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ON RINGS SATISFYING THE
IDENTITY X**=X*

Y. HIRANO, H. KOMATSU, H. TOMINAGA and A. YAQUB

Throughout the present paper, R will represent a ring, E the set of
idempotents in R, and N the set of nilpotents in R. Our present objective
is to give the conditions for R to satisfy the identity x** = x* and to reprove
all the results obtained in the previous paper [5], without the extra hypothesis
that R is left s-unital. ,

First, careful scrutiny of the proof of [1, Lemma 1] shows the next
" Sup-
pose that R satisfies the identity f(x) = 0, where f(i) is a co-monic polyno-
mial in tZ[t] with degree < m. If qR = 0 then R satisfies the identily

x* % = x* and therefore x**' = x*".

Lemma 1. Let m and q be positive integers, and let k = q™

Next, we shall prove

Lemma 2. Suppose that R satisfies the identity f(x) = 0, where f(1)
is a primitive polynomial in t Z[t]. Then there exist positive integers q and
h such that (qr )" = 0 for all r € R.

Proof. Consider the direct product S = R*, which satisfies the same
identity f(x) = 0. In case S coincides with its prime radical P(S), R is
a nil ring of bounded index. In what follows, we assume that S contains a
proper prime ideal P, and choose an integer n, such that ¢ = |f(n,)|> 0.
By [2, Theorem 7 (6)], the classical quotient ring of S/P is an Artinian
simple ring satisfying the same identity f(x) = 0. Hence ¢S C P, which
proves that ¢S C P(S). Thus we can find a positive integer h such that
(gr)* = 0 for all r€R.

Corollary 1. Suppose that R satisfies the identity f(x) = 0, where
f(#) is a co-monic polynomial in tZ[t). Then R satisfies the identity x** =
x* for some positive integer k.

Proof. In view of Lemma 2, there exist positive integers ¢ and A such
that (gr)* = 0 for all r€R. Let T be the subring of R generated by
|r*|r€R}. Then T satisfies the identity f(x) = 0 and ¢*T = 0. Hence,
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by Lemma 1, there exists a positive integer k such that »*** = r** for all
rE€R.

Now, we can prove our first theorem.

Theorem 1. The following conditions are equivalent :

1) There exists a primitive polynomial f(t) in tZ[t] such that R
satisfies the identity f(x) = 0.

2) There exists a monic polynomial f(t) in tZ[t] such that R satisfies
the identity f(x) = 0.

3) There exists a co-monic polynomial f(t) in tZ[t] such that R satis-
fies the identity f(x) = 0.

4) There exists a posilive integer k such that R satisfies the identity
xt* =k,

5) qE =0 for some positive integer q, and there exists a positive
integer m with the following property: For every r €R, there exisis a co-
monic polynomial g(t) in t Z[t] with deg g(t) < m such that g(r) = 0.

6) The (Jacobson) radical J of R is a nil ideal of bounded index, and
there exists a positive integer k such that every primitive homomorphic image
of R contains at most k elements.

In case R contains 1, the next is equivalent to each of the above equiva-
lent conditions :

7) The addition of R is equationally definable in terms of the multipli-

cation and the successor operation.

Proof. Obviously, 4) = 2) = 1), and 4) = 3) = 1).

1) = 4). Consider the direct product S = R*, which satisfies the same
identity f(x) = 0. In case S coincides with its prime radical P(S ), there
is nothing to prove. Thus, henceforth, we may assume that S contains a
proper prime ideal P. Choose an integer n, such that ¢ = |f(n,)|> 0. By
[2, Theorem 7 (6)]. the classical quotient ring of S/P is an Artinian simple
ring satisfying the same identity f(x) = 0. Hence the characteristic of S/P
is a factor of q. Noting that f(¢) is primitive, we can easily see that there
exists a co-monic polynomial g(¢) in tZ[t] with deg g(t) < m = deg f(t)
such that S/P satisfies the identity g(x) = 0. Then, by Lemma 1, there
exists a positive integer ! = /(q, m) such that S/P satisfies the identity
x* = x'. This proves that S/P(S) satisfies the identity x*' = x‘. Then
there exists a positive integer h such that R satisfies the identity (x'—x?*)"
= 0. Now, by Corollary 1, there exists a positive integer & such that R
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satisfies the identity x** = x*.
3) =5). Putq = |f(2)|. and let g(t) = f(¢) for all r €R.

5) = 3). Let f(t) = I,,Icyl (1—1*")™ where p ranges over all the

prime factors of q. We shall show that R satisfies the identity f(x) = 0.
Now, let 7 be an arbitrary element of R, and let {r) be a subdirect sum of
subdirectly irreducible rings R,. By 5), there exists a co-monic polynomial
g(t) in tZ[t] with deg g(t) < m such that g(r) = 0. Let N, be the set of
nilpotents in R,. Then it is easy to see that a™ = 0 for all a €N,. and so
N, satisfies the identity f(x) = 0. Now. assume that R, is not nil. Then,
as is easily seen, R, is a local ring whose radical is N, and R,/N, = GF(p%)
with some prime factor p of ¢ and @ < m. Hence f(r) = 0.

4) =6). This is an easy consequence of Kaplansky's theorem (see,
e.g.. [2, Theorem1]).

6) =>3). As is easily seen, every primitive homomorphic image of R
satisfies the identity x*”*'= x*' and so R/J satisfies the same. Hence R
satisfies the identity (x*'—x**)"* = 0 for some positive integer A.

The latter assertion is clear by [6, Theorem 1].

Following [7]. a ring R is called a &-ring if R contains a finite subset
S with the following property: For every x €R, there exists a p(t) € Z[t]
such that x—x*p(x) €S. As an application of Theorem 1, we shall prove
the following

Theorem 2. Let R be a 6-ring. If there exists a positive integer q
such that | K| < q for every field K which is a homomorphic image of R, then

there exists a positive integer k such that R satisfies the identity x** = x*.

In preparation for proving Theorem 2, we state the next

Lemma 3. Suppose that R contains a finite subset S with the following
property: For every x €R. there exists a p(t) € Z[t] such that x—x"p(x)
€S. Let s = |S|. Then there holds the following :

(1) R is a periodic ring and N is finite.

(2) There is a positive integer n such that for every x € R there exists
an f(t) € Z[t] with x™ = x™'f(x), and then |N| < (s!)™ s,

Proof. Let x be an arbitrary element of R. For each positive integer
i < s+1, there exists g,t) € Z[t] such that x*—x*'g,(x’) €S. Then we
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can easily see that thére exists a positive integer i’ and g(¢) € Z[t] such
that x* = x**'g(x). Hence R is periodic by Chacron’s theorem (see, e.g.,
[3, Theorem 1]). Now, let a€N; a® = 0. Choose a positive integer m
such that 2™ = k. By hypothesis, there exist p,(¢),---,pn(t) in Z[t] such
that @, = a—a’py(a) and e, = «* 'p,_.(a)—a*p,(a) are in SNN (j =
2,---,m). Thena = a,+a,+---+an. Again by hypothesis, for each positive
integer i < s+1, there exists q,(t) € Z[t] such that ia—a’qa) €S. Then
we can easily see that (s!)a = a’q(a) with some ¢(¢) € Z[¢]. This implies
that (s!)* 'a = a®q(a))*' = 0, and hence the additive order of every ele-
ment in N is finite. Combining this with the fact that every element is a
sum of elements in S N N, we see that NV is finite. Now, we can choose a
positive integer n such that a” = 0 for all a€ N. Since x—x’g(x) €N, we
get 0 = (x—x’g(x))" = x"—x™"f(x) with some f(t) € Z[t].

Proof of Theorem 2. 1Let S, s and n be as in Lemma 3. If R’ is an
arbitrary homomorphic image of R and N’ is the set of nilpotents in R’, then
IN'| < (s!)™ " by Lemma 3. This together with the structure theorem of
primitive rings shows that every primitive homomorphic image of R is either
a periodic field or the full matrix ring Ma(K), where 1 < m < n and K is
a field with |K| < (s!)™ ", Hence, by Theorem1 6). R satisfies the iden-
tity x** = x* for some positive integer k.

By the proof of Theorem 2, we can easily see the following

Corollary 2. Let R be a 6-ring. If R=(EUN) and ¢E =0 for
some positive integer q, then there exists a positive inieger k such that R
satisfies the identity x** = x*.

Next, by making use of Theorem 1. we shall improve [5, Theorems 1

and 2].

Theorem 3. Suppose that R satisfies the identity f(x) =0, where f(¢)
is a primitive polynomial in t Z[t].

(1) If either R is normal or N* = |x€R|x* = 0| is commulative,
then N is a nil ideal and R/N satisfies the identity x = x**' for some k > 1.

(2) If N is commutative then N is a commutative nil ideal and R/N
satisfies the identity x = x**' for some k > 1. If, furthermore, [[a,x].x]
= 0 for all a€N and x €R, then R is commutative.

Proof. By Theorem 1, there exists a positive integer k such that R
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satisfies the identity x** = x*,

(1) If R is normal, then R satisfies the identity [x*,y] = 0, and
therefore [4, Proposition 2] shows that N is a nil ideal of R. On the other
hand, if N* is commutative, then [5. Lemma 2 (2)] shows that N is a nil
ideal of R. Needless to say, R/N satisfies the identity x = x™', in either
case.

(2) The former assertion is clear by (1), and the latter is immediate
by [8, Theorem 1]. (If ¢« €N and x €R, then [a.x]* = [a,[a, x]x] = 0.
Hence. in [5, Theorem 2 (3)], the hypothesis (iv) implies (iii).)

Given x €R, we define inductively x*' = x, x* = x* " ox, where xo y
= x+y+xy. In[5], we introduced the following conditions :

(i)n {x+xi4--+x"™ =0 for all x €R.

(*) For any x. yER, (x+xy) o(y+yx) = 0 if and only if x = ».

In what follows, we shall reprove [5. Theorems 3, 4 and 5] without the
hypothesis that R is a left s-unital ring.

Lemma 4. Suppose that R satisfies (i),m. Then either R is a nil ring
of bounded index or there exists a positive integer q such that ¢R = 0.

Proof. There exist positive integers ¢’ and A such that (¢'x)* = 0 for
allx€R, by Lemma 2. If A > 1 then{(¢g'x)*"'|* = 0. and so (i), implies
that 2™(¢'x)"' = 0: hence (2™¢'x)""' = 0. Repeating the same argument,
we obtain eventually 2™~ Yq'x = 0 for all x €R.

Now, we can improve [5, Theorems 3 and 4] as follows :

Theorem 4. Suppose that R satisfies (1),m. Then N is a nil ideal and
R =R, ® R,, where R, is either 0 or a ring of odd characteristic satisfying
the identity x = x**' for some k > 1, R, D N, and R,/N is a Boolean ring.
If, furthermore, R is normal and N is commutative then R is commutative.

Proof. Take Lemma 4 into account and follow the proof of [5. Theo-
rems 3 and 4].

Finally. we shall reprove [5, Theorem 5] without assuming that R is
left s-unital.

Lemma 5. Let f(1) = kit +kot*+-+knl™ be a polynomial in tZ[t]
with (k,, k) = 1. If N satisfies the identily f(x) = 0, then N satisfies the
identities x* = 0 = kx+(k,—k,)x’.
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Proof. Let a be an arbitrary element of N. To see that a* = 0, it
suffices to show that if " = 0 with n = 4 then ™' = 0. Obviously, 0 =
f@™?) =kwa™?and 0 = «" *(kia + ka®*+ -- + kpa™) = k,a™"'. Since
(ki, k,) = 1, we obtain ™' =0. Hence ¢* =0 = k,a+k.a’, and therefore
kia+{ks—k)a® = ka+k,a?—(ka+k,a?)a = 0.

Combining Lemma 5 with Theorem 1., we readily obtain

Corollary 3. Let f(t) = k\t+kt*+---+knt™ be a polynomial in t Z[t]
with (ky, k,) = 1. If R salisfies the identity f(x) = 0, then R satisfies the
identity (x—x*)* = 0 for some k > 1.

Lemma 6. Suppose that R satisfies (i),. Then N is a nil ideal of R
and R/N is a Boolean ring.

Proof. Since 6x*+2x* = (x+x?)?4+(—x+{(—x)*)"® = 0 and 4x +42°
= (x+x)"—(—x+(—x)5)% =0, we get 2x°—2x* = (6x*+2x*) —(4x+
4x*)x = 0, and therefore 8x® = (6x®+2x*) +(2x*—2x*) = 0. Hence 23x =
8x—2(4x+4x*) = —8x® = 0, and therefore N is a nil ideal and R/N is a
Boolean ring, by [5. Lemma 3].

Lemma 7. If R satisfies (*), then R is normal.

Proof. The assertion has been proved in the proof of [5. Theorem 5].

We are now ready to prove the following

Theorem 5. A ring R satisfies the condition (*) if and only if 1) R is
commutative and R/N is a Boolean ring, and 2) " = 0 for all a €N.

Proof. Since the “if” part has been proved in the proof of [5, Theorem
5], it remains only to prove the “only if” part. Obviously, (*) implies (i),,
and so N is a nil ideal of R and R/N is a Boolean ring, by Lemma 6. Noting
that R satisfies the identity 2x+3x*+2x*+x* = (x+x*)? = 0, we can con-
clude that a? = 0 for all a€N (Lemma 5). Therefore, for any a, b €N,
we get aob = ao(aob)®ob = boa, which shows that N is commutative.
Furthermore, R is normal by Lemma 7, and so R is commutative.
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