and 4.4 and Corollary 3.9.

Proof of Theorem 4.3. In view of Theorem 1.1 and Lemma 3.5, it
suffices to show that if a unitary ring R contains a proper left ideal A such
that R\A is a Q(3,2)-subset of R then R cannot be of type (i), (ii), (iii),
(iv), or (v). By Lemmas 3.7, 3.11, 3.13, and 4.4, R cannot be of type (i),
(i), (iii), or (v). Suppose that R is of type (iv). Then, R is generated by
1 and a simple radical subring 7. Since 1 + T is a subgroup of the unit
group of R and A is a proper left ideal of R, we have 1 + 7 C R\A. By
Lemma 3.10, 1 + T is commutative, which is a contradiction.
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