Mathematical Journal of Okayama
University

Volume 9, Issue 1 1959 Article 7
DECEMBER 1959

Spectral theory of operator algebras I

Minoru Tomita*

*Okayama University

Copyright (©1959 by the authors. Mathematical Journal of Okayama University is produced by
The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou



Tomita: Spectral theory of operator algebras |
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MinoOrRU TOMITA

Introduction.

In this paper we shall deal with non-commutative extension pro-
blems of some well-known and primary procedures in the classical in-
tegration and ideal theories of abelian C*-algebras.

1. Absolute variation of linear functional on C*-algebra. (§1in Ckap
1)

II. Quotient space of C*-algebra A devided by left ideal. The
regular representation of A in the quotient space, and its Q*-topology.
(§81in Chap. 3.)

III. Non-commutative extension of regularity of measure and the
extension of the Lusin’s Theorem. (§2, 3, 4 in Chap. 2)

IV. Banach space of vector fields, and a non-commutative extension
of the Gelfand- Naimark Theory. (§2 in Chap. 3)

V. Non-commutative extension of the concept of the spectrum. (§ 2, 4
in Chap. 3)

The existence of the absolute variation of linear functional founds the
classical integration theory. It shall be extended in general C*-algebra
using an easy and elementary calculation, and offer some interesting
problem in the future development of the ‘“non-commutative extension
of absolute integration”” and of the weak convergence theory of linear
functionals.

The quotient space of a C*-algebra devided by a left ideal is a Banach
space. The algebra is represented as an operator algebra on the quotient
space by the regular reprsentation. The quotient-strong topology (or abre-
viately a Q*-topology) is the self-adjoint strong topology of a suitable
extended *-algebra on this quotient space. It has an intermediate strength
between the uniform topology and the strong topology in the ordinary
sence. The uniform and the strong topologies of operator algebra in the
ordinary sence is a special form of this @*-topology. (Prop. 1. 2, 1. 3in
Chapter 8.). And an extended v. Neumann-Kaplansky Density Theorem
holds (Theorem 8, 9, 10). In composing and decomposing operator algebras,
the Q*-topology and the extended concept of the regularity seem to relate
in essence to their known and unknown structure problems,

1). Segal. (11).
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A special roll of the regularity problem of projections in the v. Neu-
mann-Mautner Reduction Theory shall be seen in its pecuilar measure
theoretical aspect. The existence problem of exceptional null sets is
changed to the problem that a projection in the strong closure of the alge-
bra is not generally regular, but is approximated by regular projections.
(Theorem 5, 6, 7; Prop. 4. 1 in Chap. 2).

A vector field is a mapping of a state space into the dual space of
the algebra which satisfies a suitable norm condition. (§2. Chap. 2). If
the algebra is abelian, a continuous field on its spectrum is a multiplied
form of a continuous function and the coordinate field. The Gelfand-
Naimark Representation Theorem is paraphrased to the isometric repre-
sentativity of the algebra on the totality of continuous fields on the spec-
trum.

Even if the algebra A is non-abelian, the quotient space of A devided
by any abelian projection is represented as a Banach space of continuous
vector fields in a compact space of states. (Theorem 14).

It leads further a sort of non-commutative extension of the corres-
ponding theory between ideals and closed sub-spaces of the spectrum in
abelian algebra (Theorem 15).

But unlike in abelian case, even in a compact space of pure states, the
corresponding quotient space of non-commutative algebra A may not gene-
rally be represented as the totality of continuous fields on that space.
Hence a compact space of pure states may be called a sub-spectrum if the
corresponding quotient space of A is justly represented on the totality of
continuous fields in the space; in a word, a sub-spectrum is a compact
space of pure states in which an extended Gelfand-Naimark Representation
Theorem holds.

The structure theory of Q*-algebra on the quotient space devided by
abelian projection, which is the same thing with the structure theory of
Q*-algebra on a Banch space of vector fields, includes necessarily the v.
Neumann’s Reduction Theory. The commutor theory in @Q*-algebra
(which is an extension of the v. Neumann’s Density Theorem) relates to the
problem of the continuity of absolute variations of continuous fields, and
results an improvement of the v. Neumann’s measurability theorem of
the commutor family of measurable family of algebras in his Reduction
Theory.

The last section is a research of a compact space of pure traces.
Such a space becomes a pre-spectrum, and an extended Gelfand-Naimark
Theorem, as similar as that in a sub-spectrum, holds.
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Chapter 1. Preliminary state theory.

Terms and notations (1). A C*-algebra is a uniformly closed self-adjoint
algebra of operators in a Hilbert space . In this paper we assume more-
over that every C*.algebra contains the identity. A W*.algebra is a weakly closed
C*.algebra. Let M be a sub-set of a Hilbert space ®. Then [IM] denotes the smal-
lest closed linear set which contains M. If A is a C*-algebra on 9, Ax denotes the

set (Ax, AcA), and ng denotes the projection of § in the space [Ax). x¢9 is
said to be a cyclic element of a sub-space MM (relative to A) if M= [Ax] holds.

A #.algebraic homomorphism of a C*.algebra A in another *-algebra on a Hil-
bert space is said to be a representation of A. A representation is denoted by A — A,
and the represented algebra is by A, where the suffix s characterizes this re-
presentation, and shall be taken as a Hilbert space, a projection, a positive func-
tional, a set of states, and so on, We omitt the suffix s when the consiedered
representation is certified even if we do so. The commutor of a C*-algbra A is
denoted by A’, then the bicommutor A” of A is the weak closure of A, and is a
Wt.algebra.

§ 1. Canonical form and absolute variation of a linear functional.

We consider a fixed C*-algebra A, and its dual Banach space A I
fE Aand A€ A, wedenote by Af, Af and f* such functionals in A
as Af (B)= f(BA), A.f(B) = f(AB) and f*(B)= f(B¥.

A € A is represented as an operator f & Ao A f in A, we call it
the regular right representation, or merely the representation, of A in
A. The operator A,: f&E Ao A f is said to be the regular left repre-
sentation of A in A. f* is the adjoint functional of f. A functional
P E A with p(A*A) = 0 is positive. A positive functional p with p(J) =
1 is a state.

Definition 1.1. If p is a positive functional, and f is a functional in
A, then | f|, = sup ISJ:'(A*)I (where 0 < | f1|,< o). A functional f€A

A€A

with || ], < oo is said to be observable in the state p. The set (f€ A:
| Fl» << o) is denoted by L3(p).

Lemma 1.1. L*(p) is a Hilbert space with the norm | f,. Let(x, ¥)»
denote the inner-product in LXp), then every f & LXp) satisfies f(A)=
(Af, D)o LXp) is an invariant sub-space of A (by the regular right re-
presentation of A)and A is represented in a C*-algebra A, in L(p).

D is a cyclic element of L(p). We denote by E, the projection of
L¥p) in [A'p), then E, & A" = A",

Definition 1.2. If p is a positive functional and X is an operator in
L¥(p), p(X) denotes p(X) = (Xp, p)». If X is an operator in A,"” and if
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FELXp), X.f and X f denote such functionals € A that Xf(A4) = f(AX)
= (AXf, p)»and X.f (A) = f(XA) = (XAS, D),

Proof of Lemma 1.1. If p is a positive functional, it satisfies
|p(B*A)|* < p(B*B)p(A*A). Then it follows immediately that | Ap |; =
p(A*A), (Ap, Bp), = p(B*A), and f(A*) = (Af, p), hold for every f =
Ap (A€ A), and every fe& [Ap] E L¥(p). The Lemma is comple}ted
by proving L*(p) = [Apl. If f € L¥p), then|f(A*)| <|f|,p(A*A)% =
I £Flsll Apls, and we can choose x € [Ap] with f(A*) = (x, Ap)». We
see f(A) = x(A) for every A € A; and consequently f & [Ap].

Lemma 1. 2. A is the linear spann of the totality of positive func-
tionals.

Proof. The totality S, of positive functionals p with p(I)=11isa
weakly compact sub-set of A, W, = (p, — p. + ips— ibs: PpieSa) is a re-
gularly convex sub-set of A, and contains the unit ball of A, because, if
D is the underlying Hilbert space of A, 9, contains every y, A with ||z],
Iyl =<1, where y. denotes such a functional in A that y,(A) = (A4y, x) =
%((4(9)6*-3’), x+y) — (Alx—y), x—9) + i(Alx+iy), x+iy) — i(Alx —iy),
x—1iy).

Theorem 1. Every f€E A is written for f=Up, where p is a posi-
tive functional and U is a partially isometric operator in A, with U*f
=p and U*U=E,.

Proof. Consider a fixed f € A. There is at least one positive p with
| F(A®)]* < p(A*A) (Lemma 1. 2). Chosen a sufficiently large number 7,
the totality of positive p with |f*(A)|*< p(A*A) and p(I) <y consists
of a non-empty compact sub-set of K, and contains at least a functional »
with the least norm value »(I). If » is such a functional, f belongs
to L(r) and satisfies | f| < 1. Let a be any number 550 and E a projec-
tion in A,". Then f(A)=(Af, r),= (A(Ef+a(I--E)f), Er+a "(I— E)")-
The positive functional ¢(A) = (A(Er + a(I — E)r), Er +«(I—E)r),/
|Ef +a(I—E)f|* satisfies f(A*)* < t(A*A) and t(I) = r(I) = r(D)|fI’=

‘ 2 2 2 2 Er| |(I-E) 7’”
(LErP+I(T—E)rP) (ESF-+ (I~ E)FF). When a tends to [ZZHU—F7,
t(I) tends to (|Er| | E£| + (I = E)r[ |(I—-E)f) G Er| |(I-E)fll + (I—

: . Er, _ [(I=E)r| _ ir] _

BB s Then {Z5 = WIZRH = |7 = &

If K is an Hermitian operator in A,’, K has a spectral resolution K=

J/l d E(1), where E(i) are projections in A,’, and (K7, r), = I,i d|EQ)r
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=k \ 1A EQ)fIP= E(Kf, f).. Now every A€ A,/ satisfies (A*Ar,7), =
k(A*Af, f). and | Ar|| = k|Af]|. The transform x = Ar — Ux = kAf is
extended to an isometric transform x € [Ar] — Ux€ {Af] between [Ar]
and [Af]. U is extended to a partially isometric operator in L*(») which
vanishes in the orthogonal complement of [Ar] in L*»). U commutes to
every element of A,’, and belongs to A,”. p = k7' is the desired state
with L(p) = L*(») and f = k~'Ur = Up.

Definition 1.2. If a functional f in A is written for f = Up by a
partially isometric operator U and a positive functional p as in Theorem
3, then we call it the canonical form of f, and p is denoted by f°, and
is called the absolute variation of p.

Corollary of Theorem 1. Given f&E X, its absolute variation, f*
and the canonical form f =Uf® are uniquely determined.

The following two are both the n. & s. conditions for a positive
Sfunctional p to be the absolute variation of a given f E A.

(1. 1). Two sequences U,, Vi(n =1, 2,...) in A with norms =1
exist and |U,f—p|— 0, V,p—f|— 0.

(1. 2). p satisfies p(I) = | f| and | f(A*)* < p(A*A) p(I).

Proof. Let f=Up be one of the canonical form of f, then p satisfies
(1. 1) because U and U* are in the unit ball of A," and has two sequences
U, V.n =1, 2....)in the unit ball of A with |U,p— Up|,— 0 and | V,.f
— U*fl, — 0 by the Kaplansky's Density Theorem.

Next, if a positive functional p satisfies (1. 1), then we have | U, pl, =<
iply and |V.fl,<|fl,. U.p and V,f converge weakly to f and p re-
spectively in the space L*(p), and satisfy | f{, < |pl, = p(I)* and the
condition (1. 2).

Now to conclude the Corollary, it is sufficient to see that two posi-
tive p, and p, which satisfy (1. 1) and (1. 2) respectively agree with each
other. From |V,.f — po|— 0 and |V, <1, it follows that |Apl, |fl, =
1ALl |V fllo = |(Va £y AD)sl = (VuS(A*)! = | pa(A*)|. Then | poll, < | £,
and py € L¥(p). By (L. 2), p(I) =1f|=p(I) and (po, po)s = (0, $)»= (0, D)»
= p(I) =p,(I). Using the Schwaltz's inequality, we have p=p,. Q. E. D.

A functional f & A with f = f*issaid to be se/f-adjoint. The exis-
tence of the absolute variation of a self-adjoint functional has been already
asserted by Grothendiek”. ‘

Theorem 2. Let f = Uf® denote the canonical form of a self-
adjoint functional f, and put p = f°. Then U= E—(E,—E), where E

1) Grothendiek (3).
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is a projection in A" with EE,=E,E=E, f(EA)= f(AE) and p(EA)=
p(AE).

Proof. p = f° and f = Up are both self-adjoint, and the relations
U*Up = p, p(AU) = p(U*A), p(A)=p(AU*U) are preserved for ASA,".
Then p(AU*) = p(UA*) = p(UA*U*U) = p(UXUAU*) = p(UAU*U) =
p(UA). W =i(U—U*)/2 vanishes since W= W *, p(W*W) = p(W W)=
—p(WW)=0, p(AW) = p(WA) = 0 and Wp = 0. Then Up = U*p, UKp
=U*Kp(Ke A,"), U= UE, = U*E, and V¥=FE,U=U holds. E =
(E,+U)/2 is a desired projection in A,".

Definition 1.4. Those positive functionals f*=Ef =Ef®, and f~ =
—(I—E)f=(I—E)f" in Theorem 2 is said to be the positive and negative
variations of f, respectively.

Corollary of Theorem 2. Every self-adjoint functional f is a
difference f = f*—f~ of two positive functionals, where f°=f"+ f~
holds.

§ 2. Induced functionals.
Consider a representation of A in a Hilbert space . If x and y are

two elements of O, the functional y,E A is defined by y.(A)=(Ay, x) and
is said to be the functional representation, or merely the functional, of y
induced by x. x, is said to be the self-induced (positive) functional of x.

Proposition 2.1. Consider a representation of A in a Hilbert space
D, an element x of O, and its self-induced functional p = x.. Then L*(p)

= (y,: yE ). Let E denote the projection E2 in (Ax), then |Ey| =

i7:llo for every y € 9. Especially, y— 9. is an isometry between [Ax]
and L*(p).

Definition 2. 1. The mapping y € $ — ., which is determined by
the functional representation of elements of © induced by a fixed element
x of ©, is said to be the induction of © by x.

We now observe a relation between the above induction and the clas-
sical elementary operation” of algebras.

Terms and notatins (2). If E is a projection and A is an operator
in 9, the operator EAE, regarded as an operator in M = Range E, is said
to be the reduced operator of A in E. If A is a C*algebra and E is a pro-
jection, the smallest C*-algebra on the Range E which contains (EAE : AcA)
is said to be the reduced algebra of A in E {and in M), and is denoted by EAE.
If E is a projection in the commutor A’ to A, then A — AE is a representation of
A as a C*.algebra on M = Range E. We call it the induction of A by E, (or by ),
and the representative algebra is said to be the induced algebra of A and denoted

1) Dixmier [1].
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by Ae. If A is a W+algebra on 9 and F is a projection in A’, then (Ag) = EA'E
holds.

If K is a bounded or unbounded self-adjoint operator in § which commutes to
every element of A’, we denote by KnA.

Definition 2. 2. Consider a representation of A in a Hilbert space
9, and an induction y € © — y. of by a fixed element x in . If T is
any bounded operator in 9, a bounded operator 7. in the space L*(x,) is
so determined as T.y. = (Ty). for every y € . T, is said to be the re-
duced operator of T in L%x,). If T commutes with the projection E =
EA on [Ax], then T. is said to be the induced operator of T in L¥x,).
If B isa C*algebra on , then the smallest C*-algebra which contains
(B.: B € B)is denoted by (B.) and is said to be the reduced algebra of
B by x. If the algebra B on © commutes with E, the reduced-algebra is
said to be the induced algebra, and is denoted by B..

Proposition 2. 2. Consider a representation of A in a Hilbert space
D, an element x of 9, its self-induced functional p==x., and the projection
E=EFE"* on [Ax]. Then the isometry y < y, between [Ax] and L*(p)
determines a spatial isomorphism between (A, (A')., EA'E) and (A,
A AN, Especially, we have A, = (Ap).=A, (A"),= A" and
((Al)z) = (EA{E)x = Ap'~

Lemma 2. 1. Let p and q be two positve functionals so that y’p—q
is positive for a suitable number ;°. Then q = Kp, where K is a definite
Hermitian in A,'.

Proof. By Definition 1.1 and Lemma 1.1, we have | f [, <7|fl
(f€ A) and |Agl, < 7| Apl,» Then |Agl, <y|Agl <" Apl,. The map
Ap— Aq is extended to a bounded operator K in L°(p) which commutes
to every A€A. K is the desired definite Hermitian because (KAp, Ap),
= (Agq, Ap), = q(A*A)=0.

Lemma 2. 2. Every positive functional q in L(p) (p is positive) is
written for q = Kp, where K is a (bounded or unbounded) self-adjoint
operator 5 A,.

Proof. q and t=p-+q belongs to L*(p). Consider a definite Hermi-
tian T€A,/ with T =p and (I—T*) = q. x €L (t)— Tx is the induction
in L¥p) by Tt, because xn(A) = (Ax, Tt), = Tx(A). Now L*(p) = Range
T contains (Af: A € A) which is dense everywhere in L*¢), and the
induction is one-to-one isometric between L*(#) and L*(p). Since the in-
duced operator of an operator X in L%¢) is TXT™', the induced operator
of T is T itself and belongs to A,. K= T7*(I— T2 is therefore a definite
self-adjoint operator with the desired properties in L(p).
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Lemma 2.3. Let p be a positive functional and f be a linear func-
tional in L*(p). Then f*ELXp), and f has the canonical form f=Uf"
by a suitable partially isometric operator U in A,".

Proof. f°is a uniform limit f*=1im U, f, where U, are of norms <1,
and | U, fl, <) fl». U.f converges to f° by the weak topology of L%(p),
then /& L*(p). Let f'=K’p=gq be a representation of f° by a definite
self-adjoint operator K A,!, f= Ug the canonical form of f, and U
a partially isometric operator in A,”. Then g is self-induced by K, and the
induction X — X, is an isometry between L*(p) and L*(g). U is an induced
operator of a suitable partially isometric operator V in A,”. Then UKx =
KVx holds in the domain of the operator K, Especially, f’=Vf and
V*f = £° hold.

Lemma 2.4. Let x and y be two functionals in A, then |(x+ y)*(A*)]
=(lz| + [3]) *°(A*A) +y°(A*A)).

Proof. Let x= Ux" and y =Vy’ denote the canonical forms of x
and y. Let t= x"+3", and K a definite Hermitian in A,/ with |K| <1,
2" =Kt and »* =(I —K)t., Then U and V are still a partially isome-
tric operator in L*(#). Now x(A)+ y(A) = (A(UK + V(I— K))t, 1),
and UK + V(I— K) is an operator in L*(¢#) with norm <1. In fact
UK =KUand VK =KV, then |(UK + V(I — K))z|,' = (U*UKz, Kz) +
((V*U +U*V)Kz, (I —K)2),+(V*¥*V(I—K)z, (]I—K)2).=|z|> Espe-

cially, |z+y|. = (UK + V(I — K)t|. =l¢]. and |(x+3)°l. Z|#].. This
is equivalent to the desired inequality.

Lemma 2.5. If x, is a sequence of functionals in A with|x,— x|—
0, then x.” converges to x° by the point weak topology of A

Proof. If |x,—x|—>0, then|x,’| = |x,| — |x], and |#2| is bounded. Let
y be any accumulating point of x.° by the functional weak topology of A.
From x,°(I) =|x,| and |x,| x2(A*A) = |x.(A*)P, it follows »(I) = [x],
y(I)y(A*A) = [2(A%), and ¥y = x°. Then x! converges to x* by the func-
tional weak topology. Choose a sub-sequence 2z, = %, such that |z,— x|<

2™ and put ¢, = (2,1 —2,)' (=0, 1, 2, where z,=0). t = >)t, con-

20=(}

verges uniformly, and |z..1— 2. |t 27" "(n=1). Then x =

> (zu41 — 2,) converges in L%¢), and x° belongs to L*#). Now x° con-
ne=()

verges to x weakly in L*(¢) (since they are bounded in L*#)), and x°is
contained in the uniform convex span of z.” in L*(#). The functional
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norm is swallowed by the norm in L*(#); and the uniform convex span of
x”in A contains z°. Then zx,’ converges to x° by the point weak topology
of A.

Lemma 2.6. Let p, and q be two states with g € L¥p), then(p—q)*
belongs to L(p), and p+~(p—q)* is cyclic in L*(p).

Proof. (p—q)* belongs to L(p), because (p—gq) and (p—g)° belong
to L’(p). Choose a definite self-adjoint operator K » A,' with (p—¢)*=Kp;
let E denote the projection in A,” with (p —¢)"(A4A) = (p —q) (AE) =
(p—¢) (EA), and put r =(p — ¢)*, then p(EAE) — r(4) = ¢(EAE),
(KAEp, AEp), = (AEp, AEP),, and K is of norm < 1 on the space
[AEp]. Put s=p+r=p+(p—q)", then s=(J+K)p, and (J+K) isa
bounded regular operator in [AEp]. The range (I+ K) contains [AEp]

and especially Ep, Then, Ep belongs to [AEs] = [(I+ K)AEp]. On the
other hand (/—E)s = (I—E)p. Hence p [As] and s is cyclic in L*(p).

Proposition 2. 3. Consider a representation of A on a Hilbert space
D. Let E be a projection in A", D(E) the smallest uniformly closed

linear sub-set of A which contains all those induced functionals ((Ex),:
Y x=9), and \S’(E)m the totality of those states p(A) = f}} (Axi, )
(x. €9, Ex;=x and §l] |2:!°=1). Then the adjoint f* of every f = ®d(E)
with|f|=1, has a canonical form f* =Ug, (i.e., f(A4) = ﬁ] (Ax;, Uxy)),
where U is a partially isometric operator in A", and q is a state in S(E).

Proof. We first assume that f* & L*(p) for a suitable p = S(E).
Consider the product space ?D = > $; of Hilbert spaces $ = D,(i=
1, 2,..). If A is an operator in 9, A denotes the operator in 3 so that
AP =@ UAy). A=A:Ac A) is a representation of A on
3 and the strong closure A" of A is (Z : A= A”), By the assumption
pA) = 3(Ax, %), €9, Exy=1x and 3} |x)° =1 hold. Then p is
a self-induced state of x = 31 2. Since f* & L*(p) is assumed, F* has
a canonical form f* =Ug =UK?p, where U is partially isometric in A,”,
and K is definite, self-adjoint and 7 A,”. Apply Proposition 2.1 to the
induction y € E — y. € L¥(p), then U is the induced operator U = V, of
a suitable partially isometric operator VEA" (then V is a partially isome-
tric operator in A’), and K is the induced operator K =T, of a suitable
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definite seif-adjoint operator T;;K’ in ©. Let Tx = i @ z;, then f*(A) =
oo !

UK*p(A) = (AVT?x, %)= i (AVz, 2). q(A) = 3 (Az, z) belongs to

1

S(E) since ;i lz)> = q(I) = |f* =1, and Ez = z, follows from Ex = x
and ETx = TEx = Tx.

To complete the Proposition it is sufficient to see that for each
f € ®(E) we can choose a p € S(E) with f& L p). If f < ®(E), ase-
quence {g,} in A can be so chosen that each g, is a sum of finite number
of functionals yz, (x, y € 9) and satisfies | g,— f|<<2™'. Put g,=0 and
By = go—g.: (n=1), then f = i} h, and |h,| < 27" (#=2). Each k, is
contained in a suitable L*(g) with ¢ = S(E), and its absolute variation
Sy = (P, satisfies p, & S(E), a., = s,(I) = |h,| (Z£2™ for n =2), and
|B (A% < s.(I)s.(A*A) < a,? p.(A*A). Then f = fj, h. satisfies | F(A)]’<

(IZ XA < (2 a.p(A*A) ) < 20+ 327) (30 27"p.(A*A)). p=
>127"p, belongs to S(E), and f* belongs to L¥(p). Q.E. D.

Corollary. Let p be a state, and I the range of E,. Then S(E,)
is the set (x,: x € WM and |xl, = 1). Every f & ®(E,) is written for
f(A) = (Ax, Ux),, where V is a suitable partially isometric operator in
A,", and x is an element in M.

Proof. S(E,)is the uniform convex hull of the totality of self-induced
states (Kp)x» = K*Kp with K€ A,’ and K*Kp(I)=1. Consider a
fixed g = S(E,) and choose a sequence of definite Hermitians K, € A,' so
that |¢g — K.p|< 2™ 'and K,p(I)=1. Put »,=p, r =K;p, 7, = the
absolute variation of (K, — K,—,)p for =2 and ¢t = 3} 7,. Then »,& L*(p),
ro(I) =27, t(I) < oo and 7, = p =K% = (Kt)x:» where K is a suitable
definite Hermitian € A,". We consider the induction in L¥?): x € L*(¢)—
2 = Kx € L(p). Then Range K (= L*(p)) contains r,, its uniform clo-
sure contains ¢ = >] 7, and all L*(#), and the induction x — Kx is an iso-
metry between L%(¢) and L*(p). Now g = Kip+ (K, — K,.-1)p € L)
follows from Kip = 7,, |( K, — K.-1)p(A)|* K r.(I)7r.(A*A) (n = 2) and |g(A)}
S (Dr(A*AN Y < (30 7.(1)) (Zr(A*A)) < H(1)H(A*A). g is posi-
tive in L%(#), and written for ¢ = Sf, where S is a definite self-adjoint
operator zA.”. The induced operator T = Sx.(=KSK™') is defined in
LXp). L¥(p) = Range K contains Kt = K~'p; K'p and TK™'p belong
to M = (Kp: KEA,') and satisfy ¢(A) = (ASt, St). = (ATKp, TK'p)»
= (Az, x),; then |x|; = ¢(J) = L
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Finally, if f € ®(E,), and |f|=1, f* belongs to S(E,) and is a
self-induction x. of an x & Wt. Then the canonical form of £* is f*(A4)
= (AUx, x),, where U is a partially isometric operator in A,' with
U*Ux = x. Hence f(A) = (Ax, U*x),.

§ 3. The intersection operator.

Consider a fixed state p. We denote by &(p) the totality of such func-
tionals f in L%(p) that f* also belongs to L*(p), and by [&(p)] its uniform
closure. If K is any bounded operator in A,!, x = Kp belongs to &(p).
We call such an x a bounded element of E(p). If x is bounded in E(p),
the operator K € A,' with x = Kp is uniquely determined. If x=Xp and
¥y =Yp are two bounded elements with X, YEA,/, then we put xy =XYp.
We denote by &(p) the totality of self-adjoint elements of L%(p).

Lemma 3.1. &(p) is a real Hilbert sub-space of LY(p). And every
FEG(p)isasum f=fi+ife(fi, L€ E(p)).

Lemma 3. 2. [G(p)]=[A,'p]. E, is the projection on [G(p)].

Definition 4.1. We denote by E the projection E,, and by A;"” the
reduced algebra (EAE : A€ A,") of A,” on the space [E(p)].

Then A;" and A,’; are a commutor-pair on the space [G(p)].

Every x €[@(p)] is regarded as a linear functional x(K) =(Kx, p),
on A,. If x&[E(p)] is a state on A", it is said to be a dual state. If x
is positive on A,’, it is said to be dually positive. If x is self-adjoint
(bounded) on A,', it is said to be dually self-adjoint (dually bounded).

We denote by ©*(p) the totality of x € [E(p)] whose dual adjoint
belongs to [E(p)], and by &*(p) the totality of dually self-adjoint element
of [G(p)]. As a dual of Lemma 3. 1 and Lemma 3. 2, we have following

Lemma 3.3. &*(p) is @ real Hilbert sub-space of LXp), and every
€ CX(p) is written for f = fi+ify with fi, f: € &X(p). If fES(p) and
x ES*p), then (f, x) is real.

The last assertion follows from the fact that by the next Lemma 3. 4
bounded self-adjoint (and dually bounded dually self-adjoint) elements are
dense everywhere in &(p) and &*(p), respectively.

Lemma 3.4. Given any x € C(p), we can choose a sequence of
bounded elements x, with |x,—x|,— 0 and |x,.*—x.*],— 0.

Let x=y+iz(y, 2 € &(p)). If y and z are approximated by bounded
self-adjoint elements y,, z,in &(p), then x,=y,+iz, satisfies |x,—x[,— 0
and |x.*—2*|,— 0. y € &(p) is written for y = y*—y~, where y*, y~ are
positive and negative variations of y, and they are approximated by
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bounded definite Hermitians in &(p). Then the Lemma is concluded.

Theorem 3. Consider a fixed state p in A. Then the mapping
x> x* is a closed operator in &(p), and there exists an unbounded de-
finite self-adjoint operator Jin &(p) whose domain D(J) is dense every-
where in C(p) and satisfies (Jx, ¥), = (3%, x%),» DJ}) contains G(p)
and satisfies | J¥ x|, = | 2% 5.

Proof. The closedness of x — x* in &(p) is obvious, since |x,— x|,
—0 and | x,*—y|, = 0 imply y =2* The existence of J is shown by
the well-known method. Introduce in &(p) a new inner-product <<z, y>
= (x, ¥)»+(»* x*),: then G(p) is a Hilbert space by this inner-product.
Let T denote the definite Hermitian in G(p) such that (z, y),= <T%, y>
=<T%x, Tty>. Then|x|;i=|T*x|* = <T%*x, Ttx> and <y,
x>0 imply x|, 0. Range T is therefore dense everywhere in
€(p), and T — T) exists. This self-adjoint operator in () is maped
on the self-adjoint operator on [E(p)] by the isometry |x|, =|| T*x]|.

Definition 3.1. The operator J in Theorem 3 is said to be the inter-
section operator in L*(p).

Proposition 3.1. Lef x and y be two elements in &(p) so that Jx, Jy
exist and ave bounded in G(p). Then (Jx) (Jy) = J(xy).

Proof. If z is a bounded element of &(p), then (xy, Jz) = (z*, y*x*)
= (yz*, x*) = (Jx, 2y*) = (&*(Jx), y*) = (Jy, Ux)*2) = ((Jx) (Jy), 2).
Hence J(xy) = (Jx) (J»).

Lemma 3.5. Every x = @(p) is written for x = UKp, where U is
a partially isometric operator in A, and K is a definite (not necessarily
bounded) self-adjoint operator which 7A,".

Proof. Regard x as a functional on A,’ in the sence of Definition
3.1. Then its canonical form is the above. (See Lemma 2.2, 2.3.)

We call the representation form x = Uy = UKp in Lemma 3.5 the
dual canonical form, and y = Kp the dual absolute variation of x.

Lemma 3.6. Lef x be any bounded element in G(p), and y = ux =
Kp be the dual absolute variation of x, where u is partially isometric
in G(p), and K 7A," is definite self-adjoint. Then we have J(y*)= y.

Proof. (y* Jz2) = (2%, Kp) = (Kp, 2) =(y, 2), (for z € &(p)). Hence
y* belongs to the domain ®(J) of J, and J(y*) = y holds.

Lemma 3.7. The domain D(J ") of J7'is (x*: x € S(J))), and satis-
fies J7lx = (Jx¥)*. Similarly, D(J) = (x*: x€D(J¥)) = E(p), and
JrE = (Jhat)

Proof. Apply the notation in the proof of Theorem 3. By the
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inner-product << x, y >, &(p) becomes a Hilbert space, and satisfies
<z, y> = <y* x*>and (Tx*)* = [-T, where T is a definite Hermi-
tian operator so that (x, ¥), = < Tx, y>. J = T (I —T) satisfies ( J2*)*
= J7'x and (J¥x*)* = J~tx, applying the theory of unitary equivalence
of Hermitian operators.

Theorem 4. J* determines an isometry between S*(p) and S(p).

Proof. Let x€6&(p); then (J¥x, y) = (»*, J¥x) (where y = E(p))
and hence J¥+x € &*(p). Conversely, let x be any bounded element in
&(p) and in &*(p) commonly. By Lemma 3.6, J(x*)=x and y=] ¥(x%)
exist. We have y = y*, and |x], = ||y[,.

Given any dual positive functional x, in &(p), we can choose a sequ-
ence {z,} of bounded elements in &(p) with ||z,— x|, = 0. Let x, denote
the dual absolute variation of z,, and y, an element of &(p) with J¥y,=
%.. By Lemma 2.5, x, converges weakly to x, in LAp). yE&(p)—
J*y is an isometry, and y, converges weakly to a y, € &(p). Then
%= J¥(3,) € Range J*. J* is an isometry between &(p) and S*(p).

Corollary 1. J¥(G(p)) = G*(p).

Corollary 2. J' is such an operator that (J7'x, ¥)r = (¥, ")y
where x, y=&*(p), and x° is the dual adjoint of x. Hence x* = Jx*
holds in G(p).

Proof. If x = %,+ix: (%), 2.EE(p)) is any element of G(p), Jtx =
(J¥x) + i(J¥x,) belongs to G*(p), and the Corollary 1 follows. Now
J7'is the intersection operator in G*(p) relative to the algebra A", then
Corollary 2 follows.

Remark. There are many unsolved questions relative to the general proper-
ties of intersection operators.
(1. Does J¥ satisfy J¥yn =tz (yty?
(2). Can we construct directly (without use the dimension theory) the trace theory de-
veloping our theory?
(3). The concept of the intersection operator is defined in the generalized standard
algebra.
Let M be a W#.algebra. A functional ¢, which is defined in the totality of
definite Hermitians in M, is called an essentially bounded positive functional, if
0= HA) S o, HaA) - = al(A) for € =0, (A + B) = A) 4+ £{(B) and #A) = :\;pﬂé(f) is

satisfied. HE) <

t is said to be faithful if t(A)20 for every definite Hermitian A=:0. ¢ is said
to be normall'! if t(A) =Bsu%t(3) holds whenever A is the supremum of an assending
e

filter § of definite Hermitians in M. Every W#*.algebra has at least one normal
faithful essentially bounded positive functional.

1) Dixmier [1].
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Let # be a fixed normal faithful essentially bounded positive func-
tional on a W*algebra M. The totality 9, of elements A in M with
t(A*A) << oo is a pre-Hilbert space with an inner-product (4, B) =
t(B*A) and a norm |A| = t(A*A)%. The completed Hilbert space of 9,
is denoted by . If B € £, then ¢5: tz(A) = ¢(B*ARB) is a normal posi-
tive functional € M in the Dixmier’s sence. The representation of M
as an operator algebra on 9 is a normal isomorphism, and the repre-
sentative algebra is a W*-algebra on . Those x € , whose represen-
tative functional x(A) = (x, A*) on M is bounded, consists of a dense
linear sub-set of . An x € 9 is said to be bounded if sup (Ax, B) < o

LA~ 5T,
t(B*B)=1

holds. A bounded element x of £ determines an operator L, & M! with
L.A = Ax (where A € $,). Those L, are strongly dense everywhere in
the commutor M/ in . When x* € $ with (L.)* = L.« exists, x* is said
to be the adjoint of x € . x — x* is a closed operator whose domain is
dense everywhere in O, and the intersection operator J is so defined as
a closed operator in © with (Jx, ) = (%, x*): Concerning these operators,
analogous procedures in this section may be established, however the
detail shall be omitted here.

§ 4. Algebraic properties of positive functionals.

A propertiy P of W*-algebra is said to be an algebraic property if it
is invariant by *-algebraic isomorphisms and anti-isomorphisms between
algebras.

Lemma 4.1. The following properties are algebraic properties of
W*-algebras.

(1). An algebra R is of one-dimensional R = (aI).
(2). An algebra R is abelian.
(3). An algebra is a factor.

(4). An algebra is of discrete type, continuous type, finite type,
semi-finite type, elc.

Terms and notations 3. A factor is a WH.algebra whose center is of
one-dimensional. A projection E in a W#*algebra M is said to be abelian in M
if the reduced algebra EME is abelian. A discrefe algebra is a W#*-algebra which
contains at least an abelian projection E so that there is non-zero projection Z in
the center of the algebra with ZE = 0. An algebra is said to be of continuous type
if it does not contain any non-zero abelian projection. An algebra is of finite type
if every partially isometric operator U in it with U*U= I is unitary. An algebra
R is of semi-finite type if every non-zero projection E <M has at least an non-zero
projection F<X E so that the reduced algebra EME is of finite type.
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Definition 4.1. Let p be a positive functional and P be an algebraic
property of W*.algebras. p is said to have the property P if the algebra
A, has this property. Especially,

(1). p is said to be of one-dimensional if A, is of one-dimensional.

(2). p is said to be atelian if A,'is abelian,

(3). pis said to be a factor, of discrete type, of continuous type,
of finite type, etc., if A,' is so.

Definition 4.2. Let P be an algebraic property of W*-algebras.
Then a projection E in a W*-algebra R is said to kave the property P if
the reduced algebra ERE has this property.

Lemma 4.2. Let P be an algebraic property of W*-algebras, and
D a positive functional of semi-finite type. Then, p has the property P
if and only if the projection E, has the same property in A"

(1). A positive functinal is of one-dimensional if and only if E, is
of one-dimensional.

(2). pis abelian if and only if E, is abelian in A"

(3). pis a factor, of disctete type, of continuous type, of finite
type, etc., if and only if E, is so in A,/

The proof follows from the next well-known sub-lemma.

Sub-lemma.” Let R be a W¥*-algebra of semi-finite type in a Hilbert
space © whick contains at least one g with © =[Rg)l=[R'gl®, Then 9
is regarded as a completed Hilbert space of a suitable Hilbert algebra,
whose right and left associated algebras are R and R' respectively.
Hence there is an *-algebraic anti-isomorphism between R and R'.

Let p be positive functional of semi-finite type, and put £ = E,, then
the induction K€ A, - KE € (A,"): is an algebraic isomorphism
between A,’ and (A,)s. These induced and reduced algebras R =
E(A,"YE and R" = (A,"), are coupled W *-algebras of semi-finite types on
the Hilbert space © =[A,'p] = Range E, and it satisfies = [Rp] =[R’p].
A, R" and R are *-algebraically anti-isomorphic. Then p has the property
P if and only if £ = E, has this property.

(b) Pure and relatively pure states.

Definition 4.3. A one-dimensional state p is said to be a pure state.
If p is a state, we denote by N(p) the left ideal N(p) = (A€ A: p(A*A)
= 0).

Lemma 44. N(p)=N(E,)=(A€ A: AE,=0). A state p vanishes
in a left ideal N of A if and only if N(p) 2 N.

By the Kadison's irreducibility Theorem (cf. Proposition 2.1 in

1) Dixmier [1] 2) g is a totalizateur and separateur in the Dixmier’s sence.
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Chap. 2), a state p is pure if and only if N(p) is a maximal left ideal of
A. Conversely, if N is a maximal left ideal of A, a pure state p with
N(p) = N is uniquely determined.

Definition 4.4. A state p is said to be pure relative to a given ele-
ment Aof A, if p(A) = g(A) holds whenever g be a state vanishing on
N(p).

Lemma 4.5. A state p is pure if and only if it is pure relative to
every element of A.

Lemma 4.6. If p is a pure state relative to afixéd AEA, then
there exists at least a pure state g with p(A) = q(A) and N(p) S N(g).

(¢). Abelian projection.

Terms and notations 4. An abelian C*.algebra C is isomorphic to the
C*.algebra C(22) of the totality of continuous functions on its spectrum Q. Q is
the totality of pure states on C. A state p on C is pure if and only if f— p(f) is a
homomorphism of C in the complex number field.

A r:gular measure p on 2 with the total mass 1 is said to be a distribution.

A positive functional p on C is an integral p(f) = If d p by a regular measure g

on Q. If pis a state, the measure p is a distribution.
Consider a set 9 of regular measures on £, and a function f in C(&2). The

primitive function Jry of f in 9 is a function Jy(p) = If(w) dp(w) on . The map-
ping feC(Q)— Jr is said to be the integration in C(2). The primitive function
Jrix) = Jif(t) dt just falls to the definition regarding the variable x as the in-

dicator of the Lebesgue mesure in the interval [a, x].

Definition 4.5. Consider a representation of A in a Hilbert space
. A projection E in D is said to be abelian relative to A if the reduced
algebra EAE is abelian. If E is a projection in 9, the set D, = [AED]
=[AEx: A€ A and x € 9] is said to be the sub-space of $ generated
by E, and E a generative projection in .

Lemama 4.7. Let A be a C*-algebrain O, E an abelian projection
in O relative to A, Do the generated space D, = [AED], and A an
operator in A. Then a bounded linear operator J. in Do is so deter-

mined as J,BE = BEAE.

Definition 4.6. The operator J, in Lemma 4.7 is said to be the
primitive operator of A reduced by E. The smallest C*-algebra C,
which contains the totality of primitive operators of elements of A is said
to be the carrier algebra of E. The spectrum of C, (C; is an abelian
algebra) is said to be the carrier of E. The mapping A= A— J,€C; is
said to be the integration. The smallest C*-algebra K,= A U C, which
contains C, and the induced algebra of A in 9, is said to be the diagona-
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lizable extension, or diagonalizor, of A.

Lemma 4.8. The carrier algebra Cy of an abelian projection E
relative to A is an abelian algebra in o, = [AED], and commutes to E
and A.

To prove these two Lemmas, we recall the next two sub-lemmas in
the theory of v. Neumann’s elementary operations.

Sub-lemma 1. Let R be a W*-algebra in a Hilbert space , and E
be a generative projection in R. Then the induction A€ R" - AE e R/,
of Rl in R'}y is an isomorphism.

Proof. If A€ R and AE =0, then Ax = 0 for every x = AEy
(A€ A, y= D) and every x € [AED] = . Hence A vanishes, and the
induction becomes an isomorphism.

Sub-lemma 2. Let the projection E in Sub-lemma 1 be a generative
abelian projection in ©. Then the reduced algebra ERE of R in E is the
induced algebra of the center Z of R, and the induction of Z in E is an
isomorphism.

Proof. ERE is abelian, and becomes the center of the commuter
(ERE)Y = R’,. Since the induction of R in E is an isomorphism, ERE
is the induced algebra of the center Z of R/, which is simultaneously the
center of R.

Proof of Lemma 4.7 and 4.8. We can assume without loss of
generality that E is generative in $ relative to A (because we can replace
the original representation of A in © by the induced representation of A in
$o). Consider the W*.algebra R=(AUE)". ERE = E(AUE)E"=EAE"
is abelian, and E is a generative abelian projection in R. Then ERE is
the induced algebra of the center Z of R, EAE is a sub-algebra of ERE,
and is an induced algebra of a suitable C*-sub-algebra C. of Z. Every
induced operator EAE of A€ A is an induced operator J,F = EAF of a
suitable J, in C,, and satisfies J,BE = BJ,E = BEAE for every B A.
Operator J, is uniquely determined, because E is generative relative to

A,

Definition 4.7. Consider a representation of A in a Hilbert space 9,
and an abelian W*-sub-algebra M of the commutor A’. An element g of
9 is said to be compoundly cyclic relative to A and M if g is cyclic in
relative to AUM, and in [Mg] relative to the reduced algebra of A in
[Mg] (, ie., = [(AUM)g] and [Mg] = [EAEg] holds, where E is the

projection in [Mg]).

Lemma 4.9. Consider a representation of A in a Hilbert space O
and an abelian generative projection E in O relative to A. If g is an
element of Range E and is cyclic relative to Kpy=A U C,, then the
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W*-closure C3" is an abelian W*-sub-algebra of the commutor A', and
g is compoundly cyclic in O relative to A and C,''.

Proof. $ =[Kzg] = [(AUC,")g] and Range E =[C,g] =[EAEg]
holds. Then g is compoundly cyclic relative to A and C,".

Lemma 4,10, Consider a representation of A in a Hilbert space 9,
an abelian W*-sub-algebra M of A' and a compoundly cyclic element g
of  relative to A and M. Then the projection E on (Mg) is generative
and abelian, M is the W*-closure of the carrier algebra Cr of E, and g
is cyclic in © relative to K.

Proof. E is clearly generative and abelian, Then it is sufficient to
show C;'" = M. The induction A - AE of M in [Mg] = Range E is an
isomorphism. Then C,' = M holds if and only if the induced algebra M,
is the W*-closure of the induced algebra (Cy)s;= EAE of C;, where EAE
is the reduced algebra of A in [Mg]. g is cyclic in [Mg] relative to the
abelian algebra EAE. Then (EAE)'=(EAE)". Hence (FAEY2M.2EAE
implies M. = (EAE)"” and M = C".

Lemma 4.11. Consider a representation of A in a Hilbert space
with a cyclic element g, and an abelian W*-sub-algebra M of Al. Then
g is compoundly cyclic relative to A and M.

Proof. Let E denote the projection in [Mg], then = [Ag] =
[(AUM)g] and [Mg] = Range E =[EAEg: A€ A] ={Xg: X EAE]
holds. Hence g is compoundly cyclic relative to A and M.

Chapter 2. Reduction Theory and regularity problem in Opera-
tor algebra.

Terms and mnotations 5. Consider a compact space §, a distribution
# on it, a normed space & and its dual space €. A vector-valued function x,
whose range is contained in %, is said to be regularly weakly measurable (or measwr-
able in the Lusin’s sence) if it becomes weakly continuous removing any small mass
from 2. The value of a vector valued function x at « € £ is denoted by xw. The
carrier of p is the smallest compact sub-set of @ whose total mass is 1, The totality
of continuous functions on the carrier of p is denoted by Cp and said to be the
carrier algebra of n. The totality of bounded measurable functions on £ is denoted
by M(n).

An open sub-set ® of 2 is said to be maximally open if there is not any open
set which contains D properly and has same the mass with ®. For any open sub-set
D of 1, there is at least one maximally open set which contains ® and has the same
mass with @. We notice further,

Lemma. Let x be an G-valued regularly weakly meaurable function on . If
xu( A) vanishes almost everywhere for each fixed AEG, then x., vanishes almost every-
where.

Proof. Given any &0, we can choose a maximally open set D whose mass
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< & and x becomes weakly continuous in -9. xu vanishes on -9, and con-
sequently x vanishes on €, almost everywhere.

§ 1. Hilbert space of vector fields. (A measure theory in a state
space).

(a). Hilbert space of vector fields.

We denote by S the totality of states on A, § is a weakly compact
subset of A. In what follows the topology of & and its sub-space shall
be always meant by the weak topology, Let 9% be a compact sub-set of S.
We denote by C the totality of continuous functions on S, and by Cgy the
totality of continuous functions on %. If A is an element of A, the func-
tion J, on & so that J,(w) =w(A)(w ES) is said to be the primitive func-
tion of A. The mapping A€ A — J, is said to be the integration. The

primitive function and the integration (restricted) in 9% is similarly de-
fined.

Lemma 1.1. Let W be a compact sub-set of S. Then Cqyis the smal-
lest C*-algebra of continuous functions in W, which contains the totality
of primitive functions of elements in A.

The Lemma follows immediately from the reducibility of any two
points in 9’ by the primitive function of an element of A,

Definition 1.1. Let 9% be a compact seb-set of S. An A-valued func-
tion x, whose each value x, at » is observable (i.e. x € L*(»)) in that state
m, is said to be a vector field, or merely a field, on .

A special field », whose value at w € S is o, is said to be the co-
ordinate field.

An operator valued function X on 9%, whose value X, at w € 9/ is a
bounded operator in L'(w) and satisfies X, = 3123%1' X.! < oo, is said

to be an operator-field on 9¥. A projection field P on S so that each
P.(w e S) is the projection of L'(w) in the one-dimensional space (ww),
(i.e., Poxy = (%u, w)uw for every x € L*(m)) is said to be the coordinate
projection field.

If X is an operator field and x is a vector field, then Xx denotes the
vector field so that (Xx)., = Xu%e,

The totality T of operator fields on 9 is a C*.algebra, and the
norm of XET is |X|qy. (T is an operator algebra on the product space

2D L(w).)

weEgW

Every element A of A is regarded as an operator field by its regular
right representation in the dual space A, and every bounded numerical
function f on 99 is regarded as an operator field on 9 whose value at
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w €9 is f(w) 1. Then C and Cqy, are C*-algebras of operator fields on S
and 9. The smallest C*-algebra Kg;, of operator fields on 99 which con-
tains Cq, and Agy is said to be the diegonalizable extension, or diagona-

lizor, of A in 9V, The diagonalizor of A in S is denoted by K, and said
to be the diagonalizor of A.

Definition 1.2. Let 9 and 9 be compact sub-sets of S with UCS
9, and M and X be sets of vector fields and operator fields in 9, re-
spectively. Then the totality of restricted fields of elements of the re-
spective sets in the space U are denoted by Mq; and Xq;. Especially, if
 is a point in 9¥, then M., and X, denotes the sets (x,: x € M) and (X, :
X e X), respectively. |

Lemma 1.2. Every value X. of an operator field X in K satisfies
X.€ A, (More exactly, X agrees to a regular representation of a suitable
element of A in L w)). Every w € S is regarded as a state on K so that
o X) = w(X.). The extended state w satisfies w(fX) = f(w)w(X) (where
FfeC, XeK). Every functional f in A, observable in a state w € S, is
extended to a fuuctional in K with f(X) = f(X.). And even if we regard
L(w) as a set of functionals in K, it becomes the totality of functionals
e K observable in the state w being in K. The representative algebras
of A and K in L*(w) agree to each other.

Lemma 1.3. Let 1 be a distribution on S, and x be a field regularly
weakly measurable’ by pn, Then |x.|. is @ measurable function on S.
Proof. |x.l. = su;ilx,,,(A*)l/m(A*A)‘% (where 0/0 = 0) becomes
Ae

lower-semi-continuous removing any small open mass from .

Definition 1.3. Let » be a distribution on S. A vector field x on S
is said to be square summable, if it is regularly weakly measurable and
has a square summable norm function | ...

we denote by L¥(y) the totality of square summable vector fields on S,

Proposition 1.1. L*(u) is a Hilbert space, The norm and the inner-
product of elements in L¥y) is so determined as | x|, =( SIIx.., I dg (w))‘}

and (x, »). = g(x,.,, Yodo Apt (@) (Xu, Yu)u IS measurable and summable
whenever x, y € L¥(p).

Proof. (Xu, Yu)o is summable as a linear sum of four summable
measurable functions |x, = y.[%, | #o £ iy.]2. Only the metrical com-
pleteness of L*;:) needs the proof. Let {x.} be a sequence in L*(yx) with
12, — Zuch < 27 talw) = |20)o — (2uc)olle, (Where #(w) = [ %10 )

satisfies Stﬂ(w)? dplw) £ 47 (2 £ 2), and removing any small open mass

1) Terms and notations 5 (P. 80)

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 9/issl/7

20



Tomita: Spectral theory of operator algebras |

SPECTRAL THEORY OF OPERATOR ALGEBRAS L 83

from S, i‘. t.(w) converges uniformly. Now [|%,u — Zmale = 21 tlw) >0
m+

1l=1
uniformly when #, m — co. The limit field x exists and belongs to L*(rz),
and hence L*(y:) is a Hilbert space.

From the proof of the Proposition 1.1 it follows immediately that

Lemma 1.4. Assume that for each w € S a closed linear sub-set M.
of Lw) is determined. Then the set (x € L (n): x.E W) is a closed
linear sub-set of L*(12).

Proposition 1.2. The coordinate field w is cyclic in L*(z) relative to
the algebra K. Namely, L () = [Xo: X €K].
Proof. Let a vector field x be orthogonal to (Xw: X € K). Then

Sx,., (A) f(w) dp(w) = (%, FA*w), =0 for every A€ A and f< C. x.(4)

vanishes almost everywhere for each fixed A € A. Since X, is regularly
weakly measurable, x, vanishes almost everywhere,

Lemma 1.5. If x, y & L), then the A.walued function (%),
(where(x.), (A) = (A%x.. Yu)u) is regularly weakly measurable.

Proof. We can choose x,, ¥, € L(y) so that |x—x,[,.<<27", | ¥ — %l
<27, %=X, y.=Y.wand X, Y,€K. (A%., y.u)o = (Xua)y, (4)
are weakly continuous A-valued functions on S, and converge to (Ax.,
¥w)w Uniformly, removing any small open mass from .

Then (x.),, is regularly weakly measurable.

Definition 1.4. An operator field X on the carrier 9 of ., which
maps every x € L*(x) to an element of L(y), is said to be a measurable
operator field.

The restricted algebras Ag, Cg, K are C*-algebras of measurable
operator fields. We denote these by A,, C,, and K,. respectively. Then
| X g = sg% | X..| becomes the operator-norm of XK, as an operator in

Lz(‘u).

Proposition 1. 3. Every bounded operator X in the commutor K,'
of K, in the Hilbert space L p) is a measurable operator field. Each
value X, (w is a state in the carrier of n) is essentially uniquely deter-
mined and belongs to A,'.

Proof. We can assume without loss of generality that X is a defi-
nite Hermitian in the unit ball of K,'. Consider the field x = Xo € L*(u).
Then (v, K*Kw). = (x, K*Kw), =0 for every K = fA with f C and
A€ A, Hence

| ()] w(A*A) dp = [ 1F(w)(A*A)dp = 0

Produced by The Berkeley Electronic Press, 1959

21



Mathematical Journal of Okayama University, Vol. 9[1959], Iss. 1, Art. 7

84 Minoru TOMITA

(where f & C and A € A), and w(A*A) = x.,(A*A) = 0 almost everywhere
for each fixed A€ A. Removing any small maximally open mass from S,
x becomes a weakly continuous field, whose each value zx, is a positive
functional together with «—x,, and written for x, = X,w by a suitable
definite Hermitian X, in the unit ball of A,

Now (X2), = X,2., holds for every z€ (Kw: K€K). Then X is a
measurable operator field in Li’(,u), whose value at w is X..

Corollary. Every bounded measurable function ¢ on S is a mea-
surable operator field in L(n). And the totality M(p) of bounded mea-
surable functions on S is a W*-sub-algebra of K,/

Proposition 1.4. Let y2 be a distribution in S. Then the coordinate
field is compoundly cyclic relative to A, and M(p). The coordinate
projection field P, as the projection of Lp) in [M(u)w], is generative
and abelian relative to A,. The primitwe operator of AE A is the
primitive function J, of A, and C, is the carrier algebra of P.

Proof. Every x& L’(n) satisfies (Px)o = %,(1)w and Pz & [M()w].
Then P is measurable in L*(y) and is the projection in M = [M(p)w].
The reduced operator of A & A satisfies P,AP, = (Aw, ®)oPo= Jw)P,
and PAP = J,P. Hence P is abelian and generative in L°(y) relative to
A, because [APL*(y)] contains (Afw: A€ A and f& C). The carrier
algebra of P is C, because C, is the smallest C*-algebra which contains
the totality of primitive operators J, of elements of A reduced by P. By
Lemma 4. 9, o is compoundly cyclic relative to A and C.” = M(p).

Proposition 1. 5. Consider a representation of A in a Hilbert
space 9, with an abelian W*-sub-algebra M of the commutor A' and a
compoundly cyclic element g with ||g| = 1 relative to A and M. Then a
distribution n on S is so uniquely determined that 9 is isometrially
maped on L'(y), where g is maped to the coordinate field, and the
isometry determines a spatial isomorphism between algebras (Ag_,, M)
and (A, M(n)).

Proof. Let E be the projection in {Mg], C, the carrier algebra of
E, K, the diagonalizor of A, and 9 the spectrum of C,. C, is represented
on the totality of continuous functions on W. For each w € W let w, de-
note the linear functional in A with wx(A4) = J.(w), where [, is the primi-
tive operator of AEA. Every w, is a state since [, E =FEA*AE and s,
are definite Hermitians. Any two points in 9 are reduced by the repre-
sentative function of a suitable /. Then w ¢ w, is a homeomorphism,
and its range is a compact sub-set of S. We regard 94 as a compact
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sub-set of S identified each w& ¥ to we A distribution 2 on W
is so determined as (Fg, g) = SF () d(w) for every F €C.. Consider
an x = i F.A,g in ® with F;eC; and A;€ A, and for each w=EW let x.,
denote an element of L) with x,=>Fi(w)Aiw. F= Sllx.,,‘.lﬁ,d ew)
=3 & Fw)F{w)w(A*A)dn(w). The representation of x as a field in
L:'(/'z), whose value x, at « € 9 is defined as above, is extended to an

isometry between  and L), because [Kg]=[(A\UCy)g] =[(AUM)g]
= 9 and (Kw]= L*(;z) hold. This isometry satisfies clearly the desired
conditions in the Proposition.

(b). Fourier induction and pre-spectral distribution.
Definition 1. 5. Let p be a distribution on S. The weak integration
my= gmd(w) of the coordinate field w by 4 is said to be the mean of p.

Proposition 1, 6. The mean m, = Sn)d‘u of a distribution p in S is
a self-induced state m,(A)= Sw(A)a’/z =(Aw, w). of the coordinate field
min L?(‘H.).

The weak integration Sxmd ww) of a field x in L) is the induced
functional Sx‘,,(A) dp=(Ax, w)of x by the coordinate field w in L¥u).

Definition 1. 6. The induction x € L(sz) — qu, dp € L¥m,) is said
to be the Fourier induction of L*().

Lemma 1.7. Let ;1 be a distribution in S, and m its mean.
Every x € L) is @ sum ¥ = x,+ 2, of two mutually orthogonal

fields x, and x, in L*(yu) so that ng dp=0 and | J’xdﬂ L= ]%1]0.

The reduced operator of a ¢ EM(p) by the Fourier induction is so
uniquely determined as an operator K, in A, with K,m= Jgp((u)m dplw).

Proof. By Proposition 2.1 in Chapter 1, x, = Ef‘x and x, = x—ux;
satisfies the desired properties.

Let K, be any operator in A,/ with K,m = J ¢(w)w du(w).

Then every x = Am with A€ A satisfies K,( J Zodp) =K, Am =
AK,m = I¢(m)x,., dp(w). Hence K, is the reduced operator of ¢ by the
Fourier induction.

Definition 1. 7. A distribution 1 on § is said to be pre-spectral if

the Fourier induction x& L¥(x)— J ¥odp(w) € L*(m,) is an isometry
between L*y:) and L*(m,.).
Then a distribution (. is pre-spectral if and only if the coordinate field
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o is cyclic in L*(y) relative to A,

Proposition 1. 7. If i is a pre-spectral distribution, the Fourier
induction determines a spatial isomorphism between algebras (A,, C,, K,
M(p)) and its induced algebras A,, C,, K., M, in L¥m) respectively,
where m is the mean of p.

Proposition 1.8.  Let p be a state and M, be any abelian W*-sub-
algebra of A,". Then there exists a pre-spectral distribution i in S whose
mean is p and whose Fourier induction determines spatial isomorphisms
between algebras (A,, M(y)) and (A,, M,). The distribution p is uniquely
determined.

Proof. p is cyclic in L*(p), then it is compoundly cyclic relative to
A, and M,. Consider the distribution y in Propsition 1. 5 which charac-
terizes the above compoundly cyclic representation. The isometry between
L*(ye) and L(p) becomes clearly the Fourier induction, and then 4 is pre-
spectral.

Lemma 1.8. A distribution yn on S is pre-spectral if and only if
for every fE€ C we can choose a sequence {A,} in A with I%ff(m)m -
A.w I‘E, ap = HA,.m —fw”ﬁ — 0.

Proof. If 4 is a pre-spectral distribution, « is cyclic in L*(y:) relative
to A, and A contains such a sequence {A4.}. Conversely, if ;. is a distribu-

tion in & so that (fw : f€C) € [Aw],, then [Aw] 2 [fAw: FEC, AcA]
=[Kw] = L), and « is pre-spectral.

Lemma 1.9. Let p be a distribution on S, and K, the reduced
operator of f€ C by the Fourier induction. If K, = K, K, is satisfied
Sfor every fEC, then u is pre-spectral.

Proof. Let m denote the mean of ;.. Then by the assumption of the
Lemma, every f& C satisfies |K,m|,.> = (KF*K)m, m)m = (Kin2 m, m)n
= f]f((,))lgd,z = | fw|. By Lemma 1.7, fw belongs to [Aw], then by
Lemma 1. 8 p is a pre-spectral distribution.

Lemma 1.10. Regard S asa compact set of states on K as in Lemma

1.1, Then every A-valued vector field on S becomes an Kvalued vector
field. Every distribution on S becomes pre-spectral relative to the
algebra K.

Proof. Let x be a K-valued vector field on a compact sub-set 9’ of
S. By Lemma 1.1, each value x, at « € YW is determined as a functional

in L%w) and contained in A. The totality L¥(p) of A.valued square sum-
mable fields on S is therefore the totality of K-valued square summable
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fields, and by Proposition 1.2, p is pre-spectral relative to the aigebra
K.

Lemma 4.11. Let 1 be a distribution on S. M(p) = A, holds if
and only if the coordinate projection field P in L'(1) belongs to A,".

Proof. If M(y) = A,!, then P is the projection of L¥g) in the space
[M(s)w] = [A)'w], and belongs to A,". Conversely, assume that PE A,/
Then P is a generative abelian projection in A,”. And (PA.,"P) = A,'»
holds. Since w is compoundly cyclic in L¥), » is cyclic in the space
M = [M(p)w] relative to the abelian W*-algebra PA,"P, and PA/'P =
(PA."PY = A)'» = M(p)r holds. P is generative relative to A,”, and the
induction A € A,/ — AP is an isomorphism. Then we have A,/ = M(p).

Lemma 4. 12, Let ;v be a distribution on S. M(y) becomes a maxi-
mal abelian sub-algebra of A,' if and only if the coordinate projection
field P belongs to K",

Proof. M(y) becomes a maximal abelian sub-algebra of A,’ if and
only if M(;:) = K,/ holds. Regard § as a compact space of states on K,

and L?(;.) the Hilbert space of K-valued field. Then Lemma follows im-
mediately the Lemma 4. 11.

§ 2. Regular projections and the Lusin's Theorem.

We consider a representation of A in a C*-algebra A, on a Hilbert
space ©, and a C*-sub-algebra B of A. A projetion E in the strong closure
A" of A, is said to be regular relative to B if 'AE = |A/N(E)| =Binf |Ez;1

=N(
—B| for every A € B, where | A| is the operator-norm of A, N(E) is a left
ideal N(E) = (B A: BE = 0) of A, and A/N(E) is the residue-class of A
in the quotient Banach space A/N(E). E is said to be regular if it is
regular relative to A itself.

Kaplansky" asserts that every projections in the center A,” N A
of A," is regular. However, when A is non-commutative, projections in
A, may not be necessarily regular.

Theorem 5. Let A, be a representative algebra of A. A\ its strong
closure, E a projection in A\", and B a separable *-sub-algebra of A.
Then every strong neighbourhood of E contains at least one projection
F, EZ=F € A\ regular relative to B.

Corollary. If A is separable. every projection E in A\ is a strong
limit of a sequence of regular projecton F, with E = F, & A,".

Theoem 5 follows from the next Lusin’s Theorem.

1). Kaplansky (6)
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Theorem 6. (Non-commutative extension of the Lusin’s Theorem).

Let A, be a representative algebra of A. E be a projection in A,",
and A be an element of A\'. Then for any ¢>0 and any strong
neighbourhood U of E we can choose a BEA and a projection FEUNA,"
with E=F, AF = BF and |B|< |AF|(1 +«).

When A is abelian, and A, is the representation of A in L*(x) by a
measure . in the spectrum of A, then Theorem 6 implies that every bounded
measurable function on a measurable set becomes conitnuous removing
any small mass. To prove these Theorems we need the next Lemma.

Lemma 2. 1. Let © denote the underlying Hilbert space of the re-
presentative algebra A,. Given a projection E€ A\, an AEA)!, a
number ¢ >0 and n-elements g,, .... g, € 9 with Eg,=g, and |g:| = 1.
Then there exists a projection FE A and a BEA so that E=F,
|AF — BF|<<e, |AF| = |B|and |Egi—Fg/| <e (1 < i < n).

Proof. Besides gy, ..., g, we consider a g, € 9 with Eg,=g,, |gd=
1 and | AEg)|=(1—¢)| AE|. By the Kaplansky’s Density Theorem the unit
ball of A, is strongly dense everywhere in the unit ball of A,”. For AEEA,"
we can choose a B, A with |B| = [AE| and |Bg, — AEg:| < ' (0Zi<n).
The definite Hermitian G =E(A*— By*) (A— B,)E has the spectral resolu-

tion G = [1dF(1). We put F = F(:)E and estimate
|AF — ByF[P = |GF(%)| <é®,
(E—-Fgff= I 2d|F()gf<(Ggi, g)=(A—B)Eg|'<¢'

2
&

and
|Egi—Fgl<e (0 i< n)

It means |\ AF|=|AFg.| = |AEg.| — |A(E—F)g,| = (1 — ¢)]AE|. Hence
from B = aB, and « = |AF|/|AE|, the Lemma follows.

Proof of Theorem 6. Let ¢ be any prositive number and let g., g,
... gn be (n + 1)elements as in Lemma 2.1 and in its proof. To prove
the Theorem 2 it is sufficient to see the existence of requiered B and F' in
the conditions of FEA,"” and |Eg:— Fgil| <e (1=<i<n), instead of
FeAI'"NU.

We choose a B;EA and a projection F,EA,"" as EZF,, |AF,—BF||<
/2, 'AF)| = Bjand |Eg.— F,g.| <¢/2 (0<i{<#). By induction, B,€A
and a projection FyE A/ (for k=2, 3,...)aresochosenas E=F, = F,

k-1 -1

o =F [(A- ]Z By) Fi.— B Fu| <e/2% |(A— 2 B)F,| = | Bi| and | F;
gi—Fuiy1 g4, <e/2° (0 < i< n). F, converges strongly to a projection F in

A", and B = f‘,Bi converges uniformly, belongs to A, and satisfies
1
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'B|< ﬁlei <|AE|+ 3 ¢/2"<|AE| + e B and F are thus acquired,
and satisfy AF = BF, |Egi— Fgll<e (0=<i<n), |AF|=| AFg|=
|AEg, — |AE(E — F)gol = (1 — 2¢)! AE|=(1 —3¢)!B'. It concludes
Theorem 2.

Proof of Theorem 5. If B is a separable sub-algebra of A,”, it con-
tains a conuntable system A;, A., ... uniformly dense everywhere in B.
Let g, ..., g, be nelements in 9 so that Eg; = g; and | g:] =1. To
prove the Theorem 5, it is sufficient to see the existence of such a projec-
tion F = A\ that |Eg, — Fg:|<: (1 <i<#), and |AjF| = inf (|B|: AFF =
BF, BEA). We define inductively a triple pair of systems g§€ 9, Bf€A
and projections F5(1 < k< oo, 1 <j =< k) in the following way.

(a). glissochosen as Egi=g}, gil=1and | AEg]| =|AE|(1—¢/2).
F!and B! are so chosen as E=F), |Eg:~Figi|<¢/2, |gl—Flgll<e/2,
AF! = BIF} and |AF}|=|B}| —¢/2.

(b) For convenience we put Fi = Fy*', By = B{*' and gi = g
For a pair of numbers k and 1 < j < k assume that every F;, B: and g:
(for every t<k—1, s<t—1and t=k s=j—1) has been defined
and satisfies E= FI = Fi=F;=F/=... =2 Fj_;. Then g/ is so chosen
as F5_, g5 = g g5l = 1 and | A;F5_, g5l = |A,F5-,|(1—¢/2"). F’ and Bj
are so chosen as Fi_, = Fie A, [(Fi-i—FHgl <e</27R (1< i< n),
[(F5.,—F5) gl < /2%, A,;F5= BjFj and |A;Fj =|Bj{(1—¢/2°). Ask—
oo, F¥ converges strongly to a projection F € A,". F satisfies |Eg; —
Fg l<e(1Zi<n), |gh— Fgil <¢/2* and A,;F = B}F, then

2| AFi(1 = </27) | 2 BYI(L —¢/2).

It follows that |FA| =inf (|B|: BE A and BF = FA) for each A = A,

(=1, 2,...), and consequently for every A< A. Then Theorem 1 is
completed.

Improvement of Theorem 5 and 6 may be an interesting problem
because it relates some unsolved problems in ideal theory of C*-algebra.

Consider a C*-algebra A and its represented Hilbert space 9. Let E
be a projection in A”. If E is regular, then the quotiont space A/N(E) is
represented as the space of operators (AE: A€ A), whose norm is de-
termined by |A/N(E)| = ,AE|. Then even if E is not necessarily regular,
we shall call the uniform clorure of the set of operators (AE: A € A) the
quotiont space of AV, devided by the projection E. Then Theorem 1 implies
that any quotient space A/E devided by a projection in A,"” is approxi

1) cf. Section 1 in Capter 4.
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mated by quotient spaces devided by left ideals of A in the following
sense. Given any countable sub-algebra B of A, we can choose a sequence
of left ideals Ny N, .... so that |A/E| = sup |A/N,|on B.

From Theorem 5 we obtain the following extended Kadison’s Theorem.

Proposition 2.1. Let A be a C*-algebra and E be a projection in
A" with a finite dimensional range, (or, more generally E be a finite
sum E = 21 E; of mutually orthogonal minimal projections E; in A")

Then E is regular.

The quotient norm |AE| = |A/N(E)| is equivalent to a suitable Hilbert
norm, and the quotient space A/N(E) is isomorphic to a Hilbert space.
If E is a minimal projection in A, then N(E) is a maximal left ideal of
A,

Proof. It is well-known that, if we choose a g€ H(i=1, 2,.. »)
with E.g; =g, and |gi| = 1, then ¢(A) = 3] (Ag:, g:) is a trace of an opera-
tor A in EA"E. Then whenever F be a projection in A" with EF =
FE =F, t(F)=3)|Fg:|* is an integer. Hence by our Theorem 5, E is
regular relative to any separable sub-algebra of A, what is equivalent to
the regularity of E.

Notice that | AE;| = | Ag:| holds, and the quotient norm |AE|
satisfies 3)|AE,|=|AK|= max |AE,|. Then |AE, =|A/N(E)|is equi-
valent to |A|, = (2] Ag:|?)*. The quotient space A/N(E) is a Banach
space, then A/N(E) becomes a Hilbert space by the norm | A..

Finally, if E is minimal and g is an element in  with Eg = g and
lgl =1, then | AE| = |Ag|. A is transitive in the Hilbert space M =
(Ag: A€ A), because (Ah: A€ A) = M holds for any # = Bg in k.
Then N(E) is a maximal left ideal of A.

The next Lemma shall be used in the latter section.

Lemma 2.2. Let A be a representative algebra of A on a Hilbert
space 9, B a C*-sub-algebra of A with 1€ B, E a projection in A\
regular relative to B, and p a state on A with p(A) =0 for A N(E) =
(B: BE =0). Then a state q in the weak closure S(E) of S(E) exists,
and p(A) = q(A) holds on B.

Proof. Let U(E) denote the unit ball of the space d(E), and W(E)
its weak closure. We see |A/N(E)| =|AE| = sup [(AEx, y)| = suf)El)q;(AH

il oyl =1 =
for A= B, and
|6(A)| < inf |A — B[ = |A/N(E)| = sup |¢(A)!.
B=N(E) pEU(E)
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Then a ¢ € U(E) exists, and p(4) = ¢(A) holds on B". The absolute
variation ¢ of ¢* belongs to S(E). In fact, S(E) is bounded and regularly
convex, and each ¢ € I(E) has at least one v, S(E) with |v,(A4*A)|
= |¢(A)]* for A= A.? Then ¢ € W(E) has at least one ¢ & S(E) with
q(A*A) = |¢(A)|°, where 1 = |p|=|¢(I)] = p(I) =1 = g(I). Then ¢ is
the absolute variation of ¢*. We have now observed p(I) = ¢(I) =1 and
[p(A4)|* = [p*(A)|* < q(A*A) for A= B. Then p(A) = ¢(.4) holds on B?.

§ 3. Spectral distributions in a state space, and the Mautner
Reduction Theory.

The next Theorem is a Mautner Reduction Theorem with an extended
form.

Theorem 7. Let 2 be a distributlon in S. In order that M(y) be a
maximal abelian sub-algebra of A, in L (i), it is necessary and sufficient
that every state in the carrier D(un) of n becomes pure relative to each
fixed ASA, almost everywhere.

To prove the Theorem we need two Propositions.

Proposition 3.1. Let u be a distribution in S so that M(p) = A, (;
then the coordinate projection field P belongs to A,").

Let A be a fixed element of A which has at least one BE A with
BP = J,P = PAP(, where ], is the primitive function of A). And as-
sume that P A" is regular relative to the smallest C*-sub-algebra B of
A which contains A, B and 1. Then every state in the carrier D(n) of p
is pure relative to A.

Proof. We shall first prove two sub-lemmas.

Sub-lemma 1. If a state r vanishes on N(P), then r(A) = r(B).

In fact, if » is such a state, a suitable state ¢ in the weak closure
S(P) of S(P) can be so chosen as #(X) = ¢(X) for every X< B. Then
7(A) = g(A) and »(B) = ¢(B). S(P) is the weak closure of the totality
of states ¢ with #(X) = (Xfw, w)., where 0= f & M(p). Since BP =
PAP, we have #(A) = ¢t(B) and q(A) = ¢(B). Hence r(A) = r(B) holds.

Sub-lemma 2. Every state o in D(u) satisfies N(w) 2 N(P) and
B-——w(A)I S5 N((u).

1). Notice that every ¢ € A is reduced as a functional ¢, on the sub-
algebra B. (¢, ¢ €U(E)) is bounded and regularly convex in the dual space of

B and it contains p, because lpB’i gmslusp] (lch(A)]: ¢ € WE)).

2). v, may be chosen as the absolute variation of ¢*/|¢].
3). a, becomes the absolute variation of p, on the sub-algebra B. But the
absolute variation of a state is itself. ’
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In fact, every X & N(P) satisfies XP =0 and | Xw|,. = f w(X*X)
dfw) =0. Then o(X*X)=0 and X& N(v) for every o €D(p).
Next, for every X & A and » € M(yr) we have

fm (XB) flw)dp = (XBiw, w)p = (XJifow, w) = f w(X)w(A)f(w) dy (w).
Then w(XB) = w(X)w(A) holds for every XA, Now «(B*8) = w(B)w(A),
and N((u) 2 N(P) imply w(A) = w(B), w((B - (U(A) I)*(B - (:)(A)I)) = O,
and B—w (A)IE N(a)).

We shall now complete the Proposition. Let » be any state in D(p),
and ¢ any state with N(g) 2 N(w). Then ¢ vanishes on N(P) and satisfies
¢(A) = ¢(B). On the other hand B — w(A)I belongs to N(w) and N(g),
then ¢(B—w(A)) =0 and ¢(A) = ¢(B) =«(A) hold. Hence every w & D)
is pure relative to A.

Proposition 3.2. Let u be a distribution on S with M(u) = A/,
Then every state w in D(n) is pure relative to each element of A, almost
everywhere.

Proof. Consider a fixed A€ A and «¢>0. By Theorem 5 and 6,
a projection E& A,! and a BEA can be so chosen that, P=E, J.E =
BE, |[(P—E)w|.<e, and E is regular relative to the smallest C*-algebra
B which contains A, B and /. P is an abelian projection in A,”, and then
E is an induced operator E = ¢P of a suitable ¢ € M(u) = A/, where ¢
is a characteristic function of a suitable measurable set X in S. The
distribution »(3) = p(X N B)/u(X) is a spectral distribution with M(v) =
A, and satisfies the condition in Propostion 3.1. every state in the
carrier ¥ of v is pure relative to A. Since u(})—%) = 0 and p(S—-%)<e,
every state in the carrier of ¢ is pure relative to A, almost everywhere.

Proof of Theorem 7. (Sufficiency). Let ;1 be a distribution in S so
that every state in the carrier 9D(y) of 4 is pure relative to each fixed
AeA, almost everywhere; and K be any definite Hermitian in the unit
ball of K,/. By Proposition 1.3, K is a measurable operator field, and
each value K, is a definite Hermitian in the unit ball of A,. ¢ =Kw is a
field in L*(y:), whose each value ¢, is a positive functional, vanishing on
N(w) and satisfying g.(A) = g.(I)w(A) whenever w is pure relative to
A€ A, g, is regularly weakly measurable, and ¢, — fw (Where f(w)=
q.(I)) vanishes for each A € A, almost everywhere. Then Kw =g¢.=fw
and KXw = fXw hold for each X €K, almost everywhere. Hence K= f
belongs to M(zz), and M(yz) becomes a maximal abelian sub-algebra of A,'.

(Necessity). Conversely, let x be adistribution on & so that M(p) is
a maximal abelian *-sub-algebra of A,. Then K./ = (A, U M())" = M(y)
holds. Regarded S as a compact space of states on K, and L*) as a
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Hilbert space of K-valued fields, K,/ = M(p) implies that every state in
the carrier of 1+ becomes pure relative to each X € K, almost everywhere.
Notice that a state w in S, regarded as being either of algebras A and K,
is pure relative to an A € A if and only if so, regarded « as a state on the
agreeing representative algebras A,=K,. Hence every state in the carrier
of s is pure relative to each A € A, almost everywhere.

Corollary 1. Let A be a separable C*-algebra, and v a distribution
on S. Then M(y) is a.maximal abelian sub-algebra of A, if and only if
every state in the carriev of n is pure, almost everywhere.

Proof. Let {A,} be a countable sub-set of A uniformly dense every-

where in it. Then a state p on A is pure if and only if it is pure relative
to every A..

Definition 3.1. Let & denote the totality of pure states on A. The

dual space Ais a locally convex linear topological space by its weak
topology. Its uniform structure is determined by the totality of weakly
continuous pre-norms of K, and .is called the weak structure of A A
function f on & is said to be homogeneously weakly continuous if it is
uniformly continuous by the weak structure of . The weak structure
on & is totally bounded, and its completion is the weak closure P of P.
A function f on % is homogeneously weakly continuous if and only if it
is extensible to a continuous function on .

A countablly additive measure ;; on & is said to be regular (relative
to the weak structure of &) if every homogeneously weakly continuous
function on £ is measurable, and every measurable function on % becomes
homogeneously weakly continuous removing any small open mass from it.
A vector field x on & is said to be homogeneously continuous if x is exten-

sible to a weakly continuous field on & so that the norm function |z.|. is

simultaneously continuous on P. A vector field x on @ is said to be regu-
larly weakly measurable if x becomes homogeneously continuous remov-
ing any small open mass from it. Apply Theorem 12 and 14 which shall
appear in Chapter 3, then the next Lemma shall follow immediately.

Lemma 3.1. Let ;. be a regular measure on P relative to its weak
structure. Then the totality L(pn) of regularly weakly measurable and
square summbale fields on P consists of a Hilbert space, in which the set
Kow =(Kw: K€ K) is uniformly dense everywhere.

To reform Theorem 7, for each » € S we consider a pure state o'
which vanishes on N(w). Then v — ' is a mapping of S in L. Ifpisa
distribution on &, the induced measure » of ¢ on & (by the mapping
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w— ') is determined as follows: A sub-set X of & is said to be .-measur-
able if its inverse image X' = (w € S: o' € X) is measurable by ;.. The
totality of i-measurable subtsets of & consists of a countablly additive
set-class. The induced measure v on &£ is a countablly additive measure
on the class ¥ of the totality of v-measurables sub-sets of & so that .(X)
= u(X") for every X=2%. If f is a r-measurable function on &L, we
denote by f’ a function on & so that f(») = f(w'). Then f is summable

by v if and only if f/ is summable by ,, and satisfies J fdy = f fldp.

Theorem 7'. Let n be a distribution on P so that M(y) is a maxi-
mally abelian x-sub-algebra of A,!. Consider a mapping w— o' of S in P
with N(w') 2 N(w), and the induced measure v of yon P by the mapping.
Then v is a rvegular measure on P relative to the weak structure of P.

The carrier D(u) of the measure y is contained in the weak closure P of
L. If f is any homogeneously weakly continuous function on S, whose

extension in P preserving the contininuty is expressed by the same f,
Then f and f' agree essentially with each other on the carrier D(y) rela-
tive to the distribution p. Hence f& M(y) «— f' & M(y) determines an
isomorphism between these function algebras. Let X be any field in
L*(v), then a field x' in L’(p2) can be so chosen that x.,(A) — (x).(A) vani-
shes for each A € A, almost everywhere relative to the distribution p.
x > x' is an isometry between L*(v) and L*(y), where the coordinate
field are leaved invariant, and the isometry determienes a spatial isomor-
phism between algebras (A,, M(v)) and (A,, M(p)).

Proof. Consider the primitive function J, on ¢ and its induced
function J,(w) = Ji(w'). Then J.’is measurable by p, and J,= ./ holds
on &, almost everywhere relative to p. Hence [, is measurable by ..
Notice that the totality of homogeneously weakly continuous functions on
% is the smallest C*-algebra of functions on £ which contains the totality
of primitive functions of elements of A defined on &. Then the assertion
of the Theorem 7' is concluded.

Definition 7.2. A pre-spectral distribution ;2 on & is said to be
spectral if M(y) is a maximal abelian *-sub-algebra of A,/

Theorem 8. Let p be any state on A, and M be any maximal abelian
x-sub-algebra of A,', then a spectral distribution p on S is so uniquely
determined that p is its mean and M is the induced algebra of M(u) by

the Fourier induction.
If n is a spectral distribution on S, every state w in the carrier of
1 is pure relative to each A € A, almost everywhere.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 9/issl/7

32



Tomita: Spectral theory of operator algebras |

SPECTRAL THEORY OF OPERATOR ALGEBRAS I. 95

Conversely, let pn be a distribution on S so that, (1). every state in
the carrier of p as pure relative to each fixed A € A, almost everywhere,
and (2). for every continuous function f on S we can choose a sequence
A, in A with I " A, — f(u))w ||.T:. dlrl,({u) - 0.

Then pn is a spectral distribution.

Corollary of Theorem 8. Assume that A is separable,. A distribu-
tion ppon S is spectral if and only if it is pre-spectral and every state in
the carrier of u is pure, almost everywhere.

§ 4. Density Theorems and the regularity of projections

The Kaplansky’s Density Theorm follows the Helley’s Theorem which
asserts the weak denseness of the unit ball of any normed space in the
unit ball of its bi-dual space. It is not hard to see that the bi-commutor
of any representative algebra of A is contained in the bi-dual space of A.
A dual concept of this Density Theorem is also dealt by Kaplansky. If
A, is a representation of A (on a Hilbert space ), the norm |A,| is the
quotient norm |A/N| by a suitable two-sided ideal N of A. This Kaplansky'’s
Theorem is obviously equivalent to the following statement : If I is any

uniformly closed two-sided invariant sub-space of the dual space A of A,

the unit ball of 9 is weakly dense everywhere in the unit ball of the
weak closure of .

Then is the unit ball of a uniformly closed left invariant sub-space
M of A weakly dense everywhere in the unit ball of the weak closure
9 of IM? This question relates essentially to the regularity of the pro-
jection. ’

If A is represented as an operator algebra A, on a Hilbert space
and E is a projection in A,", then ®(E) is a left invariant uniformly closed
linear sub-space of X, Conversely, any uniformly closed left invariant
sub-space of A agrees to a ®(E) of a suitable projection E in the W*
algebra A of the bidual space of A(A is a W*.algebra. See Takeda (11).)

The weak closure ®(E) of ®(E) is the totality of functionals which vani-
shes on N(E). Then E is regular if and only if the unit ball of ® (E)is
dense everywhere in the unit ball of ®(E).

Lemma 4. 1. Let I be a uniformly closed left invariant sub-space
of A. S(M) the totality of states in MM, and f an element of W with |f|=1.
Then (f*)' € S(). If p and q are two states so that pE S(M) and
q € LAp), then g =S(M).

Proof. Let f& 9 and |f|=1. Then f* has the canonical form
f*=Up and p= U.f, where U is partially isometric in A,"”. By Corollary
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1 of Theorem 1, p = (f*)* belongs to M and S(I). S(IM) is clearly uni-
formly closed and convex. Assume that p € S(9) and ¢ € L p), then
we can choose a sequence A, € A with |A,p — q| < A.p —g¢,— 0 and
|A.*¥p — g|— 0. Then ¢ € S(IN). ,

A left invariant uniformly closed sub-set of A, whose unit ball is
weakly compact in A is said to be a left-semi-ideal of A. The unit ball
of a left-semi-ideal is regularly convex, and the Gelfand’s extremity
principle is peserved.

Lemma 4. 2. If M is a left semi-ideal of A, then S(W) is regularly
convex, and every extremal element of S(ON) is a pure state. The totality
of finite dimensional states in S(Vt) are dense everywhere in S(I).

Proof. Let p be an extremal element of S(M), and p = ag +(1—a)r
be any decomposition of p to a sum of two positive functionals « ¢ and
(1—a) r (where g and r are states). Then ¢ and r belong to L(p), and
belong to S(9). This means p = ¢ =r. Hence p is a pure state,

Lemma 4. 3. Let B be any uniformly convex set of stateson A so
that pE B and q € LXp) imply q € B. Then there exists a uniformly
closed left invariant sub-space D¢ of A with S(I) = B. The correspon-
dence Wt —— S(IN) is one-to-one.

Proof. We shall show that 9t = (f€A: p& B and f* L¥(p)) is
a closed left invariant linear sub-set of A. f, ZEM imply af+3gEM
(the linearity of 9%), because we can choose f, g € B with f* € L (p),
g¥e LXg) and af +8g € L* (3 ( p+q)). If a sequence {f,} in 9 converges
uniformly to a f =0, we have f &€ ¥i(the uniform closedness of i),
because by Lemma 2. 5 of Chapter 1, f*°/|f| is contained in the uniform
convex span of the sub-set (f,*,/|f.]) of B. f&E MV and A € A implies
A.fE M, (the left-invariance of W), because we can choose p E B so
that £* and (4,f)* = A*f* are contained in L*(p). Now B = S(IM), and
one-to-one between I «—— S(IM) follows immediately.

Lemma 4.4. Assume that S(O) is regulary convex, then I is a left
semi-ideal of A.

Proof. For every f in the unit ball U(IM) of I we can choose a
pE S() with | f(A)F < p(A*A). Then for any f in the weak closure 1()
of U(9N), we can choose such a p, and we have () = 1WEHIN).

To study conditions for the carrier of a distribution on § to consists
of pure states, we define the semi-regularity of projections.
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Lemma 4. 5. Consider a representation of A in a Hilbert space D,
a projection E in A", the weak closure S(E) of S(E), and a norm |f|s =
sup | F(A)| of functionals f& A. Then the following four conditions are
|AE| =1

mutually equivalent.

(1). Every state p with |AE|=|Apl, (A€ A) satisfies | AE|=|AE,|.

(2), If p and q are states so that p € S(E) and q € L*(p), then
g=S(E).

(). fEA and |flp <o imply |f = |fle.

(4). The weak closure of the unit ball of ®(E) is the unit ball of a
suitable left semi-ideal of A.

Proof. Equivalences between (1), (2) and between (8), (4) are obvious.
The equivalence between (2)--(4) follows immediately from what the weak
closure of the unit ball of &>(E) contains every f & A so that the absolute
variation of f* belongs to S(E).

Definition 4. 1. A projection E in A’ is said to be semi-regular if it
satisfies one of the above four conditions.

Proposition 4. 1. In order that every state in the carrier D(n) of a
distribution p in S be pure, it is necessary and sufficient that, the
coordinate projection field P belongs to K./, and is semi-regular relative
to K.

Proof. Regard S as a compact space of states on K. Then w &€ S
is pure on A if and only if so, on K. If P belongs to K,””, ®(P) and S(P)
are defined relative to the algebra K, respetively.

(Necessity). Assume that every state in 9(y) is pure. Then M(p) is
a maximal abelian *-subalgebra of A,/, and P belongs to K,””. To see
the semi-regularity of P, it is sufficient to show that, if g is a state on K

with g€ L¥(p) and p&E S(P), then g€ S(P). S(P) is the uniform
closure of the set (ff(m) wdn: 0Z<f e C and f fdp = 1) of states on
K. Then its weak closure S(P) is the totality of means fmdu of distribu-
tions v on S whose carrier is contained in D(p). M(v) is a ma-
ximal abelian =*-sub-algebra of A, (ie., S(-)=K,). Now let p and ¢
be states on K so that p = fwd & S(P) and pe LY p), where the carrier
9(-) of v is contained in D). Then g = f f(w) o dv(w) holds, where f
is a non-negative summable measurable function on . Hence ¢ is con-
tained in S(E).

(Sufficiency). Conversely, assume that P belongs to K,"” and is
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semi-regular. Then S(P) = S(M) holds for a suitable left-semi-ideal It
of K. By Lemma 4.2, S(P) satisfies the Gelfand’s extremity principle,
and every extremal element of S(P) is pure on K(and on A). The suf-
ficiency shall be concluded by proving that 9Xs) is the totality of extremal
elements of S(P).

By Lemma 4. 12, M(«) is a maximal abelian *-sub-algebra of A,’, and
M(z) = K./ holds. Then S(P) is the uniform closure of a set (J Flw) o
dp: 0=reC, Jf dp = 1) of states on K, and S(P) is the totality of
means m, = I w dv of distributions on & whose carrier is contained in
D). Remark that m, = m, implies my(f) = mf) = [ f dv = fdz for
every f&€CEK and »=r. Then m,«—v is an weak homeomrphism between
S(P) and the totality S of distributions on S whose carrier is contained in
D(p). my, = dev(m) is extremal in S(P) if and only if the distribution
v is extremal in §; in other word, » is a point mass distribution 4.,
which distributes its total mass 1 at a point « in D(y). Then D(u) is the
totality of extremal elements of S(P), and its every element is a pure
state in K and in A,

Regularity and semi-regularity are properties of projections which
relates essentially to the natural representation A — AE of algebra in the
quotient space devided by projections and left ideals. In the next chapter

we shall study more systematically the quotient space of algebra and the
the regular represention on it.

DEPERTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY

(Received November 15, 1959)

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 9/issl/7

36



