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Levine: An equivalence relation in topology

AN EQUIVALENCE RELATION IN TOPOLOGY
NORMAN LEVINE

1. Equivalent sets. Introduction

It seems reasonable to define equality or equivalence of sets in a
topological space X in some way which involves the topology. After some
experimenting, we came upon the following :

Definition 1.1. In a space X, A is equivalent to B (written A=RB)

iff for each open set O, AESO iff BESO.
We shall make frequent use of

Lemma 1.2. In a space X, A=B iff a= A implies that c(a) N
B=£@ and bEB implies that c(b)N A+ D, ¢ denoting the closure ope-
rator.

Proof. Let A=B and take a=A. Then AZCc(z) and Ccla) is
open, C denoting the complement operator. Thus BZC(c¢(a) and hence
BNcla)#A.

Conversely, suppose that A¥=B. We may assume that there exists
an open set O such that AS0O and BZO0; take b=BNCO. Then
¢cB)SCOSCA and hence c(b)N A= 0.

Theorem 1.3. If O and U are open in X, then O=U iff O="U.
We shall often refer to

Example 1.4. Let X={g, &} with open sets &, {a}, X. Then
{b}=X and both sets are closed, but equality fails (see Theorem 1.6).
Note also that a set equivalent to an open set need not be open.

Definition 1.5. For each set ASX, let A*=N{0:AS0 and O
is open}.
Theorem 1.6. In a space X, A=B iff A*=B*.

Proof. Let A=B and take a*=A*. If ¢*&£B* then ¢*&0 for
some open set which contains B. But then ASO and hence g¢*&ZA*, a
contradiction.

Conversely, let A*=B* and suppose that AS0O, O being open.
Then BEB*=A*SO0 and hence BEO. It follows then that A=B.

Theorem 1.7. * as defined in Definition 1.5 is a Kuratowski closure
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operator.

Proof. @*=@ and AES A* areclear. If xZ(AUB)*, then x&0
for some open set such that AUBS0. Then x& A*U B*. Conversely,
if ¥ZA*UB*, then x¢£0 for some open set such that AS0 and x& U
for some open set such that BEU. Thus AUBEOUU and x&0UU.
Hence 2& (AU B)*. It remains to show that A**S A*; suppose that
xZ A*. Then there exists an open set O such that ¥x&£0, AS0. Then
xZ0 and A*S0O and hence x&A**.

Theorem 1.8. In a space X, A* is the largest set which is equi-
valent to A. -

Proof. Clearly, A=A*. Suppose then that B=A. Then for each
open set O such that AS0, then BESO. It follows then that BES A*.

In general, there is no smallest set which is equivalent to a given
set. However, we have

Theorem 1.9. [In a space X, let A be closed and compact. There
exists a smallest closed set B which is equivalent to A.

Proof. Let B=N{A': A" is closed and A'=A}. It suffices to show
that B=A. Since B& A, it suffices to show that ASO if B&O and O
isopen. BESO implies that N{A;:1<i<n} SO0 and A=A N--NA,
(see Corollary 2.4). Thus AZO.

Equivalence of sets is an absolute property as shown in

Theorem 1.10. Let Y be a subspace of X and A, BSY. Then
A=B (inY) iff A=B (in X).

Theorem 1.11. Let f:X—Y be continuous and suppose that A=B
in X. Then flAI=f"B] in Y.

Theorem 1.12. Iz a space X, all nonempty closed sets are equiva-
lent iff O£X, O open implies that O has no nonempty closed subsets.

Proof. Suppose that X=£0, O open and that O2E+# @, with E
closed. Then O and E are nonempty closed sets which are not equi-
valent. Conversely, suppose that Es5@JF, E and F being closed and
non equivalent sets. We may assume that ES0 and FZO for some
open set 0. Then O=4X and O has a nonempty closed subset.

Corollary 1.13. Let 9 be a chain topology for X. Then E=F if
E and F are nonempty closed sets.
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‘ Proof. By Theorem 1.12, it suffices to show that O has no nonempty
closed subset if O is open and O=%X. If O2Es+@, E closed, then O
and CE are non comparable open sets and & is not a chain topology, a
contradiction.

The converse of Corollary 1.13 is false as shown in

Example 1.14. Let X=1{a, b, ¢,d} with open sets 9: @, {a}, {a, b},
{a,c}, {a, b c}, X. Then Y is not a chain topology for X, but all
nonempty closed sets contain ¢ and the only open set which contains d is

X. Thus all nonempty closed sets are equivalent.

2. The algebra of equivalent sets

Theorem 2.1. In a space X, let A =B, for each c= /. Then (1)
U{d.:aeA}I=U{B.:aEA} and (2) for each AS X, A*=U{B:
B=A}.

We omit the easy proof.

If A=B, it does not generally follow that ANC=BNC. However,
we have

Theorem 2.2. In a space X, let A=DB and let E be a closed sub-
set of X. Then ANE=BNE.

Proof. Let ANEZS O, O being an open set. Then ASOUCE
and hence BEOUCE. Thus BNEEZO.

Theorem 2.3. In a space X, let A=FE and A=F, E being closed.
Then A=ENF.

Proof. If AS0, O open, then ESO and hence ENFSO0. Con-
versely, let ENFS0. Then FESOUCE and since F=E, we have EC
OUCE. Then EZSO implies that ASO.

Corollary 2.4. In a space X, let A=E; i=1, -, n where each E,
is closed. Then A=E,N---NE,.

Theorem 2.5. Let X=X{X.:a=A} and suppose that A5~ B,
for each a=/\. Then A=B. for each €N iff X{A.:aeA}=
X{B,:a= A}

Proof. If xX{A.:aeEAN}=X{B.:a€ A}, then A,,;_—:Bzx for each
ae A by Theorem 1.11. Conversely, let A,=B. for each aEA and
suppose that x€ X {A.: @« A}. Then z(@)E A, for all a= A and hence

Produced by The Berkeley Electronic Press, 1971



Mathematical Journal of Okayama University, Vol. 15[1971], Iss. 2, Art. 3

116 NorMan LEVINE

c(x(@)NB,#©O by Lemma 1.2. It follows that ¢(x) N X {B.: cEA}F£0.

3. Separation. R, T, T, spaces

Definition 3.1. A space X is called an Ryspace iff x=0, O open
implies that c¢(x) £0.

Theorem 3.2. A space X is an Ro-space iff c(x)S{x}* for each
x€ X (see Definition 1.5).

Proof. If X is an Ryspace, then x=0, O open implies that
c(#)S0 and hence c(x)S N{0:x20, O open}={x}*. Conversely, let
%€0, O open. Then c{%)S{x}*SO and hence X is an Ry space.

Theorem 3.3. A space X is a To-space iff x5~y implies that {x}*5~
{y}~.

Proof. Let X be a Ty-space and suppose that x55y. We may assume
that €0, O open and y&£0O. Then y&{x}* and hence {y}*s&{x}*.
Conversely, suppose that x4y implies that {x}*s~{y}*. Let x4y and
assume that {£}*Z{y}*; take z={x}* and z&{y}*. There exists then
an open set O containing y such that z¢£0. Then ¥ 0a nd X is a
Trspace.

Theorem 3.4. X is a T\-space iff equivalence and equality coincide.

Proof. Let X bea T,space and suppose that A=B, but AZB.
Let ac A, aZB; then BE(C{a}, {a}C is anopen set, but AZC{a}, a
contradiction.

Conversely, suppose that equality and equivalence coincide, but that
{#}=c(x) for some x=X. Then c(2)—{x}~c(x) and hence c(x)—{x}z=
¢(x). There exists then an open set O such that c(x)—{x}S 0O, but
¢(x)Z0 and hence x&(0. It follows then that c(x)SCO, a contradic-
tion.

4. Compactness

Theorem 4.1. In a space X, let A=B and suppose that A is
compact (Lindelof, countably compact). Then B is compact (Lindelof,
countably compact).

Theorem 4.2. In a space X, let A=B and suppose that A is
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sequentially compact. Then B is sequentially compact.

Proof. Let {b;} be a sequence in B. By Lemma 1.2, c¢(3,)NA# QO
for each 7; take @;=c(b;) N A for each i{. Then there exists an ¢= A4 and
a subsequence {“"1} which converges to a. Let b&c(e)NB. Then
lim b, =b; if b0, O open, then ¢=0 and hence a, €O for all i =N.

Then 5, €0 for all i=N.

Theorem 4.3. In a space X, let A be locally compact and CA
compact. If A=B and B is closed, then B is locally compact (see
Theorem 10. 3).

Proof. Let bEB. By Lemma 1.2, c¢(b)NA%=Q ; take e=c() N A.
Then ¢=€ONAEMEA for some open set O and some compact set M.
Then b€ONBSBN(MUCA) and BN(MUCA) is a compact subset
of B.

5. Uniform spaces

Theorem 5.1. Let (X, U) be a uniform space and A=B in X. If
A is complete, then B is complete.

Proof. Let S:D—B beaCauchy net. Then by Lemma 1.2, ¢(S(d))
NA#@ for each d=D; let a,;=c(S(d)NA for each dED and let T:
D—A via T(d)=as. Then T :D—A is a Cauchy net. To see this, let
UsU, U closed. Then (S(d), S@'")eU for all d', d"=d* and hence
(e, asYEc(S@"), SENESU for all d’, d"=d*. Since A is complete,
there exists an ¢=A such that lim T=a. Let b&c(e)NB. Then
lim S=b&; for if b0, O open, then ¢=0 and hence T(d)=O for all
d=M. It follows that S(d)O for all d=M.

Theorem 5.2. Let (X, U) be a uniform space and A=B in X. If
A istotally bounded, sois B.

Proof. Let U=9U, U open. Then there exist ¢,=A such that
ASUlaJU-UU [a.]. By Lemma 1.2, c(e) NB% @ ; take b,=c(a;) N B.
Then BSU[a,]U---UUla,] since Ula;] is open. Ula,] S U[b;] implies
that BEU[b,JU - U U[b.].

6. R,-spaces, Introduction

Theorem 6.1. Let X be an R,-space (see Example 3.1). If A=B
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and A and B are closed, then A=B (see Example 1.4).

Proof. Let a= A and suppose that ¢ZB. Then ¢&CB and
hence c¢(e)ECB. Thus c¢(a¢) NB=(, contraryto Lemma 1.2.

Theorem 6.2. Let X be an Ry-space and A=B in X. If A is dense,
then B is dense.

Proof. Let O be a nonempty open set. Then ANO*@; take
a€ANO0. Then c(e) NB*% by Lemma 1.2 and ¢(e)<O. Thus ONB=2
cla)NB£(.

In Example 1.4, {b}=X, but {b} is not dense.

Theorem 6.3. Let X be an Ry-space and A=B in X. If O is an
open set, then ANO=BNO (see Theorem 2.2).

Proof. Let a= ANO. Then ¢(e) NBs*=@ by Lemma 1.2. But
c(@)NBNO=c(a)NB*%@. Using Lemma 1.2 again, ANO=BNO.

In Example 1.4, let O={a}. Then {b}=X, but {b}NO0x£EXNO
and O is open.

Theorem 6.4. Let X be an Ryspace and A=B in X. If each closed
setin Aisa Gs in A, then each closed set in Bisa G; in B.

Proof. Consider BNE where E isclosedin X, Then ANE is
closedin A and hence ANE=N{ANO;:i=1} where each O; is open
in X. It suffices to show that BNE=N{BNO,::i=1}. By Theorem 2.2,
BNE=ANE andsince ANEESO; for each 7, it follows that BNESO;
for each 7 and thus BNEES N{BNO,:i=1}. Conversely, let 5&BNO;
for each ¢; it suffices to show that 6= E. By Lemma 1.2, c(b))N A5+ ;
take a€c(b) N A. Then ¢=c(b)<SO0; and hence eE ANE. But bEc(a)SE
and hence b€E (in an R,-space, a=c(b) implies that bE=c(a)).

In Example 1.4, {6#}=X and {b} has the property that each closed
setin {b} isa Gs in {b}. In X, {b} is a closed set which is not a G.

Theorem 6.5. Let X be an R,-space and ASX. Then N {e(a)
a<S A} is the largest set which is equivalent to A (see Theorem 1.8).

Proof. By Theorem 1.8, it suffices to show that U {c(a):a€ A}=A*
(see Definition 1.5). Now a¢=A implies ¢(¢)S0O when AZSO and O is
open. Thus U{c(@):a€A}SN{0:AS0, O open}=A*. Suppose next
that x& U {c(g):ea= A}. Then x&Cc(e¢) for each ¢ A and hence
c(x)E Cc(a) since (c(a) is an open set. It follows then that c(x) NA=O
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and AS(Ce(x) and C(Cc(x) is an open set such that x&(c(x). Thus
xZ A*.

In Example 1.4, {b6}=X, and U{c(b):b=B}=B; but B is not the
largest set equivalent to B.

7. R,-spaces. Connectedness

Theorem 7.1. Let X be an R,-space and let A=B. If A is con-
nected, then B is connected.

Proof. Suppose B is disconnected. Then there exist open sets O,
and O, such that B=(0O,NB)U(0.NB), BNO,N0,=@ and BNOFQ
£BN0O.. Since BES0O,UJ0, it follows that ASO,U0O, and hence A=
(ANOYU(ANO,). If ANO,=¢@, then ASO, which implies that BSO..
Then F£ABN0O,=BNO,NO0, and BN0O,NO,% @, a contradiction. Thus
ANO=*=E@G+~ANO0:.. Since A is connected, it follows that ANO,N0.5~Q;
let a€ ANO, N0, Since X is an Rspace, c(e) NBEO,NO,NB=¢ and
thus c(e) NB=@. Thus A¥%=B by Lemma 1.2, a contradiction.

Example 7.2. Let X={aqa, b, c} with open sets @, {«}, {qa b}, {q
¢}, X. Then {b, c}=X, X is connected and {b, ¢} is disconnected. Thus
the R, condition cannot be removed from Thcorem 7.1.

Theorem 7.3. Let X be a space (R, not assumed here) and A=B
with ASB. If A is connected, sois B.

Proof. Suppose that B=(B10)J(BNO,) where O; is open and
BNO,%@ and BNO,NO,=@. Now ASBSO0,U0. and hence A=
(ANOYUANO,). If ANO,=@, then ASO0, and hence BSO0,; thus
BNO,N0,=BNO,#@ and BNO, N0, @, a contradiction. Thus
ANO=*=0=+AN0,. But ANO/NOC,EANCB=@ and hence A is dis-
connected, a contradiction.

Note that in Theorem 7.3, if we assume that B is connected, we
cannot deduce that A is connected (see Example 7.2). Note also in
Example 7.2 that X is path connected while {b, ¢} is not.

Lemma 7.4. Let X be an R,-space and suppose that f: [0,1]-X is
continuous. Then g: [0,112X is continuous if gi)=c(fE)) for ail
(=10, 1.

Proof. Let ESX, FE closed. It suffices to show that g '[E]=
f 'LE]. Now teg '[E] iff g@)EE iff c(g@)SE iff ¢(f®))EE iff fO)EE

Produced by The Berkeley Electronic Press, 1971



Mathematical Journal of Okayama University, Vol. 15[1971], Iss. 2, Art. 3

120 NorMmaN LEVINE

iff tef'[E]. Note that in an R,-space X, x=c(y) implies that y=c(x).

Theorem 7.5. Let X be an Ryspace and let A=B. If A is path
connected, then B is path connected.

Proof. Let b, b,=B. Take a,Sc(b)N A and a.=c(b,) N A. There
exists a continuous map f: [0,1]—A such that f(0)=a, and f(l)=a.
Let g:[0,1]—>B as follows: g(0)=5, and g(1)=b, g®)=c(f))N B for
0<t<<l. By Lemma 7.4, g is continuous on B.

Theorem 7.6. In an R,space X, let A=B. If A is locally con-
nected, then B 1is locally connected.

Proof. Let b€ONB, O beingopenin X. By Lemma 1.2, ¢(d)N
A= ; let a=c(b)NA. Then a=c(B)NASONA. Hence there exists a
set O* open in X such that e€0*NAS0ONA and O*N A is connected.
Now 5€0*N B and O* N A=0*NB by Theorem 6.3 and hence O*NB
is connected by Theorem 7.1. It suffices then to show that O* NBEONBAB.
Let x€0*NB; then c(x)S0* and c(x) N A5*=@. Let y=c(x)NA. Then
yE0*NASONA and hence xEc¢(y)E0. Thus +=0NB.

Example 7.7. Let (X, ) be the rationals with the usual topology
and yZX; let Y=XU{y}. Let U=9U{Y}. Then {y}=Y, {y} is
locally connected, but Y is not. Note that Y is not an R,-space.

8. R, separation

Theorem 8.1. Let X be an R,-space and suppose that A=B. If A
ts regular, then B is regular.

Proof. Let b€ONB, O being openin X. Then c(b))NA#~< D by
Lemma 1.2; take a=c(®) N A. Then a=0NA and hence there exist an
open set O* and a closed set E such that e€0*NASENASONA. Tt
is easy to show that b=O0*NBESENBS0ONB.

Lemma 8.2. Let X and Y be spaces, X being an R,-space. Sup-
pose that A=B in X and that f:A—>Y is continuous. Let g:B—Y be
defined as follows: for bEB, let gb)Efleb)NA). Then g: B—Y is
continuous.

Proof. let ESY, E closed. Then f '[E]=ANF for some closed
set F. It suffices to show that g '[E]=BNF or that g'[E]SF. Let
beg '[E]. Then gb)=E and g®Eflcb) N A] or g(b)= f(a) where
a=c(d)NA. Then f(e@)&FE and hence a=f'[E]SF. besc(a)EF.
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Theorem 8.3. Let A=DB in an Ryspace X. If A is completely
regular, then B is completely regular.

Proof. Let b€ONB, O being open in X. By Lemma 1.2, ¢())N A
@ ; take a=c(d) N A. It follows that a=0ON A. Since A is completely
regular, there exists a continuous map f: A—[0, 1] such that f(e)=0
and f(a*)=1 for all ¢*=A—0. Let g:B—[0,1] be as in Lemma
8.2, g(b) being taken as f(@). Then g(b)=f(a)=0. Now let b*B—O.
Then ¢(*)ECO and a*<=c¢(b*) N A which implies that ¢* = A—O0 and thus
gb*)=f(a*)=1. g:B—[0,1] is continuous by Lemma 8.2,

In Example 1.4. {b}=X, {b} is completely regular, but X is not
completely regular.

Theorem 8.4. Let A=B in an Ryspace X. If A is normal, then B
is normal.

Proof. Let BNFNE=¢, E and F being closed in X. Then BS
C(ENF), an open set, and hence ASC(ENF) and ANENF=(.
Since A 1is normal, there exist open sets O, and O, in X such that
ANESANO, and ANFEANO; and ANO, N0, = . Applying Theo-
rem 2.2, it follows that BNEESBNO, and BNFSBNO.. It remains to
show that BNO,N0,=@. Suppose b&BNO,N O, Take acScb)NA;
then ¢€0,N0,;N A, a contradiction.

In Example 7.2, {b,c}=X, {b, ¢} is normal, but X is not.

Theorem 8.5. Let A be a completely normal subspace of an R,-space
X. Then Ul{cla):a=S A} is completely normal.

Proof. Let BS U{c(a):a= A}. We must show that B is normal.
Let A'={a:c(@)NB+*@, a=A}. It suffices to show that U{c(®):bE
B}= U {c(a) : a= A%} since A? is normal and is equivalent to U {c(a): aE
A*} and B is equivalent to U {c(d) : b= B} (see Theorem 8.4). Let x<c(b)
for some b&=B. Then bEc(a) for some a=A. Then x=c(b)Sc(a) and
hence g= A% Thus z< U{c(a) : e A%}. Conversely, let y=c(a) for
some a= A% Then c(e)NB#£Q ;let b=c(a)NB. They yEc(a)Sc(d).

Corollary 8.6. In an Ry,space X, let A=B, A being completely
normal. Then B is completely normal.

Proof. By Theorem 8.5, U{c(a) :a€ A} is completely normal and
by Theorem 6.5, BS U{c(e) :a=A}. Hence B is completely normal.
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9. R, and conutability

Theorem 9.1. Let A=RB in an Ry-space X. Ij A is separable,
then B is separable.

Proof. Let {a,:n=1} be densein A. Take b,=c(a.,) N B for each
n=1. Then {b,:n=1} isdensein B; let J==0ONB were O is open
in X. Choose b=ONB and let a=c(b) N A. Then ¢e=0 N A. Since
ONA#@, «.=0NA for some n It follows then that 4,.€0NB.

Example 9.2. Let (X, 9) be an uncountable discrete space and y& X;
let Y=XU(y} and U=9U{Y}. Then {y}=VY, {y} is separable, but
Y is not separable.

Theorem 9.3. In an R.-space X, let A=B and let A be a second
axiom space. Then B is second axiom.

Proof. If {ANO,:i=1, O, openin X} is a base for AN, then
{BNO:;:i=1} is a base for BN Y.
In Example 9.2, {y} is second axiom, but Y is not.

10. R, and local compactness, paracompactness

Lemma 10.1. In an Ryspace X, let A be locally compact. Then
U{cla) : a€ A} is locally compact.

Proof. Let € Ulc(a): a= A}). Then x&c(a*) for some ag*=
and hence there exists an open set O and a compact set M such that
a*E0NASMEA. Then x€0NU{cla):a=€A}S U {c(tm) :mEM}S
Ufcla) :a=A}. Now M=U {c(m) : mEM} and since M is compact, so
is U{e(m) : m=M} (see Theorems 6.5 and 4.1).

Lemma 10.2. In an Ryspace X, A islocally compact if U{c(a):
aE A} islocally compact.

Proof. Let a*€ A ; there exists an open set O and a compact set
M such that ¢*€0N U{cla) :a€A}EME U{cla) :a=A}. Then a*<0
NASANU{c(im) :meM}SA. We need only show that AN U {c(m):
meE M} is compact. By Theorem 4.1 and Theorem 6.5, it suffices to show
that U{c(@):a'€ AN U{c(m):meM}} is compact. The reader can
easily verify that this set is merely U {c(m) : mE M} which is compact.

Theorem 10.3. In an Ry-space, let A=B. If A is locally compact,
then B is locally compact (see Theorem 4.3).
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Proof. A locally compact implies that U{c(e): aE A} is locally
compact (Lemma 10.1). But U{c(@) :e€A}=U{c() : b=B}. Hence B
is locally compact by Lemma 10.2.

Theorem 10.4. In an Ry space X, let A=B and suppose that A
is paracompact. Then B is paracompact.

Proof. Suppose that B=BN U{0.,:cE A} where each O, isopen
in X. Then BESU{0,: @A} and hence ASU{O,:aeA}. There
exists then a family of open sets {O,:7=I'} such that A=U{ANO,:
ver}, {AN0,:7ETr} islocally finitein A and {ANO,:7ET} refines
{ANO,:aeA}. Thus B=U{BNO,:7ET}, {BNO,:7ETr} is locally
finite in B and {BNO,:7€ '} refines {BNO,:a=A}. The details are
left to the reader.
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