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ON PROJECTIVE DIFFEOMORPHISMS NOT
NECESSARILY PRESERVING COMPLEX STRUCTURE

MITSURU KORA

Introduction. In his recent paper [5], Y. Tashiro has investigated
conformal diffeomorphisms which do not necessarily preserve product
structure between locally product Riemannian manifolds and determined
the structure tensnrs on the manifolds. In connection with this problem,
in 1959, he had early solved the corresponding problem on projective
diffeomorphisms in [3, 4]. On the other hand, in 1941, N. Coburn [1]
proved that a projective diffeomorphism f of a Kaehlerian manifold M
onto a Kaehlerian manifold M* which preserves the complex structure
is affine. However projective diffeomorphisms between Kaehlerian mani-
folds which do not necessarily preserve complex structure have not been
investigated yet.

The purpose of the present paper is to show generalizations of
Coburn’s theorem. § 1 will be devoted to give some formulae and lemmas
used later. In §2 we shall consider the problem in two different direc-
tions and give some corollaries, Last of all, in §3, motivated from a
theorem due to S. Tachibana [2] on the infinitesimal projective trans
formation, we shall consider projective diffeomorphisms under an assump-
tion analogous to the theorem.

The summation convention is used throughout this paper and indices
run on the following ranges;

h, i, j, k=1, 2,3, -, m,

m being the topological dimension of M.
The author wishes to express his gratitude to Prof. Y. Tashiro who
gave him useful comments.

1. Almost complex manifolds and formulae. Let (M, g) and
(M*, g*) be Riemannian manifolds with Riemannian structure g and g*
respectively and suppose that there is given a projective diffeomorphism
f of M onto M*. We shall denote the induced tensors on M by f by
the same letters as the original tensors on M*. Then by the definition

*
of projective diffeomorphism the Christoffel symbols {;‘l} and { ]hz}
formed by g and g* respectively are related as follows:
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1.1) {’.’.}* = {”} + pat +pat
Jt Jt
where p; is a gradient vector field on M. The diffeomorphism f is
affine if the vector field p, identically vanishes.
Let D be Riemannian connection, and K, the curvature tensor of
M, and indicate quatities of M* by asterisking. It is well known that
the following equations are valid on M:

(1- 2) K*kﬁh = Kkjih - 5;‘1’&: - 52?1;
(1.3) Dig*n = 2p,;8%n + p:ig%m + Prg™s
where p; is given by

(1. 4) b5 = Dips — pips.

Next, let (M*, g*, G) be an almost Hermitian manifold with almost
complex structure G. Then, we have equations

(1. 5) GJLG‘h = — 0:\7
(1.6) G/G'g"s = g"x
1.7 G'u=— G

where we have put G*;; = G/g*,, see [6]. The manifold M* isa K-
space if the fundamental 2-form is a Killing tensor, that is, the equation

(1.8 D*,G" + D*;G»= 0

holds, or M* is a Kaehlerian manifold if the equation
(1.9) D*G"=0

or equivalently

(1.10) D*G*s =0

holds. A Kaehlerian manifold is a K-space, and a K-space is a Kaehlerian
manifold if the almost complex structure is integrable. We have the
following

Lemma 1. If there exists a projective diffeomorphism f of a Rieman-
nian manifold (M, g) onto a Kaehlerian manifold (M*, g*, G), we have the

equations
(1. 11) DjG{h = p{GJh - p;G,;‘a?
(1. 12) DjG*ih = zij*ih +‘ jJ,'G*J,, + th*U
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(1- 13) Kkjl.nGil_ Kl‘jthLh = Gjhpki - Gknpji - G:'(I?S'Pm - (3;; P,u)

(1. 14) DJG;h -+ DiG_’h = piGjh -+ pJG(h - pLG,-tl?f; b ptG,"(?Q‘
and
(1.15) D.Gy = — mp,G/ .

If there exists a projective diffeomorphism f of a Riemannian manifold
(M, g) onto a K-space (M*, g*, G), we have the equations (1. 14) and (1. 15).

Proof. If (M* g*, G) is an almost Hermitian manifold, it follows
from (1. 1) that

D*JGLPL = DjGih - (piGjh — szi '(}:;
D*JG*H, = DJG*m - (ZPJG*H, + p.‘G*ﬁ. + pnG*r‘-))-

By substitution of these equations into (1.8), (1.9) or (1.10), (1.11),
(1.12), (1.14) and (1. 15) are obtained. Applying Ricci's formula to (1. 11)
and by straightforward computation, we have easily (1.13). Q.E.D.

Now, let (M, g, F) and (M*, g*, G) be almost complex manifolds
with almost complex structures F and G resgectively. If there exists
a diffeomorphism f of M on to M*, G defines an almost complex struc-
ture f*(G) on M induced by f*. We can define a new endomorphism
H = f*(G)F on the tangent space of M by the composition of endomor-
phisms f*(G) and F. We define a scalar field = on M by

(1. 16) == Tr(H),

where Tr means the trace of the endomorphism.

Lemma 2. Let (M, g F) and (M*, g*, G) be almost complex mani-
Jolds of real dimension m and suppose that there exists a diffeomorphism
f of M onto M*.

(i) If f*(G) = =F we have ~ = Fm respectively.

(ii) If f*(G) is commutative with F and f*(G) 5 = F, then <© is
constant and © = xm. Moreover, H defines an almost product structure
on M.

(iil) If f*(G) is anti-commutative with F, we have © = (.

Proof. In this proof, we write G instead of f*(G) for simplicity.

In the case (i), we have GF= *=F* = ] Hence v = Tr(GF) =
FTr(l) = Fm.

To prove (ii), in the first place, let V be the tangent space of M at
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an arbitrary fixed point x & M, and denote the linear transformation on
V induced by F and G by the same letters. Let V* be the complexified
vector space of V. Since G *=F, V° splits to the direct sum

1.17) Vi=V*rp V- VoV

where, for instance, the space V¥~ is the intersection of the eigenspace
of G belonging to the eigenvalue +1/— 1 and the eigenspace of F
belonging to the eigenvalue —1/— 1. It is clear that dimy(V**) =
dim (V") = @, dim(V*~) = dim(V~*) = & and 2(ag + b) = m, where a
and b are integers. G and F can be extended to complex-linear trans-
formations on V°. Denote them by G and F and put & = GF. Since

GF = FG, it holds GF = FG. Choosing a basis of V° composed of bases
of the subspaces in the direct decomposition (1.17), we then see that,

with respect to this basis, H has the form

—I(a) 0
=~ +1(b)
H= +1(b)
0 —I(a) /

I(n) being the identity matrix of degree n. Thus we have Tr(H) =
2(b—a). If we choose the above basis as a real vector space for V, H=GF
is given by the same form as H. Therefore we have r=Tr (H)=2(b—a)
at x= M. Since a and b are integers and © is continuous on M, =
is a constant and 7 = 2(& — @) on M. Itis easy tosee that a=~0, m
unless G= = F. This proves v~ *+m. In this case, H? =1 and
H=£ +], thatis, H is an almost product structure on M.

In the case (iii), GF = —FG and thus
v = Tr(GF) = Tr(—FG) = —Tr(FG) = —r.
Wehave r=0. Q.E.D.

2. Generalizations of Coburn’s theorem.

Theorem 3. (a) ZLet (M, g, F) be a K-space, and (M*, g* G) a
Kachlerian manifold. Then a projective diffeomorphism f of M onto M*
is affine if f*(G) is commutative with F.

(b) Let (M,g, F) and (M*, g*, G) be K-spaces. Then a projective
diffeomorphism f of M onto M* is affine if f*(G) is anti-commutative
with F.
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Proof. In the case (a), we have
(2. 1) P‘J‘Gg’L = GJ‘F;”

and = is constant from Lemma 2 (i) and (ii). Moreover, since M is a
K-space the equations

2.2 D,F* = — D,Fy"

(2. 3) DF!=0

hold. Substituting (1. 11) into D,r = 0 and taking account of (2. 1), we
obtain

2.4) (D;FHGS = 0.

If we transvect (2.4) with G’ and use (2.2), (2.1), (1.15), (2.3), (2.1),
(1.5), (1.11) and F.! = 0 in this order, we see

0= Gij (DJF-t) G,,'

= — G’ (D.F})G’

— G/D(F{G*) + G’Fy/D,G
—G/D.G}F} — mp,G/G,F;
= — Gij (PJGst - p,Gf(?ﬁ) F+ mp.F;’
= —1,G’ + mp.F!

I

and thus we have
(2- 5) fpaGi‘ = mPst .

If f*(G) 5 +F, then it follows from Lemma 2 (ii) that 7% *m. On
the other hand from (2. 5) and (2. 1) we have the equation

(m* — *)p, = 0.

Hence we have p,=0 and f is affine. If f*(G)= +F, then we observe
= Fm and f*(G)F= FI By account of these properties it follows
from (2. 5) that f is affine.

In the cace (b), we have
(2. 6) G/F," = —F,/G"

and = =0. If we apply the operator D, to (2.6) and take account of
(2.2) and (2. 3), we have

(D.G))F' = —(DFy) G — Fy'D,G"
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= (DJF;[")G:’L - F,'D,LG;"'
= —(D,GHF," — Fy'D,G/".

Substituting (1. 15) into the last equation, we obtain

(2. 7) (D}:Gjt i DjGJ)EF = ﬂlpsG;SFjl.

On the other hand, since M* is a K-space, it follows from (1. 14) trans-
vected with Fy" that

(DG} -+ D;GF,' = —2p.G Fy.
Putting this expression equal to (2. 7), we get
(m + 2)pG'Ff = 0.
Thus, p; = 0 and consequently f is affine. Q.E.D.

Corollary 4. In addition to the assumption of Theorem 3 (a), suppose
that f*(G) = =F. Then a necessary and sufficient condition for M to be
a locally product manifold with the structure tensor H = f*(G)F, is that
the K-space structure (g, F) on M is Kaehlerian.

Proof. By Theorem 3 (a), we have D,G' = 0. Since (M, g F) is
a K-space and GF = FG, we obtain

(2.8) H/D,H' = —F/D.F'.

By Lemma 2 (ii), H is an almost product structure on M. If we denote
by N(H) and N(F) the Nijenhuis tensors of the tensors H and F respec-
tively, then the relation

(2.9) N(H) = — N(F)

follows immediately from (2.8). Therefore N(H) = 0 is equivalent to
N(F) = 0, thatis, the integrability of the almost product structure A
is equivalent to that of the almost complex structure F. Q.E.D.

Since a Kaehlerian manifold is a K-space, we have the following

Corollary 5. Let (M, g, F) and (M*, g*, G) be Kachlevian mani-
folds. Then a projective diffeomorphism f of M onto M* is affine if
one of the following conditions is satisfied :

(a) f*(G) is commutative with F.

(b) r*(G is anti-commutative with F.
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Moreover, if (a) is satisfied and f*(G) % *+F, then both M and M* arve
locally product manifolds.

In Corollary 5 (a), especially if f satisfies the condition f*(G) = =F,
this result turns Coburn's theorem. On the other hand, if f preserves
the complex structure, the Riemannian structure f*(g*) on M induced
by g* on M* becomes a Hermitian structure endowed with F. We can
then state another generalization of Coburn's theorem as follows:

Theorem 6. Let (M, g, F) be a Kaehlerian manifold, and (M*,g*)
another Riemannian manifold. If a projective diffeomorphism f of M onto
M* makes the induced Riemannian structure f* (g*) to be a Hermitian
structure endowed with F, then f is affine.

Proof. By the assumption

(2.10) g*w=F'F’g"..

If we apply the operator D, to (2.2) and take account of D,F." = 0, we
have

(2. 11) Dkg*j; = Fj‘E 5D,(-gl*;s .

" Substituting (1. 3) into (2. 11) and using (2. 10), we see

pig i+ big¥n =0 F'F g% + DsFVFy'g* i
If we transvect this with g** and use the identity F,'=0, we can easily
get p, = 0; this proves the theorem. Q.E.D.

We shall conclude this section with a consequence which is obtained
in the same way as th proof of Theorem 6. Let (M, g, F) and (M*, g*, G)
be Kaehlerian manifolds. Then G* = (1/2)G,*dx’ /\ dx' is the funad-
mental 2-form on M* and the form C,(w) for a 2-form # = w,dx’ /N dx’
is defined by Ci(w) = w, F/Fdx'/\dx’ in terms of real coordinate system.
Using (1. 12) instead of (1. 3), we have the following

Theorem 7. Let (M, g, F) and (M*, g*, G) be Kaehlerian manifolds.
Then a projective diffeomorphism f of M onto M* is affine if one of the
Sfollowing conditions is satisfied :

(a) Cr(f*(G*)) = f*(G*) and m>2.
(b) Ce(£*(G") = — F*(G").

3. A theorem under the condition K* = 0. In a Kaehlerian mani-
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fold (M*, g* G), the Chern 2form K* is a closed form defined by
(3.1) R* = R*ydx’ N dxt

(3.2 Ry = 2K*,,G*" = —2K*,'G} (= —K*,)

where we have put G** = G'g*¥,

Theorem 8. Let (M, g) be a compact Riemannian manifold of non-
negative scalar curvature k>0, and (M*, g*, G) a Kaehlerian manifold

with vanishing Chern 2-form K* = 0. Then a projective diffeomorphism f
of M onto M* is affine. Moreover, M has necessarily the vanishing
scalar curvature k = 0,

Proof. By the assumption, (1.13) holds, Putting G, = Gj'g., we
have

(3.3) K G’ — Ky G
= pktGJh - pkai,an - ﬁjinn + j).;G:’gn-

Transvecting this with g we have
(3- 4) KLJ:ILG:‘ -+ KJ’GSA = (g",bn)G;n - (]):rG")gjl. - Pstsh + thGA‘.

Again transvecting this with g and taking account of pj, = p;, and
Gig" = G/ =0, we obtain

(3.5) paG" = 0.

If we substitute (3. 5) into (3. 4), we have

(3.6) K'0G' + KfGun = (8"Pu) Gin — §S'Gun + puGi'.
On the other hand, from (1.2) and G' =0, we obtain

K_‘m. G'= -KMJLG:
= {K*M}‘ - (6:Lrphl - Blfﬁu)} Gz‘i
= K*huth‘ +leGh‘°

Substituting this into (3. 6), we get

(3. 7) K*I»U‘Gl. -+ KJ‘Gsn = (E"Pu) GM - pJ‘Gﬂl-

If we transvect this with G" and take account of G"G,.= G/G.*= —4dJ,
we have

(3.8) K*'G'GY — k= —(m — 1)g"pa .
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On the other hand, it follows from the first Bianchi’'s identity that
(3.9 K*'G* = G*K*, = — (1/4)K*,,.

Since K* =0 on M*, (3.9) becomes K*,,'G*=0. If we substitute
this into (3. 8) we have consequently

(3.10) kE—(m— 1)g"p, =0,
or, by making use of the definition (1. 4) of p,,

k—(m—1)(Up — g"pp) =0

where J is the Laplacian operator with respect to g. Since M is
compact, applying Green’s theorem, we have

3.11) | fr= n—Dg"ppd 1 =0

where *1 is the volume element on M. By the assumption, # >0 and

g'p,p: >0, (3.11) implies # = 0 and p; = 0. This is the desired result.
Q.E.D.
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