Mathematical Journal of Okayama University

Volume 15, Issue 2

1971

Article 3

OCTOBER 1972

An equivalence relation in topology

Norman Levine*

Copyright ©1971 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}The Ohio State University

AN EQUIVALENCE RELATION IN TOPOLOGY

NORMAN LEVINE

1. Equivalent sets. Introduction

It seems reasonable to define equality or equivalence of sets in a topological space X in some way which involves the topology. After some experimenting, we came upon the following:

Definition 1.1. In a space X, A is equivalent to B (written $A \equiv B$) iff for each open set O, $A \subseteq O$ iff $B \subseteq O$.

We shall make frequent use of

Lemma 1.2. In a space X, $A \equiv B$ iff $a \in A$ implies that $c(a) \cap B \neq \emptyset$ and $b \in B$ implies that $c(b) \cap A \neq \emptyset$, c denoting the closure operator.

Proof. Let $A \equiv B$ and take $a \in A$. Then $A \not\subseteq \mathcal{C}c(a)$ and $\mathcal{C}c(a)$ is open, \mathcal{C} denoting the complement operator. Thus $B \not\subseteq \mathcal{C}c(a)$ and hence $B \cap c(a) \neq \emptyset$.

Conversely, suppose that $A \not\equiv B$. We may assume that there exists an open set O such that $A \subseteq O$ and $B \not\subseteq O$; take $b \in B \cap CO$. Then $c(b) \subseteq CO \subseteq CA$ and hence $c(b) \cap A = \emptyset$.

Theorem 1.3. If O and U are open in X, then $O \equiv U$ iff O = U. We shall often refer to

Example 1.4. Let $X = \{a, b\}$ with open sets \emptyset , $\{a\}$, X. Then $\{b\} \equiv X$ and both sets are closed, but equality fails (see Theorem 1.6). Note also that a set equivalent to an open set need not be open.

Definition 1.5. For each set $A \subseteq X$, let $A^* = \bigcap \{O : A \subseteq O \text{ and } O \text{ is open}\}.$

Theorem 1.6. In a space X, $A \equiv B$ iff $A^* = B^*$.

Proof. Let $A \equiv B$ and take $a^* \in A^*$. If $a^* \not\in B^*$, then $a^* \not\in O$ for some open set which contains B. But then $A \subseteq O$ and hence $a^* \not\in A^*$, a contradiction.

Conversely, let $A^* = B^*$ and suppose that $A \subseteq O$, O being open. Then $B \subseteq B^* = A^* \subseteq O$ and hence $B \subseteq O$. It follows then that A = B.

Theorem 1.7. * as defined in Definition 1.5 is a Kuratowski closure

114

operator.

Proof. $\emptyset^* = \emptyset$ and $A \subseteq A^*$ are clear. If $x \not\in (A \cup B)^*$, then $x \not\in O$ for some open set such that $A \cup B \subseteq O$. Then $x \not\in A^* \cup B^*$. Conversely, if $x \not\in A^* \cup B^*$, then $x \not\in O$ for some open set such that $A \subseteq O$ and $x \not\in U$ for some open set such that $B \subseteq U$. Thus $A \cup B \subseteq O \cup U$ and $x \not\in O \cup U$. Hence $x \not\in (A \cup B)^*$. It remains to show that $A^{**} \subseteq A^*$; suppose that $x \not\in A^*$. Then there exists an open set O such that $x \not\in O$, $A \subseteq O$. Then $x \not\in O$ and $A^* \subseteq O$ and hence $x \not\in A^{**}$.

Theorem 1.8. In a space X, A^* is the largest set which is equivalent to A.

Proof. Clearly, $A \equiv A^*$. Suppose then that $B \equiv A$. Then for each open set O such that $A \subseteq O$, then $B \subseteq O$. It follows then that $B \subseteq A^*$.

In general, there is no smallest set which is equivalent to a given set. However, we have

Theorem 1.9. In a space X, let A be closed and compact. There exists a smallest closed set B which is equivalent to A.

Proof. Let $B = \bigcap \{A' : A' \text{ is closed and } A' \equiv A\}$. It suffices to show that $B \equiv A$. Since $B \subseteq A$, it suffices to show that $A \subseteq O$ if $B \subseteq O$ and O is open. $B \subseteq O$ implies that $\bigcap \{A'_i : 1 \leq i \leq n\} \subseteq O$ and $A \equiv A'_1 \cap \cdots \cap A'_n$ (see Corollary 2.4). Thus $A \subseteq O$.

Equivalence of sets is an absolute property as shown in

Theorem 1.10. Let Y be a subspace of X and A, $B \subseteq Y$. Then A = B (in Y) iff A = B (in X).

Theorem 1.11. Let $f: X \rightarrow Y$ be continuous and suppose that $A \equiv B$ in X. Then $f[A] \equiv f[B]$ in Y.

Theorem 1.12. In a space X, all nonempty closed sets are equivalent iff $O \neq X$, O open implies that O has no nonempty closed subsets.

Proof. Suppose that $X\neq O$, O open and that $O\supseteq E\neq \emptyset$, with E closed. Then CO and E are nonempty closed sets which are not equivalent. Conversely, suppose that $E\neq\emptyset\neq F$, E and F being closed and non equivalent sets. We may assume that $E\subseteq O$ and $F\not\subseteq O$ for some open set O. Then $O\neq X$ and O has a nonempty closed subset.

Corollary 1.13. Let $\mathfrak I$ be a chain topology for X. Then $E \equiv F$ if E and F are nonempty closed sets.

Proof. By Theorem 1.12, it suffices to show that O has no nonempty closed subset if O is open and $O \neq X$. If $O \supseteq E \neq \emptyset$, E closed, then O and CE are non comparable open sets and G is not a chain topology, a contradiction.

The converse of Corollary 1.13 is false as shown in

Example 1.14. Let $X = \{a, b, c, d\}$ with open sets $\mathcal{G} : \emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X$. Then \mathcal{G} is not a chain topology for X, but all nonempty closed sets contain d and the only open set which contains d is X. Thus all nonempty closed sets are equivalent.

2. The algebra of equivalent sets

Theorem 2.1. In a space X, let $A_{\alpha} \equiv B_{\alpha}$ for each $\alpha \in \triangle$. Then (1) $\cup \{A_{\alpha} : \alpha \in \triangle\} \equiv \cup \{B_{\alpha} : \alpha \in \triangle\}$ and (2) for each $A \subseteq X$, $A^* = \cup \{B : B \equiv A\}$.

We omit the easy proof.

If $A \equiv B$, it does not generally follow that $A \cap C \equiv B \cap C$. However, we have

Theorem 2.2. In a space X, let $A \equiv B$ and let E be a closed subset of X. Then $A \cap E \equiv B \cap E$.

Proof. Let $A \cap E \subseteq O$, O being an open set. Then $A \subseteq O \cup CE$ and hence $B \subseteq O \cup CE$. Thus $B \cap E \subseteq O$.

Theorem 2.3. In a space X, let $A \equiv E$ and $A \equiv F$, E being closed. Then $A \equiv E \cap F$.

Proof. If $A \subseteq O$, O open, then $E \subseteq O$ and hence $E \cap F \subseteq O$. Conversely, let $E \cap F \subseteq O$. Then $F \subseteq O \cup CE$ and since F = E, we have $E \subseteq O \cup CE$. Then $E \subseteq O$ implies that $A \subseteq O$.

Corollary 2.4. In a space X, let $A \equiv E_i$, $i=1, \dots, n$ where each E_i is closed. Then $A \equiv E_1 \cap \dots \cap E_m$.

Theorem 2.5. Let $X = \times \{X_\alpha : \alpha \in \triangle\}$ and suppose that $A_\alpha \neq \emptyset \neq B_\alpha$ for each $\alpha \in \triangle$. Then $A_\alpha \equiv B_\alpha$ for each $\alpha \in \triangle$ iff $\times \{A_\alpha : \alpha \in \triangle\} \equiv \times \{B_\alpha : \alpha \in \triangle\}$.

Proof. If $\times \{A_{\alpha} : \alpha \in \triangle\} \equiv \times \{B_{\alpha} : \alpha \in \triangle\}$, then $A_{\alpha} \equiv B_{\alpha}$ for each $\alpha \in \triangle$ by Theorem 1.11. Conversely, let $A_{\alpha} \equiv B_{\alpha}$ for each $\alpha \in \triangle$ and suppose that $x \in \times \{A_{\alpha} : \alpha \in \triangle\}$. Then $x(\alpha) \in A_{\alpha}$ for all $\alpha \in \triangle$ and hence

NORMAN LEVINE

 $c(x(\alpha)) \cap B_{\alpha} \neq \emptyset$ by Lemma 1.2. It follows that $c(x) \cap \times \{B_{\alpha} : \alpha \in \Delta\} \neq \emptyset$.

3. Separation. R_0 , T_0 , T_1 spaces

116

Definition 3.1. A space X is called an R_0 -space iff $x \in O$, O open implies that $c(x) \subseteq O$.

Theorem 3.2. A space X is an R_0 -space iff $c(x) \subseteq \{x\}^*$ for each $x \in X$ (see Definition 1.5).

Proof. If X is an R_0 -space, then $x \in O$, O open implies that $c(x) \subseteq O$ and hence $c(x) \subseteq \cap \{O : x \in O, O \text{ open}\} = \{x\}^*$. Conversely, let $x \in O$, O open. Then $c\{x\} \subseteq \{x\}^* \subseteq O$ and hence X is an R_0 -space.

Theorem 3.3. A space X is a T_0 -space iff $x \neq y$ implies that $\{x\}^* \neq \{y\}^*$.

Proof. Let X be a T_0 -space and suppose that $x\neq y$. We may assume that $x\in O$, O open and $y\not\in O$. Then $y\not\in \{x\}^*$ and hence $\{y\}^*\neq \{x\}^*$. Conversely, suppose that $x\neq y$ implies that $\{x\}^*\neq \{y\}^*$. Let $x\neq y$ and assume that $\{x\}^*\not\subseteq \{y\}^*$; take $z\in \{x\}^*$ and $z\not\in \{y\}^*$. There exists then an open set O containing y such that $z\not\in O$. Then $x\not\in O$ a nd X is a T_0 -space.

Theorem 3.4. X is a T_1 -space iff equivalence and equality coincide.

Proof. Let X be a T_1 -space and suppose that $A \equiv B$, but $A \nsubseteq B$. Let $a \in A$, $a \notin B$; then $B \subseteq \mathcal{C}\{a\}$, $\{a\}\mathcal{C}$ is an open set, but $A \nsubseteq \mathcal{C}\{a\}$, a contradiction.

Conversely, suppose that equality and equivalence coincide, but that $\{x\} \neq c(x)$ for some $x \in X$. Then $c(x) - \{x\} \neq c(x)$ and hence $c(x) - \{x\} \neq c(x)$. There exists then an open set O such that $c(x) - \{x\} \subseteq O$, but $c(x) \subseteq O$ and hence $x \in CO$. It follows then that $c(x) \subseteq CO$, a contradiction.

4. Compactness

Theorem 4.1. In a space X, let $A \equiv B$ and suppose that A is compact (Lindelöf, countably compact). Then B is compact (Lindelöf, countably compact).

Theorem 4.2. In a space X, let $A \equiv B$ and suppose that A is

http://escholarship.lib.okayama-u.ac.jp/mjou/vol15/iss2/3

4

sequentially compact. Then B is sequentially compact.

Proof. Let $\{b_i\}$ be a sequence in B. By Lemma 1.2, $c(b_i) \cap A \neq \emptyset$ for each i; take $a_i \in c(b_i) \cap A$ for each i. Then there exists an $a \in A$ and a subsequence $\{a_{n_i}\}$ which converges to a. Let $b \in c(a) \cap B$. Then $\lim b_{n_i} = b$; if $b \in O$, O open, then $a \in O$ and hence $a_{n_i} \in O$ for all $i \geq N$. Then $b_{n_i} \in O$ for all $i \geq N$.

Theorem 4.3. In a space X, let A be locally compact and CA compact. If $A \equiv B$ and B is closed, then B is locally compact (see Theorem 10.3).

Proof. Let $b \in B$. By Lemma 1.2, $c(b) \cap A \neq \emptyset$; take $a \in c(b) \cap A$. Then $a \in O \cap A \subseteq M \subseteq A$ for some open set O and some compact set M. Then $b \in O \cap B \subseteq B \cap (M \cup CA)$ and $B \cap (M \cup CA)$ is a compact subset of B.

5. Uniform spaces

Theorem 5.1. Let (X, \mathcal{Q}) be a uniform space and $A \equiv B$ in X. If A is complete, then B is complete.

Proof. Let $S: D \rightarrow B$ be a Cauchy net. Then by Lemma 1. 2, $c(S(d)) \cap A \neq \emptyset$ for each $d \in D$; let $a_d \in c(S(d)) \cap A$ for each $d \in D$ and let $T: D \rightarrow A$ via $T(d) = a_d$. Then $T: D \rightarrow A$ is a Cauchy net. To see this, let $U \in \mathcal{U}$, U closed. Then $(S(d'), S(d'')) \in U$ for all d', $d'' \geq d^*$ and hence $(a_{d'}, a_{d''}) \in c(S(d'), S(d'') \subseteq U$ for all d', $d'' \geq d^*$. Since A is complete, there exists an $a \in A$ such that $\lim_{} T = a$. Let $b \in c(a) \cap B$. Then $\lim_{} S = b$; for if $b \in O$, O open, then $a \in O$ and hence $T(d) \in O$ for all $d \geq M$. It follows that $S(d) \in O$ for all $d \geq M$.

Theorem 5.2. Let (X, \mathcal{U}) be a uniform space and $A \equiv B$ in X. If A is totally bounded, so is B.

Proof. Let $U \subseteq U$, U open. Then there exist $a_i \subseteq A$ such that $A \subseteq U[a_1] \cup \cdots \cup U[a_n]$. By Lemma 1.2, $c(a_i) \cap B \neq \emptyset$; take $b_i \in c(a_i) \cap B$. Then $B \subseteq U[a_1] \cup \cdots \cup U[a_n]$ since $U[a_i]$ is open. $U[a_i] \subseteq U[b_i]$ implies that $B \subseteq U[b_1] \cup \cdots \cup U[b_n]$.

6. R_0 -spaces. Introduction

Theorem 6.1. Let X be an R_0 -space (see Example 3.1). If $A \equiv B$

NORMAN LEVINE

and A and B are closed, then A=B (see Example 1.4).

Proof. Let $a \in A$ and suppose that $a \notin B$. Then $a \in CB$ and hence $c(a) \subseteq CB$. Thus $c(a) \cap B = \emptyset$, contrary to Lemma 1.2.

Theorem 6.2. Let X be an R_0 -space and $A \equiv B$ in X. If A is dense, then B is dense.

Proof. Let O be a nonempty open set. Then $A \cap O \neq \emptyset$; take $a \in A \cap O$. Then $c(a) \cap B \neq \emptyset$ by Lemma 1.2 and $c(a) \subseteq O$. Thus $O \cap B \supseteq c(a) \cap B \neq \emptyset$.

In Example 1.4, $\{b\} \equiv X$, but $\{b\}$ is not dense.

Theorem 6.3. Let X be an R_0 -space and $A \equiv B$ in X. If O is an open set, then $A \cap O \equiv B \cap O$ (see Theorem 2.2).

Proof. Let $a \in A \cap O$. Then $c(a) \cap B \neq \emptyset$ by Lemma 1.2. But $c(a) \cap B \cap O = c(a) \cap B \neq \emptyset$. Using Lemma 1.2 again, $A \cap O \equiv B \cap O$.

In Example 1.4, let $O = \{a\}$. Then $\{b\} \equiv X$, but $\{b\} \cap O \not\equiv X \cap O$ and O is open.

Theorem 6.4. Let X be an R_0 -space and $A \equiv B$ in X. If each closed set in A is a G_δ in A, then each closed set in B is a G_δ in B.

Proof. Consider $B \cap E$ where E is closed in X. Then $A \cap E$ is closed in A and hence $A \cap E = \cap \{A \cap O_i : i \ge 1\}$ where each O_i is open in X. It suffices to show that $B \cap E = \cap \{B \cap O_i : i \ge 1\}$. By Theorem 2.2, $B \cap E = A \cap E$ and since $A \cap E \subseteq O_i$ for each i, it follows that $B \cap E \subseteq O_i$ for each i and thus $B \cap E \subseteq \cap \{B \cap O_i : i \ge 1\}$. Conversely, let $b \in B \cap O_i$ for each i; it suffices to show that $b \in E$. By Lemma 1.2, $c(b) \cap A \ne \emptyset$; take $a \in c(b) \cap A$. Then $a \in c(b) \subseteq O_i$ and hence $a \in A \cap E$. But $b \in c(a) \subseteq E$ and hence $b \in E$ (in an R_0 -space, $a \in c(b)$ implies that $b \in c(a)$).

In Example 1.4, $\{b\} \equiv X$ and $\{b\}$ has the property that each closed set in $\{b\}$ is a G_{δ} in $\{b\}$. In X, $\{b\}$ is a closed set which is not a G_{δ} .

Theorem 6.5. Let X be an R_0 -space and $A \subseteq X$. Then $\cap \{c(a) : a \in A\}$ is the largest set which is equivalent to A (see Theorem 1.8).

Proof. By Theorem 1.8, it suffices to show that $\cup \{c(a) : a \in A\} = A^*$ (see Definition 1.5). Now $a \in A$ implies $c(a) \subseteq O$ when $A \subseteq O$ and O is open. Thus $\cup \{c(a) : a \in A\} \subseteq \cap \{O : A \subseteq O, O \text{ open}\} = A^*$. Suppose next that $x \notin \bigcup \{c(a) : a \in A\}$. Then $x \in \mathcal{C}c(a)$ for each $a \in A$ and hence $c(x) \subseteq \mathcal{C}c(a)$ since $\mathcal{C}c(a)$ is an open set. It follows then that $c(x) \cap A = \emptyset$

118

and $A \subseteq Cc(x)$ and Cc(x) is an open set such that $x \notin Cc(x)$. Thus $x \notin A^*$.

In Example 1.4, $\{b\} \equiv X$, and $\bigcup \{c(b): b \in B\} = B$; but B is not the largest set equivalent to B.

7. R_0 -spaces. Connectedness

Theorem 7.1. Let X be an R_0 -space and let $A \equiv B$. If A is connected, then B is connected.

Proof. Suppose B is disconnected. Then there exist open sets O_1 and O_2 such that $B = (O_1 \cap B) \cup (O_2 \cap B)$, $B \cap O_1 \cap O_2 = \emptyset$ and $B \cap O_1 \neq \emptyset$ $\neq B \cap O_2$. Since $B \subseteq O_1 \cup O_2$, it follows that $A \subseteq O_1 \cup O_2$ and hence $A = (A \cap O_1) \cup (A \cap O_2)$. If $A \cap O_1 = \emptyset$, then $A \subseteq O_2$ which implies that $B \subseteq O_2$. Then $\emptyset \neq B \cap O_1 = B \cap O_2 \cap O_1$ and $B \cap O_2 \cap O_1 \neq \emptyset$, a contradiction. Thus $A \cap O_1 \neq \emptyset \neq A \cap O_2$. Since A is connected, it follows that $A \cap O_1 \cap O_2 \neq \emptyset$; let $a \in A \cap O_1 \cap O_2$. Since $A \cap O_1 \cap O_2$ and $A \cap O_1 \cap O_2 \cap O_2 \cap O_3 \cap O_4$ and thus $C(a) \cap B = \emptyset$. Thus $C(a) \cap C(A) \cap C(A) \cap C(A)$ by Lemma 1.2, a contradiction.

Example 7.2. Let $X = \{a, b, c\}$ with open sets \emptyset , $\{a\}$, $\{a, b\}$, $\{a, c\}$, X. Then $\{b, c\} \equiv X$, X is connected and $\{b, c\}$ is disconnected. Thus the R_0 condition cannot be removed from Theorem 7.1.

Theorem 7.3. Let X be a space $(R_n \text{ not assumed here})$ and $A \equiv B$ with $A \subseteq B$. If A is connected, so is B.

Proof. Suppose that $B = (B \cap O_1) \cup (B \cap O_2)$ where O_i is open and $B \cap O_i \neq \emptyset$ and $B \cap O_1 \cap O_2 = \emptyset$. Now $A \subseteq B \subseteq O_1 \cup O_2$ and hence $A = (A \cap O_1) \cup (A \cap O_2)$. If $A \cap O_1 = \emptyset$, then $A \subseteq O_2$ and hence $B \subseteq O_2$; thus $B \cap O_1 \cap O_2 = B \cap O_1 \neq \emptyset$ and $B \cap O_1 \cap O_2 \neq \emptyset$, a contradiction. Thus $A \cap O_1 \neq \emptyset \neq A \cap O_2$. But $A \cap O_1 \cap O_2 \subseteq A \cap \mathcal{C}B = \emptyset$ and hence A is disconnected, a contradiction.

Note that in Theorem 7.3, if we assume that B is connected, we cannot deduce that A is connected (see Example 7.2). Note also in Example 7.2 that X is path connected while $\{b, c\}$ is not.

Lemma 7.4. Let X be an R_0 -space and suppose that $f: [0, 1] \rightarrow X$ is continuous. Then $g: [0, 1] \rightarrow X$ is continuous if $g(t) \in c(f(t))$ for all $t \in [0, 1]$.

Proof. Let $E \subseteq X$, E closed. It suffices to show that $g^{-1}[E] = f^{-1}[E]$. Now $t \in g^{-1}[E]$ iff $g(t) \in E$ iff $c(g(t)) \subseteq E$ iff $c(f(t)) \subseteq E$ iff $f(t) \in E$

120

iff $t \in f^{-1}[E]$. Note that in an R_0 -space X, $x \in c(y)$ implies that $y \in c(x)$.

Theorem 7.5. Let X be an R_0 -space and let $A \equiv B$. If A is path connected, then B is path connected.

Proof. Let b_1 , $b_2 \in B$. Take $a_1 \in c(b_1) \cap A$ and $a_2 \in c(b_2) \cap A$. There exists a continuous map $f: [0, 1] \to A$ such that $f(0) = a_1$ and $f(1) = a_2$. Let $g: [0, 1] \to B$ as follows: $g(0) = b_1$ and $g(1) = b_2$, $g(t) \in c(f(t)) \cap B$ for 0 < t < 1. By Lemma 7.4, g is continuous on B.

Theorem 7.6. In an R_0 -space X, let $A \equiv B$. If A is locally connected, then B is locally connected.

Proof. Let $b \in O \cap B$, O being open in X. By Lemma 1.2, $c(b) \cap A \neq \emptyset$; let $a \in c(b) \cap A$. Then $a \in c(b) \cap A \subseteq O \cap A$. Hence there exists a set O^* open in X such that $a \in O^* \cap A \subseteq O \cap A$ and $O^* \cap A$ is connected. Now $b \in O^* \cap B$ and $O^* \cap A = O^* \cap B$ by Theorem 6.3 and hence $O^* \cap B$ is connected by Theorem 7.1. It suffices then to show that $O^* \cap B \subseteq O \cap B$. Let $x \in O^* \cap B$; then $c(x) \subseteq O^*$ and $c(x) \cap A \neq \emptyset$. Let $y \in c(x) \cap A$. Then $y \in O^* \cap A \subseteq O \cap A$ and hence $x \in c(y) \subseteq O$. Thus $x \in O \cap B$.

Example 7.7. Let (X, \mathcal{I}) be the rationals with the usual topology and $y \notin X$; let $Y = X \cup \{y\}$. Let $U = \mathcal{I} \cup \{Y\}$. Then $\{y\} \equiv Y$, $\{y\}$ is locally connected, but Y is not. Note that Y is not an R_0 -space.

8. R_0 , separation

Theorem 8.1. Let X be an R_0 -space and suppose that $A \equiv B$. If A is regular, then B is regular.

Proof. Let $b \in O \cap B$, O being open in X. Then $c(b) \cap A \neq \emptyset$ by Lemma 1.2; take $a \in c(b) \cap A$. Then $a \in O \cap A$ and hence there exist an open set O^* and a closed set E such that $a \in O^* \cap A \subseteq E \cap A \subseteq O \cap A$. It is easy to show that $b \in O^* \cap B \subseteq E \cap B \subseteq O \cap B$.

Lemma 8.2. Let X and Y be spaces, X being an R_0 -space. Suppose that $A \equiv B$ in X and that $f: A \rightarrow Y$ is continuous. Let $g: B \rightarrow Y$ be defined as follows: for $b \in B$, let $g(b) \in f[c(b) \cap A]$. Then $g: B \rightarrow Y$ is continuous.

Proof. Let $E \subseteq Y$, E closed. Then $f^{-1}[E] = A \cap F$ for some closed set F. It suffices to show that $g^{-1}[E] = B \cap F$ or that $g^{-1}[E] \subseteq F$. Let $b \in g^{-1}[E]$. Then $g(b) \in E$ and $g(b) \in f[c(b) \cap A]$ or g(b) = f(a) where $a \in c(b) \cap A$. Then $f(a) \in E$ and hence $a \in f^{-1}[E] \subseteq F$. $b \in c(a) \subseteq F$.

Theorem 8.3. Let $A \equiv B$ in an R_0 -space X. If A is completely regular, then B is completely regular.

Proof. Let $b \in O \cap B$, O being open in X. By Lemma 1. 2, $c(b) \cap A \neq \emptyset$; take $a \in c(b) \cap A$. It follows that $a \in O \cap A$. Since A is completely regular, there exists a continuous map $f: A \to [0, 1]$ such that f(a) = 0 and $f(a^*) = 1$ for all $a^* \in A - O$. Let $g: B \to [0, 1]$ be as in Lemma 8.2, g(b) being taken as f(a). Then g(b) = f(a) = 0. Now let $b^* \in B - O$. Then $c(b^*) \subseteq CO$ and $a^* \in c(b^*) \cap A$ which implies that $a^* \in A - O$ and thus $g(b^*) = f(a^*) = 1$. $g: B \to [0, 1]$ is continuous by Lemma 8.2.

In Example 1.4. $\{b\} \equiv X$, $\{b\}$ is completely regular, but X is not completely regular.

Theorem 8.4. Let $A \equiv B$ in an R_0 -space X. If A is normal, then B is normal.

Proof. Let $B \cap F \cap E = \emptyset$, E and F being closed in X. Then $B \subseteq \mathcal{C}(E \cap F)$, an open set, and hence $A \subseteq \mathcal{C}(E \cap F)$ and $A \cap E \cap F = \emptyset$. Since A is normal, there exist open sets O_1 and O_2 in X such that $A \cap E \subseteq A \cap O_1$ and $A \cap F \subseteq A \cap O_2$ and $A \cap O_1 \cap O_2 = \emptyset$. Applying Theorem 2.2, it follows that $B \cap E \subseteq B \cap O_1$ and $B \cap F \subseteq B \cap O_2$. It remains to show that $B \cap O_1 \cap O_2 = \emptyset$. Suppose $b \in B \cap O_1 \cap O_2$. Take $a \in c(b) \cap A$; then $a \in O_1 \cap O_2 \cap A$, a contradiction.

In Example 7.2, $\{b, c\} \equiv X$, $\{b, c\}$ is normal, but X is not.

Theorem 8.5. Let A be a completely normal subspace of an R_0 -space X. Then $\cup \{c(a) : a \in A\}$ is completely normal.

Proof. Let $B \subseteq \bigcup \{c(a) : a \in A\}$. We must show that B is normal. Let $A^{\sharp} = \{a : c(a) \cap B \neq \emptyset, a \in A\}$. It suffices to show that $\bigcup \{c(b) : b \in B\} = \bigcup \{c(a) : a \in A^{\sharp}\}$ since A^{\sharp} is normal and is equivalent to $\bigcup \{c(a) : a \in A^{\sharp}\}$ and B is equivalent to $\bigcup \{c(b) : b \in B\}$ (see Theorem 8.4). Let $x \in c(b)$ for some $b \in B$. Then $b \in c(a)$ for some $a \in A$. Then $x \in c(b) \subseteq c(a)$ and hence $a \in A^{\sharp}$. Thus $x \in \bigcup \{c(a) : a \in A^{\sharp}\}$. Conversely, let $y \in c(a)$ for some $a \in A^{\sharp}$. Then $c(a) \cap B \neq \emptyset$; let $b \in c(a) \cap B$. They $y \in c(a) \subseteq c(b)$.

Corollary 8.6. In an R_0 -space X, let $A \equiv B$, A being completely normal. Then B is completely normal.

Proof. By Theorem 8.5, $\cup \{c(a) : a \in A\}$ is completely normal and by Theorem 6.5, $B \subseteq \cup \{c(a) : a \in A\}$. Hence B is completely normal.

122

9. R_0 and conutability

Theorem 9.1. Let $A \equiv B$ in an R_0 -space X. If A is separable, then B is separable.

Proof. Let $\{a_n : n \ge 1\}$ be dense in A. Take $b_n \in c(a_n) \cap B$ for each $n \ge 1$. Then $\{b_n : n \ge 1\}$ is dense in B; let $\emptyset \ne O \cap B$ were O is open in A. Choose $b \in O \cap B$ and let $a \in c(b) \cap A$. Then $a \in O \cap A$. Since $O \cap A \ne \emptyset$, $a_n \in O \cap A$ for some n. It follows then that $b_n \in O \cap B$.

Example 9.2. Let (X, \mathcal{G}) be an uncountable discrete space and $y \notin X$; let $Y = X \cup \{y\}$ and $U = \mathcal{G} \cup \{Y\}$. Then $\{y\} \equiv Y$, $\{y\}$ is separable, but Y is not separable.

Theorem 9.3. In an R_0 -space X, let $A \equiv B$ and let A be a second axiom space. Then B is second axiom.

Proof. If $\{A \cap O_i : i \geq 1, O_i \text{ open in } X\}$ is a base for $A \cap \mathcal{I}$, then $\{B \cap O_i : i \geq 1\}$ is a base for $B \cap \mathcal{I}$.

In Example 9.2, $\{y\}$ is second axiom, but Y is not.

10. R_0 and local compactness, paracompactness

Lemma 10.1. In an R_0 -space X, let A be locally compact. Then $\cup \{c(a) : a \in A\}$ is locally compact.

Proof. Let $x \in \bigcup \{c(a) : a \in A\}$. Then $x \in c(a^*)$ for some $a^* \in A$ and hence there exists an open set O and a compact set M such that $a^* \in O \cap A \subseteq M \subseteq A$. Then $x \in O \cap \bigcup \{c(a) : a \in A\} \subseteq \bigcup \{c(m) : m \in M\} \subseteq \bigcup \{c(a) : a \in A\}$. Now $M \equiv \bigcup \{c(m) : m \in M\}$ and since M is compact, so is $\bigcup \{c(m) : m \in M\}$ (see Theorems 6.5 and 4.1).

Lemma 10.2. In an R_0 -space X, A is locally compact if $\bigcup \{c(u) : a \in A\}$ is locally compact.

Proof. Let $a^* \in A$; there exists an open set O and a compact set M such that $a^* \in O \cap \cup \{c(a) : a \in A\} \subseteq M \subseteq \cup \{c(a) : a \in A\}$. Then $a^* \in O \cap A \subseteq A \cap \cup \{c(m) : m \in M\} \subseteq A$. We need only show that $A \cap \cup \{c(m) : m \in M\}$ is compact. By Theorem 4.1 and Theorem 6.5, it suffices to show that $\cup \{c(a') : a' \in A \cap \cup \{c(m) : m \in M\}\}$ is compact. The reader can easily verify that this set is merely $\cup \{c(m) : m \in M\}$ which is compact.

Theorem 10.3. In an R_0 -space, let $A \equiv B$. If A is locally compact, then B is locally compact (see Theorem 4.3).

Proof. A locally compact implies that $\bigcup \{c(a) : a \in A\}$ is locally compact (Lemma 10.1). But $\bigcup \{c(a) : a \in A\} = \bigcup \{c(b) : b \in B\}$. Hence B is locally compact by Lemma 10.2.

Theorem 10.4. In an R_0 -space X, let $A \equiv B$ and suppose that A is paracompact. Then B is paracompact.

Proof. Suppose that $B=B\cap\cup\{O_\alpha:\alpha\in\triangle\}$ where each O_α is open in X. Then $B\subseteq\cup\{O_\alpha:\alpha\in\triangle\}$ and hence $A\subseteq\cup\{O_\alpha:\alpha\in\triangle\}$. There exists then a family of open sets $\{O_\gamma:\gamma\in\Gamma\}$ such that $A=\cup\{A\cap O_\gamma:\gamma\in\Gamma\}$ is locally finite in A and $\{A\cap O_\tau:\gamma\in\Gamma\}$ refines $\{A\cap O_\alpha:\alpha\in\triangle\}$. Thus $B=\cup\{B\cap O_\gamma:\gamma\in\Gamma\}$, $\{B\cap O_\gamma:\gamma\in\Gamma\}$ is locally finite in A and $\{B\cap O_\tau:\gamma\in\Gamma\}$ refines $\{B\cap O_\alpha:\alpha\in\triangle\}$. The details are left to the reader.

REFERENCES

- [1] JOHN L. KELLEY: General Topology, D. Van Nostrand Company, Inc. 1955.
- [2] WILLIAM J. PERVIN: Foundations of General Topology, Academic Press, 1964.

THE OHIO STATE UNIVERSITY

(Received November 9, 1971)