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HADAMARD MATRICES OF BUSH TYPE
Nosoru ITO and JupitH Q. LONGYEAR

In [1] Bush suggested a method for constructing a Hadamard matrix of

1
order n using a Hadamard matrix of order —7—2 and a skew Hadamard

2

matrix of %—n+1, where n = 12 (mod 16). A Hadamard matrix of order n

constructed by the method of Bush will be called a Hadamard matrix of Bush
type of order n.

The purpose of this note is to prove two propositions on Hadamard
matrices of Bush type of order n.

For basic facts on Hadamard matrices see [2].

1. Introduction. We want to construct a Hadamard matrix of order
n = 16u+12 under certain "inductive” assumptions, where u is a non-
negative integer. Obviously it suffices to construct a symmetric 2 —(16u+
11, 8u+5, 4u+2) design D = (P, B), where P =1{1,2,...,16u+111} and
B denote the sets of points and blocks of D respectively.

We make the following “inductive” assumptions: (1) There exists a
Hadamard matrix L of order 8u+4. and (2) there exists a skew Hadamard
matrix R of order 4u+4. Put L = (A({)), 1 <i{ < 8u+4, where A({)
denotes the i-th row vector of L and we may assume that A(1) is the all one
vector. Let L(A(1)) = (P(£),B(£)) be the Hadamard 3-design associated
with L at A(1). We put P(2) = {1,2,...,8u+41! so that the block o(i) of
L(X1)) corresponding to A(i) contains the point j if and only if the j-th
component of A(i) equals 1, where 2 < ; < 8u+4 and o(i)* = P(2) —o(i)
is also a block of L(A(1)), for 2 < i < 8u+4. Clearly we have that o(;)
No(i)* =L and |o(i) N o) = |eli) N a(j)*| = 2u+1 for i + j.

We pick up any 4u+3 distinct disjoint block pairs from the {o(i),
o(i)*l, 2 <{ < 8u+4. For simplicity of notation we denote them by {a(i),
o(i)*l, 2 < { < 4u+4. This configuration £ consists of 8u+6 blocks of

size 4u—+2.
Next we may assume that R is in a skew-normalized skew form :
-1 1 - - 1
-1 -1
R=]|. o = (p(i)), where p(i) denotes
-1 -1
127
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the i-th row vector of R, 1 < i < 4u+4. we label the j-th column of R by
8u+2j+2, for 2 <j < 4y+4, and notice that the first column is still
labelled 1.

Let D(r) = (P(r),B(r)) be a symmetric 2—(4u+3, 2u+2, u+1)
design which is the complement of the symmetric 2 —(4u+3, 2u+1, u)
design associated with R at p(1) punctured at 1. We put P(r) = {8u+6,
8u—+8,..., 16u+10} so that the block (i) of D(r) corresponding to p(i)
contains the point 8u+2j+2 if and only if the j-th component of p(i) equals
—1(2 <i,j < 4u+4). Let us define a mapping T from B(r) to P(r) by
()T =8u+2i{+2, for 2 < ; < 4u+4. Then by the skew property of R
we have that 7(i )T € (i) and that z(i) T € z(j) if and only if z(j)T &
(i) for i =+ j.

Now we are going to double points and blocks of D(r) as follows. The
block z(i) will be developed into two blocks z(i1) and 7(i2), 2 < i < 4u+
4. If 8u+2j+2 € 7(i) and { # j, then both z(i1) and z(i2) contain both
8u+2j+2 and 8u+2j+3. If { = j, then 7(il) contains only 8u+2i+2
and 7(i2) contains only 8u+2i+3. Then clearly we have that |z(il) N
7(i2)| = 4u+2, for 2 < i < 4u+4. Moreover, since | z(i) N z(j)| =
u+1 and since 7(i)T € z(j) if and only if z(j)T & (i) for i + j, we
have that | z(ik) N z(j£)| = 2u+1 for i #+ j and 1 < k,2 <2, In this
way we get a configuration M consisting of 8% +6 blocks of size 4u+3 =
1+2(2u+1).

Finally we match £ and ® together in any possible way under the
condition that {o(:), o(i)*} and {7(j1), z(j2)! should be matched if a member
of {o(i), o(i)*} is matched together with a member of {z(j1), r(j2)!. For
simplicity of notation we assume that o(i) and z(i1), and hence o(i)* and
7(i2), are matched together, 2 < { < 4u+4.

Put (1) = P(£) U {8u+5}, a(2i—2) = ¢(i) U z(i1) and «(2i—1)
=o(i)* U z(i2), for 2 < { < 4u+4. Then it is easy to see that |a(i)|
=8u+5,1 <i<8u+7 and |a(i) N e(j)| = 4u+2 for i + j.

So the configuration P = (P, {a(i)}, 1 < i < 8u+7) is possibly a
portion of a symmetric 2 —(16u+11, 8u+5, 4u+2) design.

Now we prove the following proposition.

Proposition 1. A necessary and sufficient condition for P to be com-
pleted to a symmetric 2 —(16u+11, 8u+5, 4u+2) design can be stated as
Jollows.

There exist 8u+4 subsets t4j) of size du+2, 1 < j<8u+4, of (1),
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called blocks again, such that D(£) = (a(1), 10(i), o(i)*, 1 < i < 4u+3,
w(j), 1 <j<8ut+4l) forms a2—(8u+5. 4u+2, 4u+1, 16u+10, 8u+
4) design, where the five parameters correspond to the usual notation v, k, A,
b and r respectively, with the following three conditions :

(1) Put o(i) = a(i) or o(i)*, 1 < i < 4u+3. Then with any fixed
o(i) one half of the p(k) intersects in 2u+1 points and the other half of the
u(k) intersects in 2upoints.

(2) With each of any fixed a(i) and a(j) for i + j one quarter of the
u(k) intersects in 2u+1 points and another quarter of the u(k) intersects in
2u points.

(3) Let a be a point such that 1 < a < 8u-+4. If a belongs to a(i),
then exactly 2u of the 1k ) which intersects with o(i) in 2u points contain a.
If a does not belong to a(i), then exactly 2u~+1 of the u(k) which intersects
with o(i) in 2u points contain a.

Proof. Necessity. Suppose that P is completed to a symmetric 2 —
(16u+11, 8u+5, 4u+2) design D. New blocks will be denoted by a(i).
for 8u+8 < i < 16u+11. Put p(i—8u—7) = o(1) N ali) for 8u+8 <
i <16u+11. Then D(2) = (a(1), to(i), o(i)*, 1 < i <4u+1, u(j), 1
<j<8u+4l) isa 2—(8u+5, 4u+2, 4u+1, 16u+10, 8u+4) design.
In fact, let a and b be any two distinct points of a(1). Then a belongs to
8u+5 blocks of D including o(1) and {a,b! is contained in 4u+2 blocks of
D including a(1). Hence e belongs to 8u+4 blocks of D(£) and ia, b! is
contained in 4u+1 blocks of D(£). So we have only to check three condi-
tions (1), (2) and (3) on D(£2).

If a(8u+7+k), 1 <k < 8u+4, contains both 8u+2;+2 and 8u—+
2:+3, where 2 <; < 4u-+4, or if it contains neither 8u+2;+2 nor 8u-+
2i+3, then a(8u+7+k) N z(i1) = a(8u+7+k) N (i2). Put |a(8u+
74+k) N z(i1)| = x. Then4u+2 = |a(2i—2) N a(8u+7+k)| = | o(i)
N k) +x=|a(2i—=1) N a(8u+7+k)| = |o(i)* N w(k)| +x. Every
(k) contains the point 8u+5. So |o(i) N (k)| +]o(i)* N wlk)| =
4u+1. Hence we have a contradiction that 4u+3 = 2x. Thus we have
that ||a(8u+7+k) N z(i1)| —|a(8u+7+k) N z(i2)|] =1, and that
|o(i) N k)| = 2u or 2u+1. Let E and F be the numbers of the u(k)
such that |o(i) N w(k)] = 2u and 2u+1 respectively. Since every point
of o(i) belongs to 4u+1 of the x{k), we have that (4u+2)(4u+1) =
2u E+(2u+1)F. Then E is a multiple of 2u+1 and this fact implies that
E = F = 4u+2 proving (1).
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We notice that | a(8u+7+k) N o(i)| = 2u+1 if and only if 8u+
2i4+2 & a(8u+7+k). Let2 <i=+ j<4u+4. Then, since D(r) is a
symmetric 2—(4u+3, 2u+2, u+1) design, there exist 2(u+1)—1 = 24
+1 of the z(£1) and 7(£2) containing the points 8u+2i+2 and 8u+2j+2.
Sodu+2—(2u+1) = 2u+1 of the a(8u+7+k) contain the points 8u-+
2i+2 and 8u+2j+2, proving (2).

let a € o(i), for 1 < a < 8u+4. Now there exist exactly 2(2u+2)
—1 = 4u+3 of the z(jk) containing the point 8u+2i+2. So there exist
exactly (2u+1)+1 = 2u+2 of the o(£) with £ < 8u+7 containing both
a and 8u+2i+2. Hence there exist exactly 4u+2—(2u+2) = 2u of the
a(£2) with £ = 8u+8 containing both a and 8u+2i+2. These are the
blocks a(#) with £ = 8u+8 intersecting with ¢(i) in 2u points. The rest
is similar. This proves (3).

Sufficiency. Suppose that we have a 2 —(8u+5, 4u+2, 4u+1, 16u
+10, 8u+4) design D(£) satisfying (1), (2) and (3).

Clearly u(k) contains the point 8u+5, for 1 <k < 8u+4. Since
o(i) U o(i)* = a(1) —18u—+5!, we have that |o(i) N u(k)| = 2u+1 or
2u according as | o(i)* N (k)| = 2uor 2u+1 respectively, for 2 < i <
4y+4 and1 < k < 8u+4.

We form a configuration consisting of 8u+4 blocks {v(1),..., v(8u+4)!
of size 4u—+3 based on the set of points {8u+6, 8u+7,...,16u+111 v(k)
contains the point 8u+2+2i or 8u+3+2i according as |o(i) N (k)| =
2uor |a(i)* N w(k)| = 2u respectively, for 2 < i <4uy+4and1 <k <
8u+4. Since v(k) contains exactly one point of {8u+2+2i, 8u+3+2i!
for each i, such that 2 < ; < 4y4+4, the size of v(k) equals 4u+3.

We put e(8u+7+j) = u(j) U v(j), for1 <j < 8u+4, and let B =
{a(1), a(2),..., a(16u+11){. Then we show that D = (P, B) is a symmet-
ric 2—(16u+11, 8u+5, 4u+2) design.

First we show that D is a 1-design. Let a be a point. If 1 <a <
8u+5, then, since D(£) has replication number 8u+4 and since a belongs
to (1), a belongs to (8u+4)+1 = 8u+5 blocks of B. So let 8u+6 <a
< 16u+11. Now.every point of D(7) belongs to 2u+2 blocks. One of
these blocks say 7(i), contains a or a—1 as z(i) T. So there exists 2(2u+
1)4+1 = 44+3 blocks a(i) with i < 8u+7 containing a. Now by assump-
tion (1) on D(2) there exist exactly 4u+2 of the wu(k) such that | (i) N
wk)| =2uor | a(i)* N (k)| = 2u, according as a is even or odd respec-
tively. So there exist 4u+2 blocks a(i) with i < 8u+8 containing a.

Next we show that D is a 2-design. Let a and b be two distinct points.
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Ifl <a,b <8u+5, then since D(£) is a 2—(8u+5, 4u+2, 4u+1, 16u
+10, 8u+4) design and since both a and b belong to a(1), a and b belong
to (4u+1)+1 =4u+2 blocks of B. Let 8u+6 < a, b <16u+11. If
la,bt = 18u+6, 8u+71, 18u+8, 8ut+9l,..., or {16u+10, 16u+1114, then
we may assume that a is even. Only blocks (i) with 2 < { < 8u+7 may
contain 1a,b1. Since the replication number of D(r) is 2u+2, and since
a appears in exactly one of the z(i) as (i) T, la,b! is contained in 2(2u+
2—1) =4u+2 blocks of B. If la,b! = 18u+6+2i, 8u+7+2i}, 0 <
< 4u4+2, then it suffices to consider the case where g and b are even.
Then {a,b! is contained in exactly u+1 blocks of D(r). By the skew
property of T exactly one of these blocks of D(r). say z(j), contains a or b
as 7(j)T. So exactly 1 +2(z+1—1) = 2u+1 blocks a(i) with i < 8u+7
contain la,b!. By assumption (2) on D(£) and by the definition of v(k).
exactly 2u+1 of the v(k) contain {a.b}. So exactly 2u+1 blocks a(i) with
{ = 8u+8 contain la.b!. Finallyletl < ¢ < 8u+5 and 84+5 and 8u+6
< b <16u+11. If ¢ = 8u+5, then a belongs to all of the (k). 1 <k <
8u+4. By assumption (3) on D(£), b belongs to exactly 4u+2 of the u(k).
So {a,bt is contained in exactly 4u+2 blocks of B. Thus we may assume
that 1 < ¢ < 8u+4. Again we may assume that b is even. Now b belongs
to exactly 2u+2 blocks of D(r) and only one of these blocks, say z(k),
contain b as t(k)T. Therefore 2u+1 pairs of blocks z(ij) contain b, and
7(k1), not 7(k2), contains b. So if q belongs to (k). then exactly 2u+1
blocks a(i) with { < 8u+7 contain la,b!. But if a belongs to o(k)*, then
exactly 2u blocks a(i) with ; < 8u+7 contain {a,b{. Then by assumption
(3) on D(£) exactly 2u or 2u+1 blocks a(i) with i = 8u+8 contain {a,b!
according as a belongs to ¢(1) or ¢(1)*. This completes the proof.

Definition. We call a symmetric 2—(16u+11, 8u+5, 4u+2) design
D thus constructed a Hadamard desigh of Bush type. Furthermore we call
a Hadamard matrix of order 16u+12 associated with D a Hadamard matrix
of Bush type.

Remark 1. The main point of proposition 1 is the fact that the con-
struction of a Hadamard matrix of Bush type of order 16u+12 is reduced to
the construction of a 2—(8u+5. 4u+2, 4u+1, 16u+10, 8u+4) design
satisfying (1), (2) and (3) for which 8u2+6 blocks are predetermined.

Remark 2. There exists some freedom to construct Hadamard matri-
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ces of Bush type of order 16u+12 : (i) The choice of a Hadamard matrix H
of order 8u+4; (ii) The choice of 4u+4 rows from H; (iii) The choice of
a skew Hadamard matrix of order 4u+4; (iv) The choice of the mapping T';
(v) The choice of 2—(8u~+5, 4u+2, 4u+1, 16u+10, 8u+4) design and
{(vi) The choice of the matching between £ and M.

Remark 3. For « = 0 it is very easy to write down a design of Bush
type : a(1) =11,2,3,4,5}, o(2) =11,2,6,10,11}, «(3) =13,4,7,10,111,
o(4) =11,3,6,7,8, a(5) = 12,4,6.7.91, o(6) = {1,4,8,9,101, a(7) =
12,3,8,9,111, «(8) =11,5,7,9,111, «(9) =12,5,7,8,101, a(10) = 13,5,
6,9,10!, and a(11) = {4,5,6,8,11{. For u = 1 there are more than ten

inequivalent Hadamard matrices of Bush type.
2. The purpose of this section is to prove the following proposition.

Proposition 2. The transpose of a Hadamard matrix of Bush type is of
Bush type. More precisely, the dual of a Hadamard design of Bush type is of
Bush type.

Proof. We use the notation in the proof of Proposition 1, and consider
the dual D? of the Hadamard design of Bush type in § 1, D =(P,B). It
will suffice to recognize in D? a configuration similar to B = (P, {a(i)l,
1 <i<8u+7).

Let B(i) be the set of blocks of B containing the point i of P, 1 < i
< 16u+11. Let P?® and B? denote the sets of points and blocks of D?
respectively. Then P% = ta(i), 1 < i < 16u+11} and B* =18(i), 1 < i
< 16u+11%.

Now the point a(1), the set of points e(i) with 8u+8 < < 16u+11
and the block 8(8u+5) = {a(1), a(i) with 8u+8 < i < 16u+11} play
the roles of the point 82 +5, P(£) and the block a(1) in D, respectively.

Furthermore, 8(8u+5) N B(8u+2i) and B(8u+5) N L(8u+2i+1),
where 3 < i <4u+5, correspond to (i) = (1) N a(2i—2) and o(i)* =
a(1)N a(2i—1), where 2 < i < 4u+4, respectively. Lastly (P(r))? =
a(2j), 1 <j < 4u+3}, (P(r))® N A(8u+2i) and T* defined by ({P(r))®
N B(8u+2i))T* = a(2i—4), where 3 < i <4u+5, correspond to
P(r), z(i) and T respectively, where 2 < ; < 4444,

The rest may be checked without difficulty.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 27/iss1/19



Ito and Longyear: Hadamard matrices of bush type

HADAMARD MATRICES OF BUSH TYPE 133

REFERENCES

[1] K. A Bush: On Hadamard embeddability, Linear Algebra and Its Applications 29 (1980),
39—52,
[2] M. HaLL, JR.: Combinatorial Theory, Blaisdell, 1967.

DEPARTMENT OF APPLIED MATHEMATICS
KoNanN UNIVERSITY
KosE 658, Japan
DEPARTMENT OF MATHEMATICS
WAYNE STATE UNIVERSITY
DeTroiT, MIcuHican 48202, U. S. A.

(Received May 25, 1985)

Produced by The Berkeley Electronic Press, 1985



