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Throughout the present paper, A will represent an (Artinian) simple
ring (with 1), B a unital simple subring of A such that the centralizer
V=V.B) of B in A is simple as well, and & the group of B-ring
automorphisms in A4, and we use the following notations : H=V,(V),
C=V,(A), Z=V4B) and C,=V (V)=V NH. Furthermore, we set RN*=
Hom(z Az As), R=@V, and &=V .V, which is isomorphic to V°Q.V,
V° the opposite of V. Finally, as to notations and terminologies used
without mention, we follow [2].

Recently, in his paper [1], S. Elliger obtained the following :

Theorem 1. If A is finite Galois over B, then the following con-
ditions are equivalent :

(1) 3As is completely reducible.

(2) R is semisimple.

(3) Co/C is separable and >,cewusc. =1 for some cEC,.

Theorem 2. If A is finite Galois over B, then the following con-
ditions are equivalent .
1) Az is local.
(2) R isalocal ring.
(3) i) V=Z and is purely inseparable over C;
ii) either A/B is inner Galois or &(H/B) is a p-group and
char A=p.

If A/B is finite outer Galois then there holds Hom (3As, zBs)=Cx-
S.es o (see, for instance [2; Prop. 9.6]), whence we can easily see
that ,By<<PpA:z (B is a direct summand of A as B-B-module) if and
only if > ,egco=1 for some ¢=C. The last remark enables us to restate
Theorem 1 as follows :

Theorem 1. If A is finite Galois over B, then the following con-
129

Produced by The Berkeley Electronic Press, 1971



Mathematical Journal of Okayama University, Vol. 15[1971], Iss. 2, Art. 5

130 ArIF KAYA and Hisao TOMINAGA

ditions are.equivalent .

(1) Ay is completely reducible.

(2) wAy and sHp are completely reducible.

(3) C,/C is separable and »B<DypH,.

Now, let M be a module with an operator domain £. If the ring of
£-endomorphisms of M is a local ring (completely primary ring), M is
said to be completely indecomposable. In fact, a completely indecompo-
sable module is indecomposable, and an indecomposable module satisfying
both chain conditions is completely indecomposable. In case A/B is finite
Galois, it is known that A, is indecomposable if and only if it is local
([1; Th.11). Accordingly, Theorem 2 may be restated as follows:

Theorem 2. If A is finite Galois over B, then the following condi-
tions are equivalent :

Q) LAz is indecomposable.

(2) Ay and pH, are indecomposable.

3y 1) V=2Z and is purely inseperable over C;

ii) either A/B is inner Galois or O(H/B) is a p-group and
char A=p.

In this paper, the main theme of our discussion will concern the
bimodule structure of Galois extensions of simple rings. One of the pur-
poses of this paper is to extend Theorems 1’ and 2’ to a somewhat wider
class of Galois extensions.

The next will be found in [2; Ths. 21.1 and 19.3], and will be used
occasionally in our subsequent study.

Lemma 1. Let A be Galois and left algebraic over B, and [V :C]
oo, Then, AJB is ®-locally Galois and A[A' is Galois for every
regular intermediate ring A' of AlB.

In case A/B is left locally finite, A/B is k-Galois if and only if A/B
is Galois and A4 is B-V-A-irreducible ([2; Cor. 17.12]). Combining this
with [2; Lemma 5.8], we readily obtain the following :

Lemma 2. Let A be h-Galois and left locally finite over B. If T
is a finitely generated B-B-submodule of A (which is necessarily left
B-free) then T|R contains ¢ free Viy-basis that forms at the 'same time
a free Apbasis of T|®Ax [TIR:V,]=[T|®A,: A, ]=[T: B]l.<e
and T|R=Hom(,T;, ,A,), which implies that R is dense in RN* (with
respect to finite topology).
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First, we shall prove that Theorem 1’ is still valid for a left algebraic
Galois extension A/B with [V :C]<Ceo,

Theorem 3. Let A be Galois and left algebraic over B. If [V :C]
<Coo, then the following conditions are equivalent :

1) ,As is completely reducible.

(2) #Ay and zHp are completely reducible.

(3) C,/C is separable and pBy<PpHp (07 pBp<<PzAz).

Proof. Since [V :Cl<<co, & is semisimple if and only if C,/C is
separable. Moreover, by Th. 1, ;A is completely reducible if and only
if & is semisimple.

(2)<=>(3): By the above remark, it remains only to prove that ,Hj
is completely reducible if (and only if) ,Bz;<<@zH, If F is an arbitrary
finite subset of H then we can find an intermediate ring H' of H/B[F]
which is finite (outer) Galois over B (Lemma 1). Since B,<(P;H, yields
sBr<PsH's, zH's is completely reducible by Th. 1/, which implies the
complete reducibility of zH;.

(1)=>(3): Evidently, zHz is completely reducible. Suppose & has
non-zero (nilpotent) radical . Noting that R is dense in R* (Lemma 2),
we can easily see that R*M is nilpotent., But, this contradicts the fact
that R* is regular in von Neumann’s sense. Hence, & is semisimple.

(3)=(1): Asis well-known, there exists an element # with C,=C[#].
Given a finite subset F of A, Lemma 1 enables us to find A'e
R, ,/B[F, «] such that A'/B is Galois, V,(A)=C and V=V". C where V/=
V.(B). Then, H'=V,VH=V,V.O=V,.V)EH C=V'NH=A'NC,
Su and C'=V,(AN=A'NC. Setting &=G(A", we have J(C,|®)=C,
and J(C|®)=C' Lemma 1). If 2} "¢;&* is in C; (¢;€C, t={C,:C]), then
for every o=@ there holds X (c.6—c)u'= cu)o— 2 c,u’=0, which
means c¢;EC' and hence C;=C'[#]. Needless to say, C, is separable
over C'. Furthermore, »H':(SE;H;) is completely reducible. From those,
sA'z is completely reducible by Th. 1. Now, (1) is an easy consequence
of the last.

Corollary 1. Let A be a central simple algebra of finite rank over
C which is Galois and left algebraic over B. If C, is separable over C
then pAp is completely reducible, and conversely.

Proof. Since [B:Z]<Coo by [2; Cor. 7.11], B-C,=BR,C, is a
simple intermediaite ring of H/C. Hence, H coincides with B-C, and H;
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is homogeneously completely reducible. Now, our assertion is clear by
Th, 3.

Corollary 2. Let A be outer Galois and left algebraic over B. If
sAp 1S completely reducible then so is pAg for every intermediate ving
B' of A/B.

Proof. We shall divide the proof into two steps. We consider first
the case where A is finite over B. By Th. 1, there exists an element
cEC such that .egco=1. Let &'=8(A/B'), and {o, -, 6.} a left
representative system of ® modulo ®. Then, ¢'=2%co; isin C and
Soeqc'o’=1. Hence, Az is completely reducible again by Th, 1.
Next, we shall consider the general case. If F is an arbitrary finite
subset of A then there exists a @-invariant N=R,,/F by Lemma 1 and
[2; Prop. 16.4]. By the first step, there exists then an element c=Vx(N)
such that X,emwayco=1, where N'=NNB'. Moreover, by [2; Th.
8.1], B'[N] is outer Galois and finite over B’ and ®&(B'[N]/B") is
isomorphic to @(N/N') by the contraction map. Accordingly, it follows
ee®wNEnC0= Dscewinyto=1. Noting here that c¢ is evidently con-
tained in the center of B'[N], we see that »B'[N], is completely re-
ducible, proving the complete reducibility of 5 Az

Assume here that A/B is outer Galois and left algebraic. Then, &
is .f.d. by [2; Prop. 16.4] and ® is the pro-finite group l(i_IP @, where

8,=G(4./B)=A.|® and A, ranges over all the ®-invariant (simple)
intermediate rings of A/B finite over B. (See [2; p.115].) Now, under
the above notations, we shall prove the following :

Lemma 3. If A is outer Galois and left algebraic over a proper
simple subring B then the following conditions are equivalent :

(1) A is completely indecomposable, namely, R* is a local ring.

(2) C=Z, char A=p, and © is a pro-p-group, namely, every
&.F£1 is a p-group.

Proof. (1)=>(2): C/Z is Galois with C|® as a Galois group. It
follows therefore (C|®)Cp is dense in 2=Hom(.C, ;C). Recalling that
R=@C, is dense in N* (Lemma 2), we see that C|R* is dense in 2.
Suppose [C:Z]>1, and consider a Z-subspace T of C with [T:Z]=2.
We set T={r=C|R*|T-=T}. We shall prove that ¥ is a local ring.
In fact, if =% is a unit in the local ring C|R* then Tr=7, whence
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we obtain 7'&%. We can see therefore that if ¢ and @/ are non-units
of T then z+<' is a non-unit, namely, % is a local ring. But, (2), is
a homomorphic image of ¥. This contradiction implies C=2Z. Hence,
Hom(sA.z, nAu)=A.|R* is the group ring &.Zx Accordingly, by [2;
Lemma 13.4], char B=p and &, is a p-group, provided A.7B.

(2=>(1): Again by [2; Lemma 13.4], Hom (34.5 s4.5)=A.|R*=
®.Z; is alocal ring. If ¢ and + are non-units of R* then there exists
some Ajg such that Ag|$ and Ag|y are non-units. Hence, Ag|d+4- isa
non-unit, which implies that ¢+ is a non-unit. Thus, we have shown
that R* is a local ring.

Theorem 4. Let A be Galois and left algebraic over B. If [V :C]
<Coo, then the following conditions are equivalent :
1) LAx is completely indecomposable.
2) n#Ay and zHp are completely indecomposable.
(3) i) V=Z and is purely inseparable over C;
ii) either A/B is inner Galois or &(H/B) is a pro-p-group and
char A=p.

Proof. If & is a local ring then so is C,&cC, namely, C,/C is
purely inseparable. If [V :Cy]=m then (C.,),,,’_—“_V°®COV is a homomorphic

image of the local ring &. Hence, it follows V=C, Combining this with
Lemma 3, we readily obtain the equivalence (2) <=>(3).

1)=(3): Evidently, &=V°Q.V is an Artinian subring of the local
ring R*. Hence, & is a local ring and, as was noted above, V=C, and
is purely inseparable over C. Hence, C,|R* is dense in &=Hom(,C,
o). Now, by making use of the same argument as in the proof of Lemma
3 (1)=>(2), we can easily see that C,=Z and if H=B then char B=p
and G(H/B) is a pro-p-group.

(3)=>(1): By Lemmas 2 and 3, R=0®Z, is dense in R* and H|R is
dense in the local ring B*=Hom(,Hy, »Hp). Accordingly, if A’ isa &-
invariant simple intermediate ring of A/B left finite over B then for
every ¢=R* there holds A'9S A'. From this, noting that & is L.f.d.
by [2; Prop. 16.4], one will easily see that if ¢ and 4 are non-units of
R* then there exists a @-invariant simple intermediate ring A" of A/B
left finite over B such that V. (A")=C and both A"|d and A"|+ are
non-units of A''|R*. Evidently, A"/B is finite Galois and V,.(B)=Z
is purely inseparable over V ..(A')=C. Moreover, setting H"=V ,.(Z),
Hom(;H";, sH"z)=H'"|%¥* is a local ring. From those, we see that Hom
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@A"5 pA"g)= A" |R* 1is a local ring (Th. 2'). Hence, A''|$++ is a non-
unit, which implies that ¢+, is a non-unit. Thus, we have shown that
Ay is completely indecomposable.

Corollary 3. Let A be a central simple algebra of finite rank over
C which is Galois and left algebraic over B. If ,A; is completely in-
decomposable then A/B is (finite) inner Galois and Z is purely insepa-
rable over C, and conversely.

Proof. As was noted in the proof of Cor. 1, H coincides with B-C,.
Accordingly, H=B-C,=B-Z=B and Z/C is purely inseparable by Th. 4.

Remark 1. The following example shows that Cor. 2 is not always
true even for finite Galois extensions: Let P/® be a two dimensional
purely inseparable field extension. If we set A=(#), and B=¢® then A/B
is finite inner Galois and there exists an intermediate ring B’ of A/B
which is B-isomorphic to P. By Th. 1/, ,.As is not completely reducible
but zA; is obviously completely reducible.

Remark 2. If zA; is completely indecomposable then so is A
for every intermediate ring B’ of A/B. In fact, Hom(y Az, pAp)=
Vg«(BL+B?) is a local ring.

Remark 3. If H is simple (for instance, if [V :C]<Cc0), then the
following conditions are equivalent :

(1) Ap is homogeneously completely reducible, namely, A=B-V.

(2) uAy and RH,; are homogeneously completely reducible.
In fact, this is an easy consequence of B-V=BX),V and corresponds to
the equivalence between (1) and (2) in Th. 3 or Th. 4. Moreover, we
obtain the following :

(@) Let A be a central simple algebra of finite rank over C. If
Co=C then A, is homogeneously completely reducible, and conversely.

(b) Let [A:Bl,<<co. If Z is a subfield of C and [C:Z]=[H:B],
then Ay is homogeneously completely reducible, and conversely.

Proof. (a) Evidently, H is simple and H-V=H®.,V is a simple
intermediate ring of A/C. Accordingly, A coincides with H-V. On the
other hand, as was noted in the proof of Cor. 1, H coincides with B-C,
and hence A=B-V.

(b) By [2; Prop. 5.4], [V:Cl<[A:B]. and H is simple. Now,
our assertion is an easy consequence of B-V=BQ,V and [V :C]l=[A4: H].
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By the way, one may remark here that if "V :CJ]<{ec then [A:C]
<Coo and [B:Z]< > are equivalent by "2; Cors. 4.9 and 7.11].

Remark 4. Let &' be an F.group in A with B= J(®'). Assume
that @' is a p-group and char A=p5.

(@) If sA; is completely reducible then AlB is outer Galois and
sAy is homogeneously completely reducible.

(b) pAs islocal if and only if B contains C.

Proof. By [2; Lemma 10.4], V coincides with Z-C and is purely
inseparable over C. Hence, noting that @(H/B)E@/V’:“@'/@’ﬂff;, (b)
is an easy consequence of Th. 2. Now, we shall prove (a). Since Z-C/C
is separable as well (Th. 3), Z-C coincides with C, namely, A/B is
outer Galois. It follows therefore &'=®. By Th. 1, there exists an

element c=C such that X ,egcr=1. Hence, we obtain A=B-C by [2;
Cor. 13.9].
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