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ANOTHER PROOF OF THE INVARIANCE OF
ULM’S FUNCTIONS IN COMMUTATIVE
MODULAR GROUP RINGS

PAUL F. DUBOIS and SUDARSHAN K. SEHGAL

In this note we give a short and natural proof of the following theorem
due to Berman and Mollov [1] and May [2].

Theorem. Let Z,G be the group ring of a p-primary group G over
Z,, the field of p elements. Suppose 0:Z,G=Z,H, Then G and H
have the same Ulm's functions.

The proof is a direct consequence of a lemma of Jennings [3] which
we give below. First, we need some notation. We write all groups
multiplicatively and define G*={g& G|g=1" for some x=G}. Induc-
tively, for ordinals # we have

¢*"=(6")" and 6”=NG"

a<B
for 3 a limit ordinal.

If K is asubgroup of G, by A(G; K) we mean the ideal of Z,G
generated by elements of the form 1—k kEK. Sometimes we write
A(K) if the context is clear. Wedenote {xEK|2*=1} by K[p].

Lemma. Let G be a p-primary abelian group and N a subgroup.
Then

1) G/G'=A(G)] A YG), and
(2) N/N*=A(G; N)/AG)-A(G; N).

Proof. Define 2: G — A(G)/ANG) by 2g)=g—1-+A*G). Since

(*) g.8:—1= (gi—D+ (g:— D+ (g.—1)(g.—1),
2 is an epimorphism with kernel={g€Glg—1€A (G }=G" by Jen-
nings [3], proving (1). Actually, Jennings proved this equality for finite
groups but since in an equation g—1=6€ A*G), only a finite number of
elements of G occur, his result is applicable to our case.

For the second part, define

i N — A(G;N))AG)- (G N) by pn)=n—1.
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It follows from (*) and
gr—1)=n—1+(g—1)n—1)
that ¢ is an epimorphism with kernel ={n|n—1=A(G)-A(G; N)}. It
remains to prove:
(**) n—1=A(G)-A(G; N) > nEN?.
Choose a transversal {g;} of N in G with g,=1. Define for gn<E G,
o(gm)=n and extend this linearly to 6:Z,G—Z,N. Now,

n—1=37:(n -1, 7,.€A(G), n,EN.
Therefore
n—1l=m—1"=>.77n—1) and n—1=A}N; N).
Hence, nEN”. This proves (**) and therefore (2).

Remark. The above lemma is a special case of a similar result that
holds for arbitrary (not necessarily abelian or finite) groups. Also, there
is a corresponding result for integral group rings (see, Sehgal [4]). For
the purpose of this paper the above will suffice.

Proof of Theorem. Now, suppose ¢:Z,G=Z,H. We may assume
here that ¢ is normalized; if 0(g)= 2,k then >, @,=1. By not-
ing that ¢(g")=(XLrex®nh)’= 2 1en}l”, we have that ¢ maps Z,G” isomor-
phically onto Z,H?. By a simple induction

0:2,6""=Z,H"  for all ordinals 3.

We show first that the finite Ulm invariants are equal. The 7th
Ulm invariant, i<w (the first limit ordinal), is the dimension of
(G"Y[p1)(G" Y[ p]l. For convenience let us denote (G"H[p] by L.

By the lemma we have an isomorphism

L= (G; Ls)/A(G)'A(G; L).
Under 0, A(L;) is isomorphic to A(M,) where M,=(H")[p].
Thus we obtain for each / the commutative diagram below :
L = ALY AGIAL) = AM)/ AH)AM) = M,

7 T ) i
Lin=A(Li)/ A(G)A(Lis) =AMy | DH)A (M) =M.,

and thus Lf/Li,-}-l ME/M-Ho
The observation that ZPG"B”—"Z,,H”ﬂ allows us to conclude that even

the transfinite Ulm invariants are equal.
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