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A FIXPOINT THEOREM ON Sp(n)/U (n)
TOSHIYUKI MAEBASHI

Introduction. The Riemann sphere M can be mapped onto the
extended complex plane by the stereographic projection, under which the
Southern hemisphere of M is sent onto the unit disk M, while the

Northern one onto {z Ii ¢ M,}. The latter can be mapped conformally onto

the former. These hemisphefes are separated by the unit circle, their
common boundary. On the other hand, from the group-theoretical point
of view, M, can be seen to be a Hermitian symmetric manifold on which
the multiplicative group G, of matrices

(f d [ @3eC and aa — 33=1
B a

acts transitively and M, moreover, can be written as G,/U(1) if U(1) (=
{expy—10 | 0 ¢ R} is identified with a subgroup of G, by a representa-
tion ;

u 0
) v — () (e U(1)).
0 u
G, is conjugate to S,(1, R) and the connected group of isometries of M,
is isomorphic canonically to G,/{+1,}. The Riemann sphere M also can
be seen to be a Hermitian symmetric manifold, which is written as
S,(1)/U(1). This symmetric manifold is said to be dual to the preceding
one. The Harish-Chandra realization is, as is easily seen, nothing but the
restriction on the Southern hemisphere of the stereographic projection.
The equator (= the unit circle) has its own group-theoretical meaning.
Actually each transvection of S,(1)/ U(1) has exactly two points fixed. The
set of these fixed- points for all the transvections is precisely the equator.
From the viewpoint of analysis the equator is the Bergmann-Silow bounda-
ry of the Southern hemisphere.
The aim of the present paper is to generalize these facts to the case of
several complex variables.
Let M, be a generalized unit disk

2 {Z|'!Z=2Z and 1,—ZZ > 0}.
Then M, can be considered to be a Hermitian symmetric manifold with
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the symplectic metric
ds’=Tr(dZ(1,—Z2)dZ(1,—ZZ)™)

as an invariant metric. The compact dual of M, is S,(n)/U(n) where we
use the identification (1) of U(x) with a subgronp of S,(n). The connected
group of isometries of M, is

1, —y—11, 1, y=-11,
%( " )s?(n,m( Y )
—y—11, 1, J—11, 1,

which we denote by G,. M, can be considered to be imbedded in M in
the standard way. Then each element of G, can de extended to a holomor-
phic transformation on M in a unique fashion. Then our results are sum-
marized in the following

Theorem a) M is divided into (n+1)(n+2)/2Gyorbits, among which
there exist n+1(= (the rank of M)+1) open G,—orbits and exactly one
compact Gyorbit. The compact one is the Bergmann-Silov boundary of
M* (which is isomophic to U(n)]O(n)).

by The number of the fixed ponts of any non-singular transvection
is 2",

¢) The set of the fixed points of all the non-singular transvections
cotncides with the Bergmann-Silov boundary of M,.

The set of non-degenerate hermitian forms with a given non-degenerate
imaginary part can be considered as a submanifold of S,(n)/U(n) (see sec-
tion 15.) That submanifold has n#+1 connected components corresponding
to the n+1 signatures of the hermitian forms. This gives rise to the
division S,(n)/U(n) by open Gorbits.

1. Notations. For a complex matrix @, ‘e is the transpose of @, @
the complex-conjugate, &* the transposed complex-conjugate and T7 (a)
the trace of @, 1, is the »#-by-z unit matrix. The diagonal matrix with the
i-th diagonal element o (1={{<{n) will be denoted by [ay, **- «,). Let a
and b be n-by-n complex matrices. Then we denote by (e.b) (resp. (a b)')
the 2n-by-2n matrix

(_g g) (resp. (; g ) ).

As above, letters @, b, -+ stand for #-by-n complex matrices throughout
this paper. Lie groups will be denoted by some capital Latin letters and

* This fact is due to Mr. M, Takeuchi.
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the Lie algbras by the corresponding small German letters.

2. We recall here some known facts concerning symmetric manifolds
which will be used in the sequel. Let M be a 2x-by-2n complex matrix.

We write
b
M=( : d) :

Then in order that M e S,(»), it is necessary and sufficient that

c=—b and d=ga
aa* —bb* =1
a'h = ba.

Hence if M & S,(n), we can write M in the form (a b).
The unitary group U(n) can de imbedded in S,(#) by a faithful
representation » defined by

u 0
¥ = — ’
W=, -)
which allows us to identify U(xz) with a subgroup »(U(n)) of S,(n). We
write G instead of Sy(#) and K instead of U(n). The Lie algebra g is
{(ad) | a*= —a and ‘b=0b}.

We write a=(a;) and b=(b,). Then the Killing iorm 3 of g is given by
ﬁ(.XV, .X) = _TT(XX*) = _2121 { la[.jlz_:‘ [bu]z}

where X ¢ g and X=(ab). We denote by p a real vector space
{(0 ) |‘b=0). Then p anb k are mutually orthogonal with respect to 3
and vector space g turns out to be the direct sum of % and p. The
corresponding non-compact form g, is

{(ab) |a*= —a and ‘b=b}.
The Cartan decomposition is
go=k+y—1p

and a Cartan subalgebra common to g and £ is {([as, -, aal0) |y, *-+,
a, € R}, which will be denoted by k. Let h* be the dual space of h. We
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can define an ordering in A* by fixing that a=ma,+ - +m.a, (¢ h*) is
positive if and only if the first non-vanishing coefficient is so. Then the
positive roots relative to this ordering are

arta; (1=Si<j<n), 20 1=iZn)
and the positive non-compact roots are
aita; (LZi<j<n), 20 1<i<Z0).

The complexification of g, denoted by g., is

{( j—-‘z) | 9=b, ‘c=c } .

Since G is simply-connected, there exists a simply-connected complex Lie
group G, with the Lie algebra g, which contains G as a closed subgroup.
It can be considered as S,(n, C). The subgroup G, of G, corresponding

to g, is conjngate to S,(#, R). To be exact we have G0=’%(1n—v‘——1 1,)

Se(n, R) (1, y—1 1,). The sum of the eigen-spaces corresponding to the
positive non-compact roots is

{(g o) 1o=0}:

We shall denote by p* this abelian subalgebra of g.. For the negative
non-compact roots we have in the same may another abelian subalgebra

p-, where
{2 ) 1ues ),

Let p* and p~ be the abelian subgroups of G, that correspond to p* and
p~ respectively. Then we have

p={(g ) 10-1},
e (30 o).

A maximal abelian subalgebra in p is

{(0 &) | d: real diagonal}.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 12/iss2/4
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It is denoted by #,. We write d=[q;, -, #»,]. Then then the roots of
G/ K with respect to /i, are

+ata, (IKi<ij<n), =20, AZi<n).

An element of %, on which some of the roots vanish is called singular.
An element of exp #, is called singular if it is the image of a singular
element of %, by the exponential map. An element of exp p is called a
transvection on G/K (with respect to the Cartan deeomposition under
consideration). Any transvection is the image of some element of exp #,
by K. A transvection is called singuler if it is the image of a singular
element of exp &, by K.

3. Now let us consider a more general background and let G be a
compact connected semisimple Lie group. Let G/K be a Hermitian sym-
metric manifold. Then K is of maximal rank and the center of K isa
1-torus. We denote by p the canonical projection of G onto G/K and by
o the origin p(e). Any element £ of K induces a linear transformation

k of the tangent vector space (G/K)o at o of G/ K (the linear isotropy

representation.). The set of [ constitutes a group K called linear isotropy
group. Suppose this representation is faithful. The center of K is isomor-
phic to the torus

{expV—10]|0=Z0<2z}.

We denote by J the element of K that corresponds to exp y—1 2 (=y—1.)

It is clear that J*= —1, where I is the identity. [, therefore, defines a

complex structure on (G/ K)o invariant under K. This complex structure
is extended to an invariant almost complex structure on G/ K, which turns
out to be integrable. The other complex structure of G/K is defined by
J ie. —1.

4. Let us go back to the manifold S,(n)/U(n). The tangent vector
space (Sp(n)/U(n)) is identifiable with p by the differential of the projec-
tion p. Then for u ¢ U(n) u is identifiable with the restriction on p of
ad(u). We denote by # the linear isotropy representation. The kernel of
7 is {(1.0), —(1.0)}. Hence we write G for S,(#)/{+(1.0)} and K for
Un)/{=(1,0)}. Let p' be the canonical projection of U(n) onto K. We
write

(14+y—1)1,0).

7=

Do
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Then 7 is a complex structure on (G/K)o, where 7=7 p' (). By the

/4

map that sends (0 ) to b, p is identifiable with the vector space over R
of symmetric complex matrices. A symmetric complex matrix can be con-

2windl1) . o -
sidered as a vector of C' * . Using these identifications # may be con-
n‘n+l)

sidered as a complex structure on €~ ? , regarded as a vector space over
R. In fact this complex structure coincides with the usual multiplication

by ¥—1. By this complex structure an invariant complex structure is
defined on G/ K. The other one is what corresponds to the multiplication

- a(n+1)
by —y—1inC 7 .
The same argument holds for the dual symmetric manifold of G/ K.

5. S, (1, C) is nothing but the group of unimodular 2-by-2 matrices.
S.(1) coincides with SU(1). We recall that the quaternion algebra can
be considered as a subfield of the algebra of 2-by-2 matrices (by the regular
representation.) Then S,(1) is the multiplicative group of quaternions of

norm 1, We shall use @, b, ¢, d,... for complex numbers in this section.
Then
ab . _ _
Si(l)eg=—=g= ( - - ) with ae¢ + bb = 1.
—b a
We write
ab- . az+b .
/ — 3 . = '
r'( (c 4 )) the linear transformation: w et d Then 7' is a

representation S,(1, C) into the group of holomorphic transformations on
the extended complex plane C+ {oo} and a conformal transformation.

By the othogonal projection the line-element on the sphere becomes a
line-element ds on the unit disk and

. 4dzdz
4= 0Tz

This line-element makes the unit disk into the (Hermitian) hyperbolic plane.
The group of isometries is generated by
Go= {r'((ad)") | aca—bb=1}

and s,:w=2. The former is the connected component of the identity. The

isotropy group at the origin of G, is the rotation group {exp V—10loeR}.
We denote it by K. Then the unit disk can be considered as a Hermitian
symmetric manifold G,/ K. We can get a (global) Cartan decoposition

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 12/iss2/4
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z+itha

m (lllzl and g, LYSR)

(3) w=expy—10
which might be said to be canonical. The transvections relative to the
above decomposition are

zitha
W= = d ¢ R).
Thazsi (2l =1 and acR)
By the stereographic projection the line-element on the sphere becomes
a line-element ds on the complex plane and

. 4dzdz

e

This line-element makes the extended complex plane into the (Hermitian)
elliptic plane. Then the group of isometries is generated by 7/(S,(1)) and
so. The former is the connected component of the identity. We denote it
by G. The isotropy group at the origin of G is again K. The extended
complex plane can be considered as a Hermitian symmetric manifold G/ K,
or S,(1)/U(1). The decomposition of G corresponding to (3) is

Z"‘]‘rt a"
—p ..1 p = r e ! =1 (I ! ‘R.
w=exp ‘\( 0 —,i’ta{l‘, 1 (ll I and ¢, & )

The transvections are

! !
w= —i;tja—?za-i—l (|2']=1 and a'¢R).

By assigning to each z,=|z| exp w of the unit disk a transvection
with 2=exp w and «a=Arc th |z|, we can get a one-to-one map of the
unit disk onto the set of transvections We can moreover assign to a trans-
vection of hyperbolic geometry a transvection of elliptic geometry, i. e.,
the one with A'=21 and a'= Arc ¢, th «. This transvection also sends the
origin to z,.

6. We use the well-known
Lemma 1. Let b be an n-by-n symmetric complex matrix. Then there
exists @ unitary matrix such that ub'‘u is diagonal. (See [1] for the proof.)

Lemma 2. Let b be an n-by-n symmetric complex matrix. Then there
exisis a unitary matix u such that
(2 0) exp (0 b} (u*0)=([cos ay, -**, c0s a,] sin a;, -+, sin a,]).
Proof. Using the preceding lemma we choose a unitary matrix «
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such that
ubu=[ay, -, an]

where we may suppose ay, *+*, o, are real and positive. For such a matrix
u we have
ubbu* = ub'uub'u= [a1at;, -+~ tntn] .

We write @ for exp(0 %) and R for (u 0). Then we have

@ ) @2i+1)!
Hence we can get
ad(R)é’)= i (___l)l( [013‘,(-2-23?';21]0)
+ o (=l . @d10) (op oy,

i=0 (2 +1).’
=([cos ay, ..., c08 at,] [sin vy, ..., sin aa]).

This completes the proof.
For G,/K an analogy holds good. Namely we have the

Lemma 3. Let b be an n-by-n symmetric matric matrix. Then there
exists a unitary matrix u such that

(z 0)(0 BY(u*0)=[ch i, ***, ch cto][Sh @y, **+, sh tal)

where ci, -, «, are non-negative real numbers.

7. Letgy,...,q, be quaternions of norm 1. Then the set of diagonal
by matrices [q, ***, g.] constitutes a multiplicative group, which we denote

H. We write
(253 ﬂl Ay .‘?n
o=\ _ | = - _]
—ﬁl a _1'91- (2 4%

/7:(41, ) qn)=([0€1» ) a’n][ﬂh Ty fgﬂ]);

then 7 is a representation of H into S,(n). Remember that p is the
canonical projection of Sy(#) onto S,(n)/U(n), Then (po7) (o) is {(exp
J=16y, -, €xp y—1 0,)|0y, ++, 0, ¢ R}. Hence po7 induces an imbedd-

If we define

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 12/iss2/4
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ing 7 of S into G/ K (G=S,(n), K=U(n)), where S denotes the product
of n-copies of the extended complex plane, a complex manifold. We shall
show that ¢ is holomorphic. For that it suffices to prove that the diffe-
rential at any point of 7 is C-linear. For notational simplicity we identify
S with a subset of G/K by i. Then our purpose is to show that the
tangent vector space So of S at the origin o is a complex vector subspace
of (G/K). We have seen (section 4) that (G/ K)o is identifiable with

{(0b)|*b=0b} and the complex structure is given by the usual multiplica-

tion by y—1. On the other hand, as is easily seen So is

{(OEﬁl! ] ﬁn])l[gb M} ﬂn 3 C}-

The complex structure is the tensor product of »# copies of the complex
structure of the complex plane, i.e., this is also the usual multiplication

by y—1. Hence So is a complex vector subspace of (G/K)o.

8. Let us consider the so-called Harish-Chandra realization of a portion
of G/K. Any element Z of p~ has the form

00
( c 0 )
Hence exp Z=
1, 0
( c! 1,.)'
G/K is naturally identical with the complex homogeneous manifold
G./K.P*. exp Z belongs to the coset

{(:’a c’abaf-‘a‘l) | a e GL(n, C), tbzb}-

On the other hand, for any (a b) ¢ S,(#) we can choose a unitary matrix
u such that a=wu[cos ay, **+, €0s a,]u* and b=u[sin q,, «--, sin a,.]'u. Let

us suppose that a is inversible, e. g., 0=ay, -, a. < % . If we write Z
for —ba™!, then we have

1, —ZZ=a[1—tt;, =+, 1 —t, cta]edt.
Hence we see that

111—Zz>090_§_a1) "':an<% .
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Consequently the set of x=p(a b) ¢ G/K with 0=Zqy, -+, ctn <£ consti-

tutes a portion in G/K which is complex analytically homeomorphic to
G,/ K. The realization is the map which sends x of the portion to A(x)=
—ba™. )

We note that we can fix this portion by another method. Let us first
consider the natural imbedding of D into S where D is the product of n
isomorphic copies of the unit disk. D can be considered as a complex sub-
manifold of M, in exactly the same way as S in section 7. We denote the
above imbedding of D into S by 7 and we recall that any transvection of
M, is written ed(k)g with k ¢ K by the use of a transvection of the form
stated in Lemma 3. We define

7*(ad (R)gK )= ad(k)ji(g)K.

It is easily seen that j* is well-defined. j* is a holomorphic imbedding
of M, into M such that j* (M) = h(M,).

9. The algebra 9 of continuous function f on M, that are holomo-
phic in M, becomes a Banach algebra if we define the norm |f| by max
|fl. A maximal ideal © of 9 is the set of functions ¢ 9 which vanish
at a definit point x. /9 is isomorphic to C in the natural way. The
value corresponding to the residue class f— is written f(9). Then F(9)
is a functional defined on the space X of maximal ideals. If we introduce
the usual topology into X, then the map which sends $ to x is a homeo-
morphism of X onto ZVI.,. In analysis it is known that X has a uniquely
defined (ring) boundary namely a minimal closed set on which every f ¢
achieves its maximum. The image by the above homeomorphism of the
(ring) boundary is called Bergmann-Silov boundary of M,.

10. S,(n) is a subgroup of U(2xn) and U(n), contained in S,(n), is a
subgroup of U(n)X U(n). These inclusions induce that of the manifolds:
M C G, ,(C). This inclusion can be explained in another way. Suppose x
¢ M and x=gK with g ¢ G (G=S,(n), K=U(n)). We write g=(a d).
Then the n column vectors of the matrix

2 ()

span an #-plane in C*. This n-plane does not depend on the choice of g.
Hence we can get a map of M into G, .(C). In fact this map is a holomor-

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 12/iss2/4
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phic imbedding as an easy check shows it. We write

Enz(;"_li).

Let us consider the hermitian matrix

( 5)e(_5)

The signature of this matrix depends only on x. We can therefore divide
M, into (n+1(n+2)/2(=1+---+4(n-+1)) subsets by the use of signatures.
Since G, is a subgroup of U(n, n), we see g*E,g=E, for g ¢ G, Hence
G, leaves these subsets invariant Let us go back to S. x ¢ S is repre-
sented by a transvection in Lemma 2. Consequently the Hermitian matrix
is written as

[cos*a,— sin’at, =+, cos‘“’a,,—sin:'al:l(()gmgg; i=1, -, n)

Hence the signature of x is

(the number of 7 with 0’4<z, the number of i with “">E)'

It follows that S is divided into 3" subsets. The K-orbits of these subsets is
(n+1)(n+2)/2 in number by the Weyl group being taken into considera-
tion. Each of these K-invariant subsets must be contained in one of the pre-
ceding Gyinvariant subsets. There exist the same number of them. Hence
we can conclude that both of the divisions must coincide. It is immediate
that G, acts on each of these subsets transitively. Thus we can find that
these (#-+1)(n-+2)/2 subsets are Ggorbits. Only the one of the lowest
dimension is compact and K acts on it transitively as is easily seen. Itis
on the boundary of M,. Hence the only compact G,orbit is the Bergmann-
Silov boundary of M, [3].

11. We confine ourselves to the domain of #-planes (4) with det a540.
Then this domain is in 1-1 correspondence with 5-by-nz matrix Z by putt-

ing Z=—ba™'. The matrix (¢ d) sends Z to
(5) —b+cZlc+dZ

if det (¢ +dZ)%=0. The preceding Bergmann-Silov boundary is contained in
this domain. It is the K-orbit of Z=1,. Suppose (¢ d)=(x 0). Then (5)
turns out to be #Zu~'. Hence the isotropy group at 1, of K is the group

Produced by The Berkeley Electronic Press, 1963
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of such a matrix (¢ Q) with #%l,x2'=1,, namely x: real. Hence it is
isomorphic to 0(n). Consequently the Bergmann-Silov boundary is isomor-
phic to the reducible symmetric manifold U(n)/0(n). Its dimension is half
the dimension of the whole manifold.

12. We shall here in this section discuss how the fixed points of trans-
vections are distributed and how many of them each transvection leaves
invariant. Let ¢ be a transvection of G/K. The fixed points of # are
the left cosets g K which satisfy

(6) g'hge K.

Then it is seen that kx is a fixed point of ad (k) & if and only if x is a
fixed point of # where % ¢ K. Consequently we can confine our attention
to a transvection @ of the form ([cos a), ***, cos a,] [Sinc, *+«, sin @,])
without any loss of generality.

Let g=(e¢ b). Then g~'=(a*—'b). We write x=gK. suppose x is a
fixed point of ©=([cos ay, -, cos ] [sin ay, «++, sin «,]). Then (6) holds.
On the other hand we have

g7 '0g=(a*[cos ay, **+, €0s o] +'0[sin oy, +*, sin otn)
a*[sin ay, »++, sin an] —'blcos @y, +++, €0S ta)) g
={(a*[cas «ay, ++*, c0s an] @ +"b[sin aty, +*+, Sin a.la
—a*[sin au, -+, sin aalb+Blcos ay, *++, cos an]b
a*[sin ay, ++, sin anla—"b[cos ay, -, cos a,]a
+a*[cos ay, +++, cos a, ]b+"b[sin >+, Sin ] b).

Hence we obtain

a*{sin o, ++, sin @+ bsin ay, -+, Sin a1 b
=*'b[cos oy, ***, cos a,la—a*[cos ay, -+, €OS cts)b.

We note that the left hand side of the above equality is symmetric, while
the right hand side anti-symmetric. It follows from this fact that

a*[cos ay, +++, cos atx Jb="b[cos ay, ***, cos atn)a.
a*{sin c, *+, sin oy Ja= —"b[sin a1, ++*, sin B.1b.

(7

There exists a unitary matrix « such that

a=ulcos B, -+, cos B,Ju*
b=ulexpy—1g¢;, sin py, -+, expy— 1, sin Ba)'u.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 12/iss2/4
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We note that we can change ¢ arbitrarily. (In that case # of course
changes depending on it.) From (7) it follows that

ulcos By, +++, cos PaJu*[cos at, **+, c0S a]u
lexp——1¢1 sin fy, -+, exp—y—1g,sin Balu
=ulexp—y—1¢, sin fy, -, exp—y—Leasin 3, )'u
[cos a,, -+, cos a.)ulcos By, -+, cos 3.]".

If we write w=u*[cos a,, *++, cos a,Ju, than we have
[cos By, ++, c0s Baw [expy—1¢, sin Py, ++. expy—1g,sin 8]
= [exp\/——lqu stn By, o0, exp\i_——_iy),,sin B.Jwlcos By, -+, cos 3],
Hence we can obtain
expy —1(gi— ¢ )wtofi=1,3,1 1,

where w=(w.). Let i%j. Then ¢;—¢; are considered as arbitrary.
Actually they are variable independent of w;;. Consequently we have

€)) WisteBy=wistyBi=0.
For the sake of brevity we suppose
Loy oy 8B F=0 5 tyBeir =" =1,3,=0.
Then it follows from (8) that w;;=0 for each of these cases:

1) 1=<i<k, j: arbitrary

2) {: arbitray, 1< <k, (E79)

Consequently we can write w in the form

©) (d 0)

0 w

where d denotes a diagonal k-by-k real matrix and ' an (n—*k)-by-(n—£k)
hermitian matrix. The matrix (9) can be diagonalized by a unitary matrix

of the form
1, 0
( O}c u' )

Hence if we denote this matrix by %, (wu)*[cos ay, -+, cos o) (uir) is
diagonal.
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Suppose now # is regular in the sense of section 2. Then (uu)*[cos ay,
see, €OS Oty Junt) = [C0S (g1, ***, COS (5 3] fOr 2 permutation of 1, ---,n. Con-
sequently uuz =du, where d is a diagonal unitary matrix and where
o —> u, is the usual unitary representation of the permutation group. It
follows that u=du.u«. Hence g=du,u*([cos B, -, cos 8, 1, =+, 1] [sin &,
o=, sint B, 0, +++, 0]uwe* d*. By an easy computation we can find that g has
the form

([cos B, «++, cos A1) [Asin B+, 2)/sin Ba])
where A, -, @, e R and|3/|=--=|4"].

After all we can state our conclusion as follows :
All the fixed points of the transvection # existin S.

13. Consider the case of the elliptic plane and let & =(cos a 2 sin ).
In order that the coset containing g=(cos 3 Asin 8) be a fixed point of &,
it is necessary and sufficient that g™' 6 g ¢ U(1) and therefore that

(2)’cos* g+ (1)si n’3=0.

Hence we have

t3=*t\—121
Consequently we can obtain the

Proposition. A transvection (cos a 1 sin @) of the elliptie plane has
as its fixed points the two cosets containing

\/—%— (1 vy=12) and ~’%‘ 1 —y=12)

respectively.

14. Recall that S denb>tes the product manifold of n copies of the
Riemann sphere. Let # be a transvection ([cos v, ***, cos a,] [sin a, -+,
sin a,]). According to the conclusion of section 12, & has all its fixed
points in S. On the other hand each copy remains invariant under 6. ¢
acts on the i-th copy in the same way as the 2-by-2 matrix (cos o, sin ).
Hence the fixed points of @ in each copy are the cosets containing

%(1 +4/—1) (section 13), We therefore come the following conclusion.
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Theorem. Let 6 be an arbitrary transvection on S,(n)]U(n). We
write it in the form u([cos v, <+, cos &) |sin a,, +++, sin «,)), where uis a
unitary matrix. Then the fixed points of @ are these 2" points :

) .
(10) Jzelle (V=T o =11 UG,

If u goes through U(n), the locus of the points (10) is precisely the
Bergmann-Silov boundary stated in Sections 10 and 11 which can be seen
easily.

15. Let A be a non-degenerate alternate bilinear form over VXV
where V denotes a real vector space of dimension 2n#. Consider a hermitian
form k with A as imaginary part, by introducing a complex structure J
into V. The set of % is in 1-1 correspondence with the set of J satisfying

A(J(x), J(9) = Alx, »)

where x,y e V. The eigenspace of J belonging to the eigenvalue v—1
can be considered as a point of the Grassmann manifold G, .(C), the
manifold of n-planesin CQE. We denote that point by F (4). Let N be
the set of non.degenerate hermitian forms with the imaginary part A.
Then the closure of f(N) is a complex snbmanifold wh'ch is complex
analytically homeomorphic to S,(rn)/ U(x). Corresponding to the signatures
of hermitian forms #(N) can be divided into (z-+1) connected components.
This gives a division of Sy(#)/ U(n) equivalent to what has been discussed
in the present paper. The details will appear elsewhere. See also [2].
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