Primary ideal representations in non-commutative rings

Hidetoshi Marubayashi*

*Yamaguchi University
PRIMARY IDEAL REPRESENTATIONS IN
NON-COMMUTATIVE RINGS

HIDETOSHI MARUBAYASHI

Introduction. In his paper [4], H. Tominaga has given a necessary
and sufficient condition that every ideal in a (non-commutative) ring
be represented as the intersection of a finite number of s-right and s-
left primary ideals\(^1\). It is the purpose of this paper to present a condition
that every ideal in a ring be represented as a finite intersection of s-right
primary ideals. After several definitions (§ 1), we shall prove in § 2 the
uniqueness theorem for s-right primary representations: in any two s-right
primary short representations of an ideal, the number of s-right primary
components are the same and their radicals coincide in some order. In § 3,
we shall give a necessary and sufficient condition that every ideal have
a representation as a finite intersection of s-right primary ideals, which is
analogous to that in [4]. In case the maximum condition is satisfied for
ideals, the first half of our condition can be excluded (§ 4).

1. Definitions. Let \(R \) be a (non-commutative) ring. The term "ideal"
in \(R \) will always mean "two-sided ideal".

Definition 1. \(A \) and \(B \) are ideals in \(R \), the ideal consisting of all
elements \(x \) of \(R \) such that \(xRB \subseteq A \) is called the right ideal quotient of \(A \) by
\(B \) and is denoted by \(AB^{-1} \). Similary, \(B^{-1}A \) consists of all \(x \) in \(R \) such that
\(BRx \subseteq A \).

The following properties of quotients are verified:

1. \((AB^{-1})C^{-1} = A(CB)^{-1} \),
2. \((\bigcap A_i)B^{-1} = \bigcap A_i B^{-1} \),
3. \(A(\sum B_a)^{-1} = \bigcap A B_a^{-1} \), where \(A, B, C, A, \) and \(B_a \) are ideals in \(R \).

Definition 2. An element \(a \) is right non-prime to an ideal \(A \) if there
exists an element \(b \) not in \(A \) such that \(bRa \subseteq A \). An ideal \(B \) is right non-
prime to \(A \) if \(AB^{-1} \supset A \).

For positive integers \(n \) we define inductively \(AB^{-n} = (AB^{-1})B^{-1} \). If
\(AB^{-k} = AB^{-k+1} \) for some positive integer \(k \) then we say that \(AB^{-k} \) is the
right limit ideal of \(A \) by \(B \). The left limit ideal \(B^{-k}A \) can be defined in
the same way. An ideal \(P \) in \(R \) is prime if \(AB \subseteq P \) implies that either \(A \subseteq P \)
or \(B \subseteq P \), where \(A \) and \(B \) are ideals in \(R \). It has been shown by McCoy
[2] that an ideal \(P \) is prime if and only if \(aRb \subseteq P(a, b \in R) \) implies that

\(^1\) "s-right primary" means "strongly right primary".
either \(a\) or \(b\) belongs to \(P\). The \textit{radical} of an ideal \(A\) is understood in the sense of McCoy [2] and denoted by \(r(A)\). It has been shown by McCoy [2] that \(r(A)\) is the intersection of all minimal prime divisors of \(A\).

Definition 3. An ideal \(Q\) is said to be \textit{right primary} if \(ab \subseteq Q\) and \(a \notin Q\) imply \(b \in r(Q)\), and a right primary ideal \(Q\) is defined to be \textit{s-right primary} if \(r(Q)\) is nilpotent modulo \(Q\).

One will easily see that an ideal \(Q\) is \(s\)-right primary if and only if it is \(s\)-right primary in Tominaga's sense, and so the radical of an \(s\)-right primary ideal is prime by Theorem 1 of [4].

Definition 4. If a prime ideal \(P\) is the radical of an \(s\)-right primary ideal \(Q\), we say that \(Q\) \textit{belongs to} \(P\) and also that \(Q\) is \(P\)-\textit{s-right primary}. A prime ideal \(P\) is called a \textit{prime ideal associated with} an ideal \(A\) if there exists an \(s\)-right primary ideal \(Q\) belonging to \(P\) such that \(Q = B^{-1}A\) for some ideal \(B\) not contained in \(A\).

2. **Uniqueness theorem for \(s\)-right primary representations.**

A representation \(A = Q_1 \cap Q_2 \cap \cdots \cap Q_n\) of an ideal \(A\) as the intersection of \(s\)-right primary ideals \(Q_1, Q_2, \cdots, Q_n\) will be called \textit{irredundant} if no one of the \(Q_i\) contains the intersection of the remaining ones.

Theorem 1. Let \(A = Q_1 \cap Q_2 \cap \cdots \cap Q_n\) be an irredundant representation of \(A \subseteq R\), where \(Q_i\) is \(P_i\)-\(s\)-right primary \((1 \leq i \leq n)\). Then an element \(x\) is right non-prime to \(A\) if and only if \(x \in P_j\) for some \(j\), namely, \(x \in P_1 \cup P_2 \cup \cdots \cup P_n\).

Proof. If \(x\) is right non-prime to \(A\) then \(bRx \subseteq A\) for some \(b\) not in \(A\). But this implies \(bRx \subseteq Q_i\) \((1 \leq i \leq n)\), while \(b \notin Q_j\) for some \(j\). Since \(Q_j\) is \(P_j\)-\(s\)-right primary, we obtain \(x \notin P_j\). Conversely, suppose that \(x\) is in \(P_j\). Since the representation \(A = Q_1 \cap Q_2 \cap \cdots \cap Q_n\) is irredundant, we can choose an element \(b\) which is contained in \(Q_1 \cap \cdots \cap Q_{j-1}\) but not in \(Q_j\). Noting that \((RP_j)^k \subseteq Q_i\) for some \(k\), we have then \(b(RP_j)^k \subseteq A\). Accordingly, there exists the least positive integer \(k_i\) such that \(b(RP_j)^{k_i} \subseteq A\). If \(k_i = 1\) then \(bRP_j \subseteq A\). Hence \(bRx \subseteq A\). Thus, \(x\) is right non-prime to \(A\). If \(k_i > 1\) then the product \(b(RP_j)^{k_i-1}\) contains an element \(b_i\) not in \(A\). Since \(b_iRx \subseteq A\), \(x\) is right non-prime to \(A\).

Lemma 1. If \(Q_1, Q_2, \cdots, Q_n\) are \(P\)-\textit{s-right primary ideals} then \(Q = Q_1 \cap Q_2 \cap \cdots \cap Q_n\) is also a \(P\)-\textit{s-right primary ideal}.

Proof. Let \(k_i\) be the nilpotency index of \(P\) modulo \(Q_i\) \((1 \leq i \leq n)\). Then, \(P^{k_1 + \cdots + k_n} \subseteq Q\). If \(P_i\) is any prime divisor of \(Q_i\), we have \(P^{k_1 + \cdots + k_n} \subseteq P_i\), whence it follows \(P \subseteq P_i\). Hence, \(P\) is a unique minimal prime divisor of \(Q\) and therefore \(P = r(Q)\). Moreover, if \(aRb \subseteq Q\) and \(a \notin Q\) then \(aRb \subseteq Q_i\) \((1 \leq i \leq n)\), while \(a \notin Q_j\) for some \(j\). Since \(Q_j\) is \(P\)-\textit{s-right primary}, this implies that \(b \in P = r(Q_j)\). Hence, \(Q\) is \(P\)-\textit{s-right primary}.
By the same argument as in Theorem 14 of [3] we have

Lemma 2. If \(A = Q_1 \cap Q_2 \cap \cdots \cap Q_n \) is an irredundant representation of \(A \), where \(Q_i \) is \(P_i \)-s-right-primary \((1 \leq i \leq n)\) and \(P_j \neq P_k \) for some \(j \neq k \), then \(A \) is s-right primary.

Definition 5. An irredundant representation \(A = Q_1 \cap Q_2 \cap \cdots \cap Q_n \) will be called a short representation if none of the intersections of two or more of the ideals \(Q_1, Q_2, \ldots, Q_n \) are s-right primary.

In view of Lemmas 1 and 2, an irredundant representation \(A = Q_1 \cap Q_2 \cap \cdots \cap Q_n \) is a short representation if and only if any two of the radicals of \(Q_1, Q_2, \ldots, Q_n \) are distinct.

Let \(M \) be a non-empty \(m \)-system in \(R \). For any ideal \(A \) in \(R \) the right upper and lower isolated \(M \)-components of \(A \) (in the sense of [3]) will be denoted by \(U(A, M) \) and \(L(A, M) \), respectively. If \(P \) is a prime ideal \((P \neq R)\) and \(M = C(P) \) is its complement in \(R \) then \(U(A, M) \) will be denoted by \(U(A, P) \).

Theorem 2. Let \(A = Q_1 \cap Q_2 \cap \cdots \cap Q_n \) be an irredundant representation of \(A \), where \(Q_i \) is \(P_i \)-s-right primary \((1 \leq i \leq n)\). If \(M(\subseteq R) \) is a non-empty \(m \)-system which does not meet \(P_1, \ldots, P_r, \) but meets \(P_{r+1}, \ldots, P_s, \) then \(U(A, M) = L(A, M) = Q_1 \cap Q_2 \cap \cdots \cap Q_r \). If \(M \) meets every \(P_i \), then \(U(A, M) = L(A, M) = R \).

Proof. By the same argument as in Theorem 15 of [3], we can easily see that if \(M \) does not meet \(P_1, \ldots, P_r \), but meets \(P_{r+1}, \ldots, P_s \), then \(U(A, M) = Q_1 \cap Q_2 \cap \cdots \cap Q_r \), and that if \(M \) meets every \(P_i \) then \(U(A, M) = R \).

We assume first that \(M \) does not meet \(P_i \), \(\ldots \), \(P_r \) but meets \(P_{r+1}, \ldots, P_s \). Let \(b \) be an element of \(L(A, M) \). Then we have \(bRm \subseteq A \) for some \(m \in M \) and thus \(bRm \subseteq Q_i(1 \leq i \leq r) \). However, \(m \) is not in any \(P_i(1 \leq i \leq r) \). Hence \(b \in Q_i(1 \leq i \leq r) \) and thus \(L(A, M) \subseteq Q_1 \cap Q_2 \cap \cdots \cap Q_r \). We shall prove now the converse inclusion. If \(r = n \) then this is trivial by \(A \subseteq L(A, M) \). In case \(r < n \), since \(M \) meets \(P_j \) for \(j > r \), it follows that \(M \) meets \(Q_i \) for \(j > r \). Hence there exist \(m_1, m_2, \ldots, m_{n-r} \) such that \(m_i \in Q_{r+i} \cap M(1 \leq i \leq n-r) \). Now, since every \(m_i \) is in \(M \), there exist \(x_1, x_2, \ldots, x_{n-r} \) such that \(m = m_1 x_1 m_2 x_2 \cdots x_{n-r} m_{n-r} \) is contained in \(M \). Since it is clear that \(m \in Q_{r+1} \cap Q_{r+2} \cap \cdots \cap Q_n \), \(qRm \subseteq A \) for every element \(q \in Q_1 \cap Q_2 \cap \cdots \cap Q_r \). Thus \(q \) is in \(L(A, M) \).

If \(M \) meets every \(P_i \), then the last part of the above proof shows that there is an element \(m \in M \) such that \(m \in Q_1 \cap Q_2 \cap \cdots \cap Q_n = A \). Hence \(Rm \subseteq A \) for every \(R \in R \), that is, \(R = L(A, M) \).

Theorem 3. Let \(A = Q_1 \cap Q_2 \cap \cdots \cap Q_n \) be an irredundant representation of \(A \), where \(Q_i \) is \(P_i \)-s-right primary \((1 \leq i \leq n)\). Then the minimal prime divisors of \(A \) are exactly those primes which are minimal in the set \(\{ P_1, P_2, \ldots, P_n \} \).
Proof. This is immediate.

Theorem 4. Let \(A = Q_1 \cap Q_2 \cap \cdots \cap Q_n \) be a short representation of \(A \subset R \), where \(Q_i \) is \(P_i \)-s-right primary \((1 \leq i \leq n)\). A prime divisor \(P(\neq R) \) of \(A \) is one of \(P_i \) if and only if every element of \(P \) is right non-prime to \(U(A, P) \). The ring \(R \) is itself one of the \(P_i \) if and only if every element of \(R \) is right non-prime to \(A \).

Proof. Let \(P(\neq R) \) be a prime divisor of \(A \). If \(P \) coincides with one of \(P_i \), then by Theorem 2 \(U(A, P) = Q_1 \cap Q_2 \cap \cdots \cap Q_i \) is a short representation of \(U(A, P) \), where \(P_{i_1}, P_{i_2}, \cdots, P_{i_r} \) are those primes among \(\{ P_i \} \) which are contained in \(P \) (and so \(P \) is maximal among them). Hence, by Theorem 1, every element of \(P \) is right non-prime to \(U(A, P) \). Conversely, assume that every element of \(P \) is right non-prime to \(U(A, P) \). By Theorem 3, \(P \) contains at least one of \(P_i \). Suppose that \(P \) contains \(P_1, \cdots, P_i \) but does not contain \(P_{i+1}, \cdots, P_n \). Then, again by Theorem 2, \(U(A, P) = Q_1 \cap Q_2 \cap \cdots \cap Q_i \) is a short representation of \(U(A, P) \). Hence, \(P \subset P_1 \cup P_2 \cup \cdots \cup P_i \), by Theorem 1, and then by Theorem 5 of [1] there exists some \(i \) such that \(P \subset P_i \), namely, \(P = P_i \). The latter assertion is also an easy consequence of Theorem 5 of [1] and Theorem 1.

As an immediate consequence of Theorem 4, we obtain the following:

Theorem 5. Let \(A = Q_1 \cap Q_2 \cap \cdots \cap Q_n = Q'_1 \cap Q'_2 \cap \cdots \cap Q'_m \) be two short representations of \(A \), where \(Q_i \) is \(P_i \)-s-right primary and \(Q'_i \) is \(P'_i \)-s-right primary. Then, \(m = n \) and it is possible to number the components in such a way that \(P_i = P'_i \) \((1 \leq i \leq m = n)\).

Let \(A = Q_1 \cap Q_2 \cap \cdots \cap Q_n \) be a short representation of \(A \), where \(Q_i \) is \(P_i \)-s-right primary \((1 \leq i \leq n)\). These uniquely determined prime ideals \(P_1, P_2, \cdots, P_n \) will be called the prime ideals belonging to \(A \) (cf. Theorem 5). A subset \(\{ P_{i_1}, P_{i_2}, \cdots, P_{i_r} \} \) of these prime ideals is called an isolated set of prime ideals belonging to \(A \) if every \(P_j \) contained in one of the primes \(P_{i_1}, P_{i_2}, \cdots, P_{i_r} \) is necessarily a member of the subset.

Now, by Theorem 2, one will readily obtain the following:

Theorem 6. Let \(A = Q_1 \cap Q_2 \cap \cdots \cap Q_n \) be a short representation of \(A \), where \(Q_i \) is \(P_i \)-s-right primary \((1 \leq i \leq n)\). If \(\{ P_{i_1}, P_{i_2}, \cdots, P_{i_r} \} \) is an isolated set of prime ideals belonging to \(A \) then \(Q_{i_1} \cap Q_{i_2} \cap \cdots \cap Q_{i_r} \) depends only on \(\{ P_{i_1}, P_{i_2}, \cdots, P_{i_r} \} \) and not on the particular short representation considered.

3. A necessary and sufficient condition that every ideal be represented as a finite intersection of s-right primary ideals.

Theorem 7. Let \(A = Q_1 \cap Q_2 \cap \cdots \cap Q_n \) be a short representation of \(A \subset R \), where \(Q_i \) is \(P_i \)-s-right primary \((1 \leq i \leq n)\). If \(P \) is a minimal prime
divisor of A then P is right non-prime to A.

Proof. By Theorem 3, we can assume that P is contained in $P_1, \ldots, P_r (r \geq 1)$ but not contained in P_{r+1}, \ldots, P_n. Then $R = Q_1P^{-k} = Q_1P^{-k+1}$ for a sufficiently large positive integer $k (1 \leq i \leq r)$. On the other hand, if $r + 1 \leq j \leq n$ then $Q_j = Q_jP^{-k} = Q_jP^{-k+1}$ for every positive integer k. Thus $AP^{-k} = AP^{-k+1} = Q_{r+1} \cap Q_{r+2} \cap \cdots \cap Q_n$. Since $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n$ is a short representation, we have $AP^{-k} \supset A$, and therefore $AP^{-k} \supset A$.

Lemma 3. If Q is a P-right primary ideal then $B^{-1}Q$ is P-right primary for any ideal $B \not\supseteq Q$.

Proof. Since $BR(B^{-1}Q) \subseteq Q$ and $B \not\supseteq Q$, we have $Q \subseteq B^{-1}Q \subseteq P$, and thus $r(B^{-1}Q) = P$. Suppose that $aRb \subseteq B^{-1}Q$ and $b \not\in P$. Then we have $BRA \subseteq Q$. Hence, by the definition of s-right primary, $BRA \subseteq Q$, that is, $a \in B^{-1}Q$.

By the same arguments as in Theorems 4 and 6 of [4], we have the following two theorems.

Theorem 8. Let $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n$ be a short representation of A. Then, for any ideal B there exists the right limit ideal of A by B, and the number of ideals which are obtained starting from A by repeating successively the procedure to make right limit ideals is finite and is uniquely determined by A.

Theorem 9. Let $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n$ be a short representation of $A \subseteq R$, where Q_i is P_i-right primary $(1 \leq i \leq n)$. Then, a prime divisor P of A is a prime ideal associated with A if and only if P coincides with one of P_i, and every primary component $Q_i (1 \leq i \leq n)$ has the following property: $B^{-1}A$ is not P_i-right primary for any ideal B such that $B \supseteq Q_i$, and $B \not\supseteq A$.

Corollary 1. Let $A = Q_1 \cap Q_2 \cap \cdots \cap Q_n$ be a short representation of $A \subseteq R$. If P is a minimal prime divisor of A then P is a prime ideal associated with A.

Now, we can summarize the above-mentioned results as follows:

Theorem 10. In order that every ideal in R be represented as the intersection of a finite number of s-right primary ideals, the following conditions are necessary:

(A) For any ideals A, B in R there exists the right limit ideal of A by B and there exist a finite number $n(A)$ of ideals which are obtained starting from A by repeating successively the procedure to make right limit ideals, where the number $n(A)$ is uniquely determined by A.

(B) Every ideal $A \subseteq R$ has a minimal prime divisor which is right non-prime to A.

(C) Every minimal prime divisor of an arbitrary not s-right primary
ideal A is a prime ideal associated with A.

(D) If P is an arbitrary prime ideal associated with an ideal A then there exists an s-right primary ideal $Q \supseteq A$ belonging to P such that $B^{-1}A$ is not P-s-right primary for any subideal B of Q not contained in A.

Next, we shall show that these conditions are sufficient, too.

Lemma 4. Assume the conditions (A) and (B) in Theorem 10. If A is an ideal of R then $r(A)$ is nilpotent modulo A.

Proof. Let P be a minimal prime divisor of $A \subseteq R$ which is right non-prime to A. Then $A \subseteq AP^{-1} \subseteq Ar(A)^{-1}$. If $Ar(A)^{-1}$ is not R itself then we have $Ar(A)^{-1} \subseteq Ar(A)^{-1}r(Ar(A)^{-1})^{-1} \subseteq Ar(A)^{-1}$. Continuing in this way, we obtain the right limit ideal $Ar(A)^{-k}$ of A by $r(A)$. We have then $Ar(A)^{-k} = R$, whence it follows $r(A)^{2k+1} \subseteq A$.

By the same argument as in Lemma 4 of [4], we have the following:

Lemma 5. Assume the conditions (A), (B) and (C) in Theorem 10. Then the number of prime ideals associated with an ideal which is not s-right primary is finite.

We assume here the conditions (A), (B), (C) and (D) in Theorem 10. Let P_1, P_2, \ldots, P_n be all the prime ideals associated with an ideal A which is not s-right primary. and let Q_1, Q_2, \ldots, Q_n be s-right primary divisors of A belonging to P_1, P_2, \ldots, P_n with the property cited in (D), respectively (Lemma 5). We set $B = Q_1 \cap Q_2 \cap \cdots \cap Q_n$. By the condition (C), every minimal prime divisor of A is a prime ideal associated with A, and so $B \subseteq r(A)$. Since $r(A)$ is nilpotent modulo A by Lemma 4, we obtain $B^{-1}A \supseteq A$. We suppose now that $B \supseteq A$. If $B^{-1}A$ is not s-right primary then by the condition (C) we have an s-right primary ideal $C \subseteq B^{-1}A$ for some $C \notin A$. So we set $C = BRC_\circ$. If $B^{-1}A$ is s-right primary, we set $C = B$. Thus, in either case, we have an s-right primary ideal $Q = C^{-1}A$, where $C \subseteq A$ and $C \subseteq B$. Since $r(Q)$ is a prime ideal associated with A, $r(Q) = P_i$ for some i. On the other hand, since $C \subseteq B \subseteq Q$, the ideal $Q = C^{-1}A$ is not P_i-s-right primary by the condition (D). This contradiction means $A = B$. Hence, we have the following theorem.

Theorem 11. In order that every ideal in R be represented as the intersection of a finite number of s-right primary ideals, it is necessary and sufficient that the conditions (A), (B), (C) and (D) be satisfied.

4. **Rings with maximum condition for ideals.**

Throughout the present section, R be a ring with maximum condition for ideals. Then, needless to say, for any ideals A, B of R there exists the right limit ideal of A by B.

Lemma 6. Every ideal $A \subseteq R$ has a minimal prime divisor which is right non-prime to A.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol13/iss1/1
PRIMARY IDEAL REPRESENTATIONS IN NON-COMMUTATIVE RINGS

Proof. One may assume that A is not prime. By Theorem 10 of [3], we have $P_1 P_2 R \cdots R P_s \subseteq A$, where P_1, \ldots, P_s are minimal prime divisors of A and $s > 1$. Hence we can assume that $P_1 P_2 R \cdots R P_s \subseteq A$ and $P_1 R P_3 R \cdots R P_{s-1} \subseteq A$. If b is an arbitrary element of $P_1 R P_3 R \cdots R P_{s-1}$, not contained in A then $b R P_s \subseteq A$, and so P_s is right non-prime to A.

From the proof of Lemma 6, the following will be obvious.

Corollary 1. If A is an ideal of R then $r(A)$ is nilpotent modulo A. In particular, every primary ideal of R is s-right primary.

Lemma 7. Assume the condition (C). If an ideal A is not right primary then the number of prime ideals associated with A is finite.

Proof. Let $\{ P_i \}$ be the set of all prime ideals associated with A, and let $Q_i = P_i^{-1} A$ be a P_i-right primary ideal. The set $\{ P_i \}$ is not empty by the condition (C). Let $\{ P_1, P_2, \ldots, P_s \}$ be a subset in $\{ P_i \}$ such that $P_i \not\subseteq P_j$ for every $i > j$. We define now the ideals B'_1, B'_2, \ldots, B'_k in the following way: B'_1 is the right limit ideal of A by P_1, and B'_i is the right limit ideal of B'_{i-1} by $P_i (i = 2, \ldots, k)$. Then, by the analogous argument as in Lemma 4 of [4], we have an ascending chain $A \subseteq B'_1 \subseteq B'_2 \subseteq \cdots \subseteq B'_k$. From this fact, the lemma will be easily seen.

Now, by the validity of Lemmas 6, 7 and Corollary 1 to Lemma 6, the proof of the following theorem proceeds just like that of Theorem 11 did.

Theorem 12. Let R be a ring with maximum condition for ideals. In order that every ideal in R can be represented as the intersection of a finite number of right primary ideals, it is necessary and sufficient that the conditions (C) and (D) be satisfied.

REFERENCES

DEPARTMENT of MATHEMATICS,
YAMAGUCHI UNIVERSITY

(Received December 10, 1966)