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PLASTERABLE CONES IN LOCALLY CONVEX
HAUSDORFF SPACES

JonN T. HOFLER

1. Let (E, 7, K) be a locally convex Hausdorff space ordered by a
cone K. (Recall that aset K is aconeif and only if K+ KESK, ' KSK
(A=0), and KN —K={0}.) A linear functional f defined on (E, 7, K)
is called positive if f(¥)=0 (xEK). A positive linear functional f is
called strictly positive if f(x)>0 (0s£x€K). We say f is uniformly
positive on K 1if for every continuous seminorm p there exists a positive
number ¢, such that f(x)=a,p(x) (xEK). A cone K allows plastering
by a cone K, if there exists a family P of seminorms generating - such
that each 0s4xE K is an interior point of K, and furthermore, for each
PEP there exists ¢,>0 such that 0+#x,EK implies {x+k: p(H)<a,
pa)} EK,.. We sometimes say K is plasterable by K, A cone K has a
base if and only if there exists a nonempty convex set B such that each
0£x€K has a unique representation of the form x=41iy (>0, yEB). It
is known, see [5, Prop. 3.6, p. 26], that a subset B of a vector space
E ordered by a cone K is a base for K if and only if there is a strictly
positive linear functional f defined on E such that B=f"'(1)N K. This
motivates the following defintion, see [4]. A subset B of an ordered
locally convex space (E, <, K) is a hyperbase for K if and only if there
is a strictly positive continuous linear functional defined on £ such that
B=f"'(1)NK. The definitions of a uniformly positive linear functional
and a cone being plasterable are abstractions of Banach space definitions
stated by Krasnoselskii [2, pp. 31-—32]. In [2, p. 32] Krasnoselskii shows
for a closed cone K in a Banach space that the existence of a uniformly
positive continuous linear functional and K plasterable are equivalent.
In this paper the above mentioned theorem of Krasnoselskii is extended
to ordered locally convex Hausdorff spaces and relationships between
hyperbasis, positive continuous linear functionals, and generating families
of seminorms with certain properties are examined.

2. We begin with the following result.

Theorem 1. Let (E, 7, K) be an ordered locally convex Hausdorff
space with topological dual E'. The following are equivalent.
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a) K has a hyperbase.

b) There exists fEE!' such that f is strictly positive on K.

¢) There exists a cone K, such that each nonzero element of K is
an interior point of K..

If, in addition, (E, <, K) is separable and barrelled, the above are
equivalent to the following.

d) 7 is generated by a family P={p} of seminorms with the pro-
perty that for each 0#<x,EK and pE P there exists €>0 for which
{x:p(x—x)<e)N—K=0.

Proof. The equivalence of a) and b) is simply the definition of K
has a hyperbase. To show b) implies c), suppose f=EE' and f is strictly
positive on K. It follows easily that K,={x€E|x=¢ty ¢>0,y=f7'(1))}
is a cone such that each 0s%xE K is an interior point of K, If there
exists a cone K, such that every nonzero element of K is contained in
the interior of K, then the existence of a nonzero fEE' such that f(x)
>0 (x€K) is guaranteed by [6, p. 29]. Thus ¢) implies b).

Now assume © is generated by a family P={p} of seminorms with
the property described in d). Choose some pE P and let S={x:px)<1}.
Since S’={f€E’'||f(*)]|<1 (x€S)} is ¢(E', E)-compact and K'={f&E’|
f(®)=0(x€E)} is o(E!, E)-closed, S'NK’ is a ¢(E’, E) compact subset
of E'. Let {x,]JnEN} be a countable dense subset of E, and define a
metric on S°’NK' by

s 1 filx) —folzn) |
o )= B T Al —fuled ]
The metric defines a Hausdorff topology on S°N K' which is weaker than
the a(E’, E)-topology on §°NK'. Thus the metric topology is equivalent
to the &(E’, E)-topology on S"NK' by [1, p. 18]. Therefore SN K’ with
the o(E’, E)-topology is a compact metric space. Let {f,|(#=N)} be a
countable dense subset of S'NK’. For each x=E, define f, by fi(x)=

i% f.(x). Since E’ is o(E!, E)-sequentially complete, f,&E'. If 0s%

xE€E, then the condition on p given in d) implies x&o(E, E') closure of
—K. Hence there exists an #n, such that f, (#)>0. Thus f is a strictly
positive continuous linear functional and {x: fi(x)=1} N K is a hyperbase
for K. Thus d) implies b). On the other hand, if fEE’ is strictly posi-
tive on K, then {p|p is a continuous seminorm and p(x)=|f(x)| (xS E)}
is a generating family of seminorms for = which satisfies the condition in
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d). Thus b) implies d).

The following lemma is stated without proof in [2, p. 30] for real
Banach spaces. It actually holds in any real normed linear space. The
proof is straightforward and is omitted.

Lemma 2. Let (E, ||-||) be a real normed linear space, fEE', and
%EE. Then |f(x)]=inf {||x—yll:y=f7(0)}.
The above lemma is used to prove the following theorem.

Theorem 3. Let (E, 7, K) be an ordered locally convex Hausdorff
space. The following are equivalent.

a) K has a bounded hyperbase.

b) There exists fEE' such that f is uniformly positive on K.

¢ K allows plastering by a cone K.

Proof. To prove a) => b), suppose p is a continuous seminorm and
K has a bounded hyperbase B=f"'(1)N K, where fEE’ is strictly posi-
tive. If y=K and y5<0, then there exists x&B and 2>0 such that
y=2lx. If p(z)=0 (z=B), then f(y)=a, Ap(x)=0 for any «,>0. If p(2)

1
0 for some zEB, then f(y)=fAx)=if(x)=2= sip(p()|2€B] ().
Thus f is uniformly positive on K.

Suppose fEE', f is uniformly positive on K, and @ is the family
of all continuous seminorms on (E, 7). Let N={x€E|f(x)=1}, then
K,={y€E|y=tx (=0, xN)} is a plastering for K. It is clear that K
is a cone and K< K, Foreach g=Q let @, be such that f(x)=eg(x)
(x€K). It then follows that P={pEQ: p»)=|f(®)|(x€E)} is a -
generating family of seminorms, and N,(x)={x+A:hEE and p(h)<

—a"—]f—z(&)—l}_c_K, for each 0s£x,=K. For 0<f(x))<<p(x,) implies f(x,+

1) = Fr)— | F@) = a,0) — p () = a,p(e) — 0,20 — GBI 50, ang
X+ 5
S %o+ h)

To prove that c¢)=>a) suppose K is plasterable by a cone K, Let
Q@={qg} be a generating family of seminorms such that for each g there
exists ,>0 for which {x,+#4|g(h)=a,q(x)} = K,(05#x,EK). By [6,p.
64] there exists a nonzero f&=K' such that the interior of K, is contain-
ed in {#€E:f(x)>0}. Therefore K,S{s€SE:f(x)=0}=W, and f is
strictly positive on K. Therefore f'(1)NK=B is a base for K. It

therefore =N. Hence b)=>c¢).
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remains to show that B is bounded. For each ¢g= @ define p by plx)=
sup {|f(x)]|, ¢(x)}). Let P={p} denote the family of seminorms obtained
by letting ¢ range over @, and let ¢, denote min{a, 1}. P generates
z.  Furthermore, {x,+4:p(h)<a,p(x)} S W for each 05#xEK, since

0<fxn)<<p(x) and p(M=<e,p(x,) imply flxo+ Iz)>£”jz£‘i> 0. There-

. +h
fore x,~h= W, since — %o
’ S+ h)

Suppose that K is plasterable by a cone K;. Let @={gq} be a
generating family of seminorms such that for each ¢ there exists ¢,>0
for which {x+k|g(W)<a,q(x)}SK, (0#4x,EK). By [6, p. 64] there
exists a nonzero fEE' such that the interior of K, is contained in {z€
E|f(x)>0). Since K is contained in the interior of K, f is strictly
positive on K. Therefore f'(1)NK=B is a hyperbase for K, It
remains to show that B is bounded, and hence that (c) implies (a). For
each ¢=@ define p by p(x)=sup{|f(x}|, ¢x)} and @, by ,=min{e,
1}, Let P={p} be the family of seminorms obtained in the above man-
ner by letting ¢ range over all seminorms in €. P generates -, and
{xo+b:p(D<a,p(x)} S W for each 0Fx,=K. Let E,={[2]][x]={x,
+h|p(h)=0}} topologized by the morm [|[«]|l,=p(y) (yE[«]). Since
for each pEP p(x)=|f(x)| (x€E), the functional f, defined on E, by
H([2D)=f(y) (y=[x]) is linear and f,EE, (p=P). Let ||f,l|, denote
the norm of the linear functional f, with domain E,. We now show, for

each pE P, that f (x)2% p(x) (x€K). Suppose %K and p(x)540.

Then by Lemma 2, f(x)=/f([x])=I[/Il, inf {||[x]—=[2]I,|[p]1Ef"
O }=ilfll, inf {p—|[y]EL O} =fll, inf {plx—2)|yEfT O}
If inf {p(x—|yESTO)}<ap(x,), then p(x,—x)<<a,p(x,) for some x,E
F7Y0). However, p(x,—x)<<a,p(x,) implies {(sSE|px—x)<a,p(x,)—
px—x)} S W, since pla—x)<a,p(x)—p—=x) implies p(x,—2)<p(x,
—x)+ a,p(x) —p(He—x)=a,p(x,). We therefore have 1, belongs to the
interior of W, and so f(x,)>0. This is a contradiction as x,&570).
Therefore inf{p (x,—)|y=f'(0)}=a,p (x,). It therefore follows that
Fad= Ml epp(x) (0s£2,=K). Hence f'(1)NK=B is bounded, since

=p(x) (xEB).

€N and f(x-+k#)>0.

1
A

It shall be pointed out that Theorem 3 is weaker than Krasnoselskii’s
in the following sense. Although Theorem 3 does hold in Banach spaces
with the additional requirement that a cone be closed, we are not assum-
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ing in this paper that a cone is necessarily closed. Furthermore, it is
unknown to the author if in a locally convex space a closed cone with a
bounded hyperbase necessarily allows plastering by a closed cone. In
Krasnoselski's result the cone K, which plasters the cone K also has a
bounded hyperbase and hence K, is normal. But a locally convex space
ordered by a normal cone with nonempty interior is necessarily normable
(5, p. 67]. Hence Krasnoselski’s proof will not generalize to obtain a
clesed cone K, which plasters K. We formalize the above discussion in
the following theorem.

Theorem 4. Let (E, <) be a locally convex space ordered by a closed
cone K, which allows plastering then K allows plastering by a closed
cone with a bounded hyperbase if and only if (E, 7) is norinable.

Furthermore, it is unknown to the author if in a locally convex space
a closed cone with a bounded hyperbase necessarily allows plastering by a
closed cone K,

3. We conclude with some examples of cones in locally convex spaces
which allow plastering.

Example 1. Let (s) be the space of all real sequences topologized in
the usual manner, and K= {x<=(s) x,=21,=0 ({1=1, 2, ------ )}. The linear
functional f defined by f(x)=2x, (x=(x)) is strictly positive on K and
{xeK|x,=1} is a bounded hyperbase for K.

Example 2. Let (F, v) be a locally convex Hausdorff space and fur-
thermore suppose that x, is a nonzero element of E. Then there exists
fEE' such that f(x,)=1. Define the projection T from E onto the
subspace spanned by x, by T(x)=f(x)x. (xEE). Let P be a generating
family of continuous seminorms on (E, ©) such that for each p= P, p(x)=
|f(x)] x€EE). Let K={2SE:f(x)=0 and ¢(Tx)=q(I—T)x) (¢ P)}.
K 1is a closed cone with a bounded hyperbase.

Example 3. As a special case of Example 2 cne might consider a
locally convex Hausdorff space (F, ) with Schauder basis (%, f,). Let
P={p} be a generating family of --continuous seminorms such that p(x)

=|fi(®)] (x€E). Define K={ifn(x)anE|ﬁ(x)2() and P(ﬁ(x)xx)Zp(i:
ful@)x,) (PE P).

e

Example 4. A yet more restrictive case of the above is the Loren-
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tzian cone [3, pp. 48—53] in £, In this case K={(x)=2=f,: t,=0
and x12]/ i %}
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