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NOTES ON A CONJECTURE OF P. ERDOS. I
SABURO UCHIYAMA and MASATAKA YORINAGA

Let @ and & be rational integers with 1 < ¢ <<b and G.C.D. (a. d)
=1. For any natural number » we denote by f(u) = f(n; a, b) the
number of those integers £ lying in the interval 1< k << (log ) 'log(d'a),
for which &*n — b* is a prime number. P. Erdos [1, 2, 3] has considered
in some detail properties of the function f(n) for @ =1, b = 2; indeed,
in the particular case of ¢ = 1, 4 = 2, he has proved among other things
that there is a constant ¢ >> 0 such that we have

fF(n)>clog log n

for infinitely many 7, and that there exists an infinite arithmetic progres-
sion consisting only of odd integers » for which f(#) = 0 (cf. [1]). And,
he conjectures that there holds

(1) fn) =f(n; 1, b) = o (log ») (n — oo)

for any fixed b =2 (cf. [1, 2]); at the present stage of our knowledge,
(1) seems difficult to prove (or disprove).
It is possible for some natural numbers # that all of the integers
n— 2F (1 £ k< (log n)/log 2)

are prime ; in fact, n# =4, 7, 15, 21, 45, 75 and 105 are such numbers,
and Erdés [1] observes the fact that in the interval

(2) 105 < # < 203775 = 3:5%-11-13-19

there are no other integers » of that kind.
For brevity’s sake we shall say that a natural number #» has the
property P(e, b), if all of the integers

a‘n — b* (1 < k << (log n)/1log (b/a))
are prime numbers. Thus, Erdos [1, 2, 3] conjectures that 105 is the
largest integer which has the property P (1, 2). Using an electronic
computer IBM 7040, W. E. Mientka and R.C. Weitzenkamp [4] have

extended the interval (2) of non-existence for » with the property P(1, 2)
to

(3) 105<<n=18734724677955
(= 3+5-11%2-13-17-19-29%-37-79 > 2%4),

129
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We also have examined on a computer HITAC 20 the existence of positive
integers with the property P (1, 2) and found that in the interval

105<<72=<152246817378604933869885
(= 3-5°7-11-13°19-29-37-53-59-61-67-38916793 >2")

there are no such integers #, thus extending further the interval (3) of
non-existence. See Example 1 below.

We shall be primarily concerned in what follows with natural numbers
having the property P(q, ) with 1<a<b, G.C.D.(q, ))=1. A
plausible conjecture is that there are at most finitely many positive
integers with the property P(e, b), whatever the integers «, b may be.

Most of the numerical computations relevant to our present investi-
gations have been, or will be, done by a FORTRAN programme on
a computer HITAC 20 in the Department of Mathematics, Okayama
University.

1. Some numerical results. Mientka and Weitzenkamp [4] have
given a table of the number of natural numbers # =< 20000 having the
property P(1, &) for each & with 2 < »< 13, However, our numerical
experiment suggests that there must be errors in their table, apart from
a possible misprint. In fact, the numerals we have found are inconsistent
with those in the table of Mientka and Weitzenkamp, and the discrepancy
will be seen thus,

Number of natural numbers z <X 20000 with P(1, &), 2= 5 =<13

b Mientka-Weitzenkamp’s ours difference
2 9 7 2
3 23 20 3
4 81 77 4
5 63 58 5
6 240 234 6
7 159 152 7
8 110 102 8
9 280 251 29

10 383 373 10

11 265 254 11

12 351 339 12

13 385 372 13
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We have also tabulated for each b, 2=<5=21, the number of
natural numbers # < x having the property P(1, 5) for x = 2"E 4,
m = 0(1)10, together with the largest #'s so far found.

In a second Note under preparation we shall present some tables
of the number of positive integers having the property P(e, ) with
1<<a<b, G.C.D.(a,d) =1.

2. An exclusion procedure. Again, let, , b be a pair of integers
with 1=<a<<b, G.C.D.(q, b)=1. If ais odd, then one at most of
the natural numbers » that have the property P(a, 5) satisfies

=0 (mod2), or =1 (mod 2)

according as b iseven, or is odd ; no such information is available if «
is even and so b is odd. However, a much more effective exclusion
processing can be achieved in general.

An odd prime ¢ is called a critical prime for the pair of integers a,
b, if G.C.D.(g, ab) =1 and @b is a primitive root (mod ¢), where
@ is an integer (uniquely) detemined (mod ¢) by aa=1 (mod ¢). In
particular, ¢ is a critical prime for the pair 1, & if b itself is a primitive
root (mod g). It seems likely that if there is a critical prime for a pair
a, b, then there exist infinitely many critical primes for the pair a, b,
though we cannot at present prove this fact rigorously.

Let ¢, ¢;, gs, -+ be if existent the increasing sequence of critical
primes for the pair @, 4. We define the quantities @ = @; (g, b)) ( ==1)
and M, = M, (a, b) ({ = 1) by setting

Q& =qq " q

and

Mi= max I_bk_‘k_q:l

1Sksq-1 a

e ([224]. [9)

with ¢ = ¢;, where [¢] denotes the greatest integer not exceeding the

real number ¢,
The notion of critical primes, when not meaningless, will be helpful

for actual computations, as the following proposition shows.

Proposition. Let q be a critical prime for the pair a, b. If a
natural number n has the property P(a, b) and if n is nqt divisible by

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 19/iss2/6



Uchiyamaand Y orinaga: Notes on a conjecture of P. Erd&ouml;s. |

NOTES ON A CONJECTURE OF P. ERDOS. I 133

q, then we have n < M, where q = q,. Hence, if n has the property
P(a, b) and n> M, for some i =1, then n is necessarily a multiple of
Q.

Proof is immediate, since if # is not divisible by a critical prime g¢
for the pair @, 5, then we have forsome 2 with 1=<%(2<¢—1
an — b= (mod ¢), or an — b*=g¢q

when » has the property P(a, 8). Cf. [4; Corollary 2].
A simple consequence of the proposition is the

Corollary., If M, << Q._, for some i>1, then there are no natural
numbers n with the property Pla, b) in the interval Q_, < n<<Q,.

Thus, a (non-empty) set of critical primes will furnish an exclusion
procedure.

Now, we shall give some examples of pairs of integers @, b admit-
ting critical primes ; in each of these examples all critical primes less
than 100 will be listed.

Example 1. a=1, 6=2:4q,=3, ¢:=5, g3=11, ¢, =13, g5 =
19, g5 =29, g, = 37, g5 =53, ¢, =59, q;0 = 61, ¢g,; = 67, q,;, = 83.

1

i Q M,
1 3 7
2 15 21
3 165 1035
4 2145 4109
5 40755 262163
6 1181895 268435485
7 43730115 68719476773
8 2317696095 4503599627370549
9 136744069605 288230376151711803
10 8341388245905 1152921504606847037
11 558873012475635 73786976294838206531
12| 46386460035477705 | 4835703278458516698824787

Steps in processing the case of a =1, b =2
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Step 1° Read data: control parameters C; (=1, 2, 3), test
primes P, (1< r < (), starting value of the number #n,
and the increment A.

Step 2° Compute 28 (1< k< C,).

Step 3° Compute g, = — 2* (1< k < B, = (log n)/log 2).
Step 4° Putr =1,

Step 5° Put k=1,

Step 6° Test divisibilitj by p, of g

Step 7° If p. | g« and p, <g: then go to Step13°.

Step 8° Put =k + 1.

Step 9° If k<B, then go to Step 6°.

Step 10° Put r =7+ 1.

Step 11° If »<C, then go to Step 5°.

Step 12° Print the message ‘Further Test’ and go to Step 14°.
Step 13° If p,= C;, then print the result.

Step 14° Put n =n 4+ h and go to.Step 3°.

In the actual performance, we split our computations into several
stages, according to the magnitude of the current value of » and the
size of k. As an underlying set of test primes, we prepared about 300
prime numbers in number, excluding the critical primes less than the one
for each of the stages just concerned.

Surprisingly enough, we have observed that for each number # in
the range we examined, » — 2*> (0 was divisible for some integer %k by
a relatively small prime number ; indeed, such prime numbers did not go
beyond the prime 179, which appeared only for

n = 62615556119694283020315 and 137764842721212074680455.

Example 2. ¢=1 b=3: ¢.=5 ¢=7 g¢=17, ¢,=19,
q;s =29, g5 =31, g, =43, qs= 53, g =19, g =89

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 19/iss2/6
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: (47 M,
1 5 86
2 35 736
3 595 43046738
4 11305 387420508
5 350455 205891132094680

Example 3. a=1, b=5: ¢.=3, ¢q.=5 ¢qs=17, ¢q,= 23,
g5=37, qs =43, g, =47, ¢ =53, gy =173, g1 =83, g =97

Example 4. a=1, b=6: ¢, =11, q,=13, ¢ =17, ¢q, =41,
gs = 59’ gs = 61, q; = 79, gs = 83, gy = 89.

Example 5. a=1, 6=7: ¢.=05, ¢g,=11, q; =13, ¢q, =17,
gs =23, qs=41, q; =061, gs=067, go=T71, q10=79, g1, =89, ¢, =97.

Example 6. ¢a=1, b=8: ¢,=3, ¢.=5, ¢g:=11, ¢q,=29, ¢5 =53,
qs="59, ¢q;=83.

Example 7. a=1, b=10: ¢,=7, q.,=17, ¢:=19, q, =23, ¢q; =29,
q6=47! Q7=59) q8=617 q9=97‘

Example 8. a=2, b=3: ¢:.=17, q.=11, ¢q;=17, q, =31, gs =37,
q6=41) 47=59, QB=83a CI9=89~

i & M,

1 7 11
2 77 57
3 1309 656
4 40579 191751
5 1501423 2.184E6

The positive integers n < 512E4 with P(2, 3) are: n =3, 4, 5, 7, and
8.

Example 9. a = 2, b =5: ¢,=11, q,=17, ¢;=23, q,=47, ¢; =59,
ds =173.
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i Q M,

1 11 9536
2 187 2328307
3 4301 5684E8
4 202147 2019E18
5 11926673 1.203E23

There are 34 positive integers n < 512E4 with P(2, 5); the largest »

found is'; » = 507,

Example 10.

a=3, b=4: ¢q,=5 ¢,=17, ¢;=19, ¢,=29, ¢;=31,
qS=41, Q7=43’ q8=53’ (19=67: 41o=79: Qu=89~

i Qi M.

1 5 3
2 85 99
3 1615 177
4 46835 3149
5 1451885 5599

The positive integers # < 512E4 with P(3, 4) are: » =2, 3, andb.

Example 11,

qs=47, q:=73, qs=179, ¢,=83, g,,=289.

a=3, b=5: ¢,=13, ¢q,=23, ¢;=29, ¢,=31, g;=41,

i Q M;

1 13 459
2 299 75975
3 8671 1628E6
4 268801 4523E6
5 11020841 7480E8

The positive integers z < 512E4 with P(3, 5) are: n = 4, 6, 12,

24.

Example 12,

http://escholarship.lib.okayama-u.ac

and

a=41 b=5:p1=3’ QZ=7: q3=13’ Q4=17) 45=23y
gs=43, ¢:=47, ¢=053, ¢, =67, ¢,0=83, ¢.,=97.
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i Q M,

1 3 2
2 21 3
3 273 14
4 4641 35
5 106743 135

137

n = 2 is the only positive integer with P(4,5) less than @,,>6. 167E15.

Example 13,

i

G W N

a=5: b=6: 01223, q2:41) CI3=47, Q4=53, f15=59,
q5=67, q7=73, q8=89, QQ=97.

Q M,
23 55
943 1469
44321 4388
2349013 13104
138591767 39130

There are no positive integers with P(5, 6) less than @, > 5. 851E15.

Example 14,

d=6: b=7: 111=5, q2:235 (13’:37» q4=59y (15:67’
g6=T71, ¢;=73, q3=83, gs=97.

il Q M,

1 5 2
2 115 29
3 4255 257
4 251045 7636
5 16820015 26211

n = 2 is the only positive integer with P(6, 7) less than @, > 7. 018E14.

Example 15.

ge=41, ¢,=53, ¢3=59, ¢.=T71, ¢,=79, ¢.,=83, ¢,=97.

a:77 b=8: 111"_'3; 42=177 ‘13':23, Q4=29, 45=37:

i Q: M,

1 3 1
2 | 51 8
3 1173 18
4 34017 42
5 1258629 122
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There are no positive integers with P(7, 8) less than §,, 2> 7. 286E18.

Example 16. a=7, b:g: q1=5, q2=11' q3=17, q4=23, q5=417
gs=61, ¢;=71, ¢;=89, ¢,=97.

i Q M,

1 5 2
2 55 12
3 935 55
4 21505 251
5 881705 23215
6 53784005 3537E6
7 3818664355 | 4366E7
8 339861127595 | 4024E9
9 | 32966529376715 3.005E10

n = 2 is the only positive integer with P(7, 9) less than @, = 21505.

Example 17‘ a=8) b=g: q1=59 q2=11; ‘13=13, q4=19: 452371
q6=431 47=53, q5=59: q9=833

i Q | M,

1 5 1
2 55 3
3 715 4
4 13585 8
5 502645 69

There are no positive integers with P(8, 9) less than @, > 5. 609E12.

3. General observations. Let ¢, b be arbitrary integers satisfying
1=a<b G.C.D.(a, b)) =1. One may again conjecture that the func-
tion f(n) = f(n; a, b) satisfies the relation (1) for every such pair of
integers a, b.

Here, we mention two results on f(»): the first of them is an exten-
sion, whereas the second is a weak generalization, of the results due to
Erdés [1] quoted in the Introdnction.

Theorem 1. We have
fln; a b) -

l;fm~ Sup log log »

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 19/iss2/6
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for some constant ¢ = c (a, b) > 0.

In order to prove this theorem we apply, in place of a theorem of
K. A. Rodosskii® to which Erdos [1] appealed for the proof of his corres-
ponding result with ¢ =1, » = 2, the Bombieri-Vinogradov mean value
theorem on the remainder term in the prime number theorem for arithmetic
progressions. As a result we find

0 Lo
e b log b if a=1

= b (b) ( log & ) ; 2

¢ .Ie blogaIOg Tog (5/2) if 1<<a*< b,
o (B)_ it g
‘eblogaIng if a*>b

where C denotes the Euler constant and ¢(&) is the Euler totient
function.

Theorem 2. There exists a set of natural numbers of positive (natural)
density, consisting only of those numbers n with G.C.D.(n, ab) =1 for
which we have f(n; a, b) = 0.

Proof of Theorem 2 can be carried out along the same lines of
argument as given in Erdds [1]. In fact, we can find in general primitive
prime factors® p, of @™ — b™ for m=2, 3, 4, 8, 12, and 24. This is
certainly possible unless m = 2 and a -+ b=2° for some e=1, in which
case a—b is a non-zero even integer and we take, as we may, any
prime factor p, of a—»b. In any case the six primes p, thus chosen
are mutually distinct. none of them dividing the integer «b.

Now, every integer % satisfies at least one of the following congru-
ences :

k=0 (mod2), k=0 (mod3), k=1 (mod4), %&=3 (mod 8),
k=7 (mod 12), and %,=23 (mod 24). For m =4, 8, 12 and 24
we take integers a. satisfying

1) Cf. K. A Rodosskii: On the distribution of prime numbers in short arithmetic progres-
sions. Izvestija Akad. Nauk SSSR Ser, Mat. 12 (1948), 123—128 (in Russian). As a matter
of fact, we feel it inadequate to make use of this theorem of Rodosskii for our present purpose,

2) A prime number p is a primitive prime factor of @™—bm, if p divides am—bm but
does not divide a*—b* for all k& with 1=k <m. For the condition on the existence of
primitive prime factors one may refer e.g. to [5].
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aa, =1 (mOd pm)~

Then, for any natural number » which is congruent to 1 (mod p,), tol
(mod p,), to a,;b (mod p,), to (asd)® (mod pg), to (a;,8)" (mod p,,), and to
(az ) (mod p,,), we see that for any k, a*» — b* is divisible by one of
the primes p™ (m = 2, 3, 4, 8, 12, 24). Since none of the primes pn
divide @b, and since the set of natural numbers 5 for which we have

a'n — b = p,

for some integers 2 =1 and m from among 2, 3, 4, 8, 12, 24, has
density zero. This concludes the proof of Theorem 2.
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