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Recently, in his paper [5], M. Ohori introduced the concept of general-
ized right (resp. left) p.p. rings with identity. This concept can be extended
to rings without identity as follows : An element x of a ring R is called a
right (resp. left) p. p. element if there exists an idempotent e in R such that
xe = xand r(x) = r(e) (resp. ex = xand {(x) = {(e)), where r( *) (resp.
/( *)) denotes the right (resp. left) annihilator of * in R. A ring R is called
a generalized right (resp. left) p. p. ring if for every x € R there exists
a positive integer n such that x" is a right (resp. left) p. p. element, and R
is a right (resp. left) p. p. ring if every x € R is a right (resp. left) p. p.
element.
Obviously, every m-regular ring is a generalized (right and left) p. p.
ring, and every direct sum of generalized right (resp. left) p.p. rings whose
idempotents are central is also a generalized right (resp. left) p.p. ring.
For instance, every (probably infinite) direct sum of domains with identity
is a (right and left) p. p. ring.
Throughout the present paper, R will represent a ring. Let N be the
set of nilpotent elements in R. and P the set of right p. p. elements in R.
Given an integer ¢ > 1, we set E; = lx € R | x* = x!: in particular, E
= E,.
We consider the following conditions :
(#) Each x € R has at most one representation of the form x = x'+
x', where £ € Nand x" € P.

(#) Each x € R has at most one representation of the form x = '+
x', where x' € N and x" is right regular (x" = x"y for some
y € R).

(#)" Each x € R has at most one representation of the form x = x'+
x', where x € N and x" is potent (x" =x"* for some integer
kE>1).

(*) FE is contained in some reduced ideal A of R.

The purpose of this paper is to prove the following theorem which
deduces numerous decomposition theorems, among others. [1, Theorem 3]

35

Produced by The Berkeley Electronic Press, 1985



Mathematical Journal of Okayama University, Vol. 27 [1985], Iss. 1, Art. 9

36 Y. HIRANO and H. TOMINAGA
and [6, Theorem 1].

Theorem 1. The following conditions are equivalent :

1) R is a generalized right p. p. ring and satisfies (#).

2) R is a generalized right p. p. ring and saiisfies ( *).

3) R = N ® P: strictly speaking, both N and P are ideals of R and
R is the direct sum of N and P.

When this is the case, P is a reduced (right and left) p. p. ring.

Proof. Obviously, 3) implies 1).

1) = 2). Let e be an arbitrary element of E. Given x € R, we set
u = ex—exe. Since u’ =0 and e+u is also in E, (#) implies that u = 0,
i.e., ex = exe. Similarly, we can show that xe = exe, and therefore e
must be central. Now, let v € NN eR. Since v+e is invertible in the
ring eR, it is a right p. p. element of R; ( #) implies that v = 0. Hence
eR is a reduced ring. Now, let A be the ideal of R generated by E. Since
E is contained in the center of R, for any a € A there is some f € E such
that ¢ € fR. Therefore, a cannot be a non-zero nilpotent element. Conse-
quently, A is a reduced ideal.

2) => 3). As above, we can easily show that every idempotent of R is
central. Furthermore, there holds A = P. Let x be an arbitrary element
of R. Then, by hypothesis, there exists a positive integer m and an idem-
potent e such that x"e = x™ and r(x™) = r(e). Clearly, (xe)e = xe and
r(xe) = r(e), and so xe € P. Since e is central, we have (x—zxe)™ = 0.
Therefore, x is the sum of x—xe € Nand xe € P. Next, we claim that if
u € Nand y € R then yu and uy € N. Actually, there exists a positive
integer n and f € E such that (yu)"f = (yu)" and r((yu)™) = r(f). Let k
be the least positive integer such that 4*f = 0. If £k > 1, then (yu)"s"' =
(yu)"fu™ "' = (yu)" 'yu"f = 0, which forces a contradiction fu*' = 0. We
conclude therefore that (yu)” = (yu)"f = 0 and (uy)™"' = 0. In particular,
we get PN =0 = NP. Now, letv, v+ € N, and v+v = w+p, where w €
N with w' =0 and p € P. In view of NP =0, we get (v+v')* = (v++')
(w+p) = (v++')w, and hence (v+v")"*' = (v++")w' = 0. Thus we have
shown that N forms an ideal of R and R = N @ P.

Corollary 1. The following conditions are equivalent :

1) R is a n-regular ring and satisfies (#).
1)" R is a m-regular ring and satisfies (#)".
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2) R is a m-regular ring and satisfies ( *).
3) R=N® P, and P is a strongly regular ring.

Proof. By Theorem 1 (and its proof), it suffices to show that 1)’
implies 2). Since we can show that every idempotent of R is central and R
is strongly mregular, the proof proceeds in the same way as in that of 1) =
2) of Theorem 1.

Now, let R be a Pp-ring in the sense of [2], that is, xR™ = xR"x for
all x € R. Then xR™ = xR"x" for £k = 1, 2,.--; in particular, R is a left
n-regular ring with N**' = 0. Hence, by a result of Zoschinger-Dischinger
(see, e.g., [3, Proposition 2]), R is strongly mregular. Furthermore, if
e € Eand &’ = 0 then ue € uR™’ = 0 and eu = e e" 'u € eR"e, whence
we see that ew = eue = 0 = ue. This enables us to see that e is central.
For any x € R, we now have ex = exe” € exR"” = exR™ex)™", which
proves that eR is a reduced ideal of R. Hence, R satisfies (*). This fact
together with Corollary 1 gives the following which includes the main part
of [2, Theorem 2].

Corollary 2. The following conditions are equivalent :

1) R is a n-regular ring with N**' = 0 and satisfies (#).
1)' R is a n-regular ring with N™*' = 0 and satisfies (#)'.
2) R is a n-regular ring with N**' = 0 and satisfies ( *).
3) R= N® P, Pis strongly regular, and N**' = 0.

4) R is a Pr-ring.

In the same way as for Corollary 1, we can prove the following which

includes [1, Theorem 3] and [6, Theorem 1].

Corollary 3. The following conditions are equivalent :

1) R is a periodic ring and satisfies ().

1)" R is a periodic ring and satisfies ( #)".

2) R is a periodic ring and salisfies ( *).

3) R=N@® P. and P is a J-ring (every element of P is potent).

Finally, we shall prove the following
Corollary 4. If R is a ring with 1, then the following conditions are

equivalent :
1) The addition “+” of R is equationally definable in terms of the
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”

multiplication * *
(#) (or (#)7).

2) There exists a positive integer n such that R = Ey...

and the successor operation “A” of R, and R salisfies

Proof. If R satisfies 1), then there exists a positive integer a such
that " = 2" for all x € R, by [4, Theorem 1]. Obviously, R is of bounded

index at most n. Since (™)™ = ™" and (x—a""")" = 0, x is the sum

of x—x™' € Nand ™' € En+1. Hence R = N @ E,.. by Corollary 3. so
that R = En.1. The converse is also clear by [4, Theorem1].
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