Mathematical Journal of Okayama University

Volume 19, Issue 2

1976

Article 7

JUNE 1977

On generalized uniserial blocks

Kaoru Motose* Yasushi Ninomiya[†]

Copyright ©1976 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Shinshu University

[†]Shinshu University

ON GENERALIZED UNISERIAL BLOCKS

KAORU MOTOSE and YASUSHI NINOMIYA

Throughout R will represent a (unital) Artinian algebra over a field K of characteristic p > 0, J(R) the radical of R, and G a finite group whose order is divisible by p. In [7, Theorem 6], M. Osima stated that the group algebra KG is uniserial if and only if G is p-nilpotent and a Sylow p-subgroup of G is cyclic. In § 1, by making use of G. Morita [3] we formulate the same for G (Theorem 1). In § 2, we consider G for a spliting field G. If a block G of G has a cyclic defect group G then Dade's theorem [1, Theorem 78. 1] and [8, Lemma 4.2] enable us to see that the nilpotency index G0 of G1 is not greater than G1 (cf. [4, Remark 1]). In Theorem 2, we shall prove that G2 if and only if G3 is a generalized uniserial ring.

1. At first we consider the case R is a simple algebra over K. As was stated in [5, Theorem 8], by making use of [7, Theorem 1] and [3, Theorem 8] (instead of [7, Theorem 6]) we have the following

Lemma 1. Let R be a simple algebra over K.

- (1) RG is primary decomposable if and only if G is p-nilpotent.
- (2) RG is uniserial if and only if G is a p-nilpotent group with a cyclic Sylow p-subgroup.

Now, we can prove our first theorem.

Theorem 1. RG is uniserial if and only if R is semisimple and G is a p-nilpotent group with a cyclic Sylow p-subgroup.

Proof. We assume that RG is uniserial. Since R is a homomorphic image of RG, R is uniserial. Let $R = R_1 \oplus \cdots \oplus R_s$ be a decomposition of R into primary rings, and $R_i = R_i/J(R_i)$. Then, \bar{R}_iG being uniserial, G is a p-nilpotent group with a cyclic Sylow p-subgroup (Lemma 1 (2)). Since R_i is primary, R_i is isomorphic to the matrix ring $(S_i)_{n_i}$ with some completely primary ring S_i . Hence, we have $R_iG \cong (S_iG)_{n_i} \cong S_iG \otimes_K (K)_{n_i}$. Then by [5, Lemma 6], S_iG is uniserial. Let P be a Sylow p-subgroup of G. Since S_iP is a homomorphic image of S_iG and $S_iP/J(S_iP) \cong S_i/J(S_i)$, S_iP is a completely primary uniserial ring. If $J(S_i) \neq 0$ for some j, then it is obvious that $J(S_j)$ is not contained in the augmentation ideal J of S_iP . Further, since $g-1 \in A \setminus J(S_i)P$ for

142

any $g \neq 1$ in P, we see that $J(S_j)P$ and J are incomparable. This yields a contradiction that S_jP is not uniserial. Thus, R is semisimple. The converse part is also easy by Lemma 1 (2).

2. Let L be an extension field of the p-adic completion of the rationals, and R the complete local ring whose quotient field is L. Let K be the residue class field of R. Throughout the present section, we assume that L is a splitting field for G.

Lemma 2. If B is a block of KG with a defect group D, then the following conditions are equivalent:

(1) D is cyclic and the decomposition matrix of B takes the form

(2) D is cyclic and the Cartan matrix of B is of the form

(II)
$$\begin{pmatrix} s+1 & s & \dots & s \\ s & s+1 & \dots & s \\ \vdots & \vdots & \ddots & \vdots \\ s & s & s & s \\ s & s & \dots & s+1 \end{pmatrix}.$$

(3) B is a generalized uniserial ring.

Proof. The implication $(1) \Longrightarrow (2)$ is obvious, and $(2) \Longrightarrow (3)$ is a consequence of [2, Folgerung 4]. $(3) \Longrightarrow (2)$: Since B is a generalized uniserial ring, by [6, Theorem 17] B has only a finite number of indecomposable modules. Hence, D is cyclic. The rest of the proof is evident by [3, Remark, p. 158]. $(2) \Longrightarrow (1)$: By Dade's theorem [1, Theorem 68.1], the Cartan matrix (c_{ii}) of B is of the form

ON GENERALIZED UNISERIAL BLOCKS

where the elements in the *-parts are 0 or 1. By (2), we have s = 1 or a=0. First we consider the case s=1. Let $\{U_i \mid 1 \le i \le a+b\}$ be a complete set of representatives of isomorphic classes of principal indecomposable B-modules, \widetilde{U}_i the principal indecomposable RG-module such that $K \otimes \widetilde{U}_i \cong U_i$, and \emptyset_i the character afforded by \widetilde{U}_i . $\{\chi_j \mid 1 \le j \le a+b+1\}$ be a complete set of irreducible complex characters of B. Since s=1, each ψ_i is the sum of distinct two χ_i 's. When $a+b \le 2$, it is trivial that the decomposition matrix of B takes the form (I). Hence, we suppose a + b > 2 and $\Phi_1 = \chi_1 + \chi_2$. $(\phi_1, \phi_k) = c_{1k} = 1$ for $k \neq 1$, ϕ_k contains χ_1 or χ_2 . We may assume here that ψ_2 contains χ_1 . If one of ψ_i 's $(i \ge 3)$, say ψ_3 , does not contain χ_1 , then φ_3 contains χ_2 . Since $(\varphi_2, \varphi_3) = c_{23} = 1$, φ_2 and ψ_3 contain a character different from χ_1 or χ_2 in common. This yields a contradiction that $\{\chi_j\}$ is not a tree. We have therefore seen that each ψ_i $(1 \le i \le a + b)$ contains χ_i . Thus, the decomposition matrix of B takes the form (I). Next, we consider the case $s \neq 1$. Then a = 0 and the decomposition matrix of B takes the form (I) by [1, Theorem 68.1].

By Dade's theorem [1, Theorem 68. 1] and [8, Lemma 4. 2], it is easy to see that if a defect group D of B is cyclic then $t(B) \leq |D|$. Hence, if a Sylow p-subgroup P of G is cyclic then the nilpotency index t(G) of J(KG) is not greater than |P|. Now, our attention will be directed towards the case t(B) = |D| and the case t(G) = |P|.

Theorem 2. If a defect group D of a block B of KG is cyclic, then the following conditions are equivalent:

- (1) t(B) = |D|.
- (2) B is a generalized uniserial ring.

Produced by The Berkeley Electronic Press, 1976

143

3

Proof. 1) (1) \Longrightarrow (2): By [Theorem 68.1], the Cartan matrix (c_{kl}) of B is of the form (III). Therefore we have $|D| = t(B) \le \max_{k} \{\sum_{i} c_{ki}\} \le$ $a + bs + 1 \le (a + b)s + 1 = |D|$, whence it follows that a + bs + 1 =(a+b)s+1=|D|. Hence, we have s=1 or a=0. First we consider the case s = 1. Then a + b = |D| - 1. Since a + b divides p - 1, we have |D| = p and $t(B) = \sum_{i} c_{ki} = p$ for some k. Let U_i , \widetilde{U}_i , ψ_i $(1 \le i \le a + b)$, $\chi_j (1 \le j \le a + b + 1)$ be as in the proof of Lemma 2. Since s = 1, each ψ_i is the sum of distinct two χ_j 's. We suppose $\psi_k = \chi_1 + \chi_2$. Since $(\psi_k, \psi_l) = c_{kl} = 1$ for $l \neq k$, ψ_l contains χ_1 or χ_2 . We suppose that $m \psi_i$'s contain χ_1 and $n \psi_i$'s do χ_2 . Now, let M, N be RG-submodules of \widetilde{U}_k corresponding to χ_1 , χ_2 respectively. Since $K \otimes \widetilde{U}_k$ is uniserial by t(B) = p, we may assume $K \otimes M$ contains Then all composition factors of $K \otimes N$ appear among those of $K \otimes M$. Thus, we have n=1. Rearranging ψ_i 's and χ_i 's, the decomposition matrix of B takes the form (I). Next, we consider the Then a = 0 and the Cartan matrix of B is of the form case $s \neq 1$. Thus, by Lemma 2, B is a generalized uniserial ring. (2) \Longrightarrow (1): Since B is a generalized uniserial ring, the Cartan matrix of B is of the form (II) (Lemma 2). Now, let f be an arbitrary primitive idempotent of B. Since $\sum c_{kl} = se + 1 = |D|$ for $1 \le k \le e =$ the number of non isomorphic principal indecomposable modules of B, the length of the unique composition series of Bf is |D|. Therefore $J(B)^{|D|-1}f \neq 0$ and $J(B)^{|D|}f$ Hence t(B) = |D|.

Corollary. If G has a cyclic Sylow p-subgroup of order p^a , then the following conditions are equivalent:

- $(1) \quad t(G) = p^a.$
- (2) There exists a generalized uniserial block of defect a.

REFERENCES

- [1] L. DORNHOFF: Group Representation Theory, Part B, Dekker, 1972.
- [2] H. Kupisch: Symmdtrische Algebren mit endlich vielen unzerlegbaren Darstellungen II, J. Reine Angew. Math. 245 (1970), 1—14.
- [3] K. Morita: On group rings over a modular field which possess radicals expressible as principal ideals, Sci. Rep. Tokyo Bunrika Daigaku, A4 (1951), 155—172.
- [4] K. Motose: On radicals of principal blocks, to appear.

¹⁾ Recently, S. Koshitani gave a different proof by making use of the result in [H. Kupisch: Projektive Mcduln endlicher Gruppen mit zyklischer p-Sylow Gruppe, J. of Algebra 10 (1968), 1—7].

ON GENERALIZED UNISERIAL BLOCKS

145

- [5] T. NAGAHARA, T. ONODERA and H. TOMINAGA: On normal basis theorems and strictly Galois extensions, Math. J. Okayama Univ. 8 (1958), 133—143.
- [6] T. NAKAYAMA: On Frobeniusean algebra II, Ann. Math. 42 (1941), 1-21.
- [7] M. OSIMA: On primary decomposable group rings, Proc. Phys.-Math. Scc. Japan 24 (1942), 1—9.
- [8] D. A. R. Wallace: Lower bounds for the radical of the group algebra of a finite p-soluble group, Proc. Edinburgh Math. Scc. 16 (1968/69), 127—134.

SHINSHU UNIVERSITY

(Received April 30, 1977)