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1. Introduction. In [10], [11] and [12], the author studied some
splitting rings of separable polynomials over a commutative ring which are
generalizations of usual splitting fields of separable polynomials over fields.
These studies are concerned with imbeddings of separable extensions into
Galois extensions (cf. [1].[3].[7],[13] and [18]). The present paper is
about splitting rings of some type of separable polynomials in a skew
polynomial ring of automorphism type.

Let B be an arbitrary ring with identity element 1, and R = B[X; o] a
skew polynomial ring 2 i=o X ‘B whose multiplication is given by X = Xo(b)
(b € B) where p is an automorphism of B. A monic polynomial f € R is
called to be separable if Rf = fR and the factor ring R/fR is separable over
B. When this is the case, there holds X™ 'f = fX™ ! for n = deg /, that is,
the coefficients of f are p" '-invariant (see [15. Th. 1(b)] and [16, Lemma
2]). Moreover, R{, denotes the set of monic polynomials f of R such that
Rf=fR and Xf= fX. By [5, Lemma 1.1] and [16, Lemma 1], we see that
for a monic polynomial f € R of degree n, f is in RS, if and only if Xf=/fX
and bf = fe™(b) for all b€ B. Now, let f= X"—X""an.,—---—Xa,—
a € R&.. Then p(a;) = a; and ba; = a;p™ %b) forall b e B(i=10.1,...,
n—1). Hence a;a; = a,a; for each i, j. By C,, we denote the (commutative)
subring of B generated by the coefficients of f. Then f€ C,[X] C R, and
the factor ring C,[X]/C,[X]f is a free C,module with a basis |1, x,...,
"'l where r = X+C,[X]f. By t, we denote the trace map of
C,X]/ C, X]fto C,. Asin[10], by 6(f), we denote the determinant of the
matrix || t{x‘c’) || (0 < i, j < n—1), which will be called the discriminant
of f. If &(f) is inversible in B then f will be called to be s-separable.
Clearly X" R{,(n > 0), and X is s-separable. Our s-separability coincides
with the p-separability in S. Ikehata [5]. Moreover, any s-separable
polynomial is separable(Cor. 5). The converse holds if o =1 (cf.[5, Th. 2.2],
[10, Th. 2.1]). Astocase p # 1, note that for some R, R{, contains
separable polynomials which are not s-separable (cf. [17, Examples]).

In § 2, we shall present a splitting ring for any s-separable polynomial
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f, which is universal with respect to the condition of splitting rings and is a
Galois extension of B containing the separable extension R/fR of B. In §3,
we shall study splitting rings of s-separable polynomials in case that B is a
(two-sided) simple ring, and we shall prove that any s-separable polynomial
has a splitting ring which is simple and is unique up to isomorphism. More-
over, we shall study a decomposition of any s-separable polynomial into
irreducible s-separable polynomials.

In what follows, we shall summarize the notations and definitions which
will be used very often in the subsequent study.

First, we shall give a notion which is a generalization of R = B[X ; p].
Let Xi,....X. be indeterminates which are independent. Then, for the
semigroup M = | X5 X5 5, 20(i =1,....n)] (XX, = X, X, for all i, j),
the skew semigroup ring MB with by = Yo®€'(b) (Y€ M, b € B) will be
denoted by R, = B[X\,...,Xn; p]. which is called the skew polynomial ring
of Xi....,X» with respect to o. Clearly, the mapping of R, into itself defined
by Ysbs = Ysp(bs) is an automorphism, which will be denoted by p. More-
over, for any two-sided ideal I of R, with p(I) = I, the mapping of the factor
ring R./I into itself defined by Ysbs+1I—= Ysp(bs)+I is an automorphism,
which will be also denoted by p. For g+I=g(X.\,....X»)+I € R,/I, we
write p(g+1I) = g4 X,, ..., X))+ 1L

Next, let A/B be any ring extension with the common identity 1, T a
subring of A, and G a group of ring automorphisms of A. Then, we shall
use the following conventions :

T(G) =T ={te T; olt) =tforall s € G|.
G(T)=|loe G; oft) =t forall t € T}.

G | T = the restriction of G to T.

Aut(A/T) = the set of T-ring automorphisms of A.
A\T = the complement of T in A.

V.(T) = the centralizer of T in A.

C(T) = V{(T) = the center of T.

U(A) = the set of inversible elements in A.

If B is a direct summand of Ay (right B-module A) then U(A) N B = U(B),

2. Splitting rings of polynomials in R5. We shall begin the study
with the following

Definition. If a ring extension of B is generated by a subset E =
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lay, ..., an} such that lo,=a;, a:0;= a;a; and ba; = ey p(b) for all i, jand bE B
then it will be denoted by B[E ; p] (or, abbr. B[E]). Let f be a polynomial
in RS, of degree n. If S= B[E: p] and Hoer (X—ea) = fin B°[E][X]
then S will be called a splitting ring of f (over B). Moreover, a splitting

ring A = Blxy,..., Xn: o) of fis said to be universal if for any splitting
ring S = Bla,....an; p] of f. there exists a B-ring homomorphism of A = S
mapping x; into ¢; for i=1.....n.

Lemma 1. Let f be a polynomial in Rj. of degree n, and S =
Blay,.... an; p] any splitting ring of f. Then{al ---aq®; 0 =m < n—1i
(i=0.,1,....,n—1)}| is a system of generators of S;.

Proof. In case n =1, the assertion is trivial, and whence, let n = 2,
As is easily seen, we have f; =(X—a,)---(X—an) € B[ay][X]. By induction
methods, we have fa = (X—an) - (X—an) € Ba....,an_1][X] and
Blaw,....an-1][an] = 225" Blay,....an-1] an. From this, one will easily
see the assertion.

Now, let f= X"—X"'apny — - —Xay —a € R}, and R, =
B[X....., Xn: p]. Moreover, for elementary symmetric polynomials s; of
X, oo Xo(deg s;= i i=1...., n), we set & = an_; —s; and N,=2., t;Rp.

Then bt; = t;p%(b) (b€ B) and X, = X;t; (1 =i, j= n). Hence Nfis
an ideal of R, and o(N,) = N,. By R,. we denote the factor ring R./N,.
Under this situation, we shall prove the following

Theorem 2. Let f be a polynomial in Rf, of degree n. Then R, is a
universal splitting ring of f. Moreover, for any universal splitting ring A =
Blx;,....xn; p] of f. there holds that

(1Y A is B-ring isomorphic to R, under the map u(x,..., Xn) =
w(Xi, ..., Xn)+ Ny,

(2) JaxP-xB":0=m=n—i(i=1,....n)| is a free B-basis of As.

Proof. First, we shall show that f has a splitting ring which satisfies
the condition (2). In case deg f = 1, the assertion is obvious. Assume that
deg f > 1 and the assertion holds for every g € R with deg g < deg f. We
set B[xl] = B[Xl 5 P]/f(Xl)B[Xli P]’ and x = X1+f(X1)B[X1 3 P]-
Obviously

AX) =(X—x)g(X) in Blx][X: p].
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Then, g(X) is monic and deg g(X) = n—1. Moreover, we have
(X—x)g?(X) = AX) =(X—m)g(X),
and forx7h € B[x] (0 Em=n—1, b € B),

(X—x)xTbg(X) = 2o ' (0)(X—x)g(X) = xTp ' (b) (X)
= f(X)xTp™ ' (b) = (X—m)g(X)p" (xTh).
Hence, it follows that g°(X) = g(X) and ug(X) =g(X)p™ "(u)(u € Blx]).
This implies
g(X) € Bln][X; plG.

Therefore, by our assumption, g(X) has a splitting ring Blx][x2,...,%n ; 0]
which is a free B[x;]-module with a basis

[ xp® s 0 S m<n—i (i=2,...,n)l|.
Since u(x)x; = x;u’(x)(i = 2,...,n, u(x;) € Blx]), we have xx; = xx
and bx; = x,;p(b)(i=2,...,n, b € B). Moreover, we have

X)) = (X—x)g(X) =(X—x,)(X—x2)---(X—xn).

in B°[V][X] where V =|x,...,x,}. Hence B[V] is a splitting ring of f(X).
Since {x{": 0 = m =< n—1} is a free B-basis of B[x;]s,

faPr a0 =EmEn—i (i=1,...,n)}
is a free B-basis of B[V] . Now, as is easily seen, the map ¢: R, - B[V]
defined by

2 (X7 Xim by » Dz i) by

is a B-ring homomorphism. Since ker ¢ D N,, ¢ induces a ring homomor-
phism ¢:R, = B[V], and N, N B= {0}. Moreover, we see that R, is a
splitting ring of f(X). By Lemma 1,

| X Xi*+ N 0OEmEn—i (i=1,...,n)]

is a system of generators of (R,)s. This implies that ¢ is an isomorphism.
Next, let A, = B[y,...,¥n; o] be any universal splitting ring of f. Then,
there is a B-ring homomorphism ¢: A, = Rr mapping y; into X;+ N, for i
=1,...,n. By Lemma 1, one will easily see that ¢ is an isomorphism. This
completes the proof.

Now, let f € R%, and B[E; p] a splitting ring of f. Then f€ C,[X]
and C,[E] is a splitting ring of f over C, where C, is a (commutative )
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subring of B generated by the coefficients of f{(cf. §1). Hence, by virtue
of [10. Th. 1.2], we obtain the following

Theorem 3. Let f be a polynomial in Rf, of degree n, and
Bla,.... an: p] any spplitting ring of f. Then &(f) = Il ic; (a;—as)’.

Now, for f € R, we consider a univarsal spliting ring A = Blx,,...,
xn; p). Let S, be the symmetric group of the set {1,...,n|. Then, for
every 7 € S,, we have a B-ring automorphism 7* of A mapping x; into 2xy
for i=1,...,n. Obviously, the mapping (*): 7 - 7* is a group homomorphism‘
of S, into the group of B-ring automorphisms of A. In the remaining of this
paper, the image of (*) will be denoted by Sv where V= |x,,....zx{. In
case n > 2, we see that (¥) is a monomorphism, that is, S, = Sy (c¢f. [10,
Remark 1.1]).

Next, let f € Rf,, and T = R/Rf. Then, f will be called to be Galois
if T is Galois over B. Moreover, f will be said a polynomial of Galois type
if T is imbedded in a G-Galois extension N of B with N(G(T))= T. When
this is the case, if B is a direct summand of Nj then f is separable by the
results of [4, Prop. 3.4] and [8, p.118]. In[14] and [17], we proved that
in case deg f = 2, f is s-separable if and only if it is Galois, which is
equivalent to that f is of Galois type. Further, in [17] we presented some
examples of separable polynomials which are not of Galois type and not s-
separable.

Now, we shall prove the following

Theorem 4. Let f be a polynomial in R? of degree n, and A = B[V; p]
(V=lx,...,xnl) be a universal splitting ring of f. Then, the following
conditions are equivalent. '

(a) fis s-separable.

(b) A/B[V\W] is Su-Galois for every subset W of V.

(¢) A/B[V\x, x:l] is Galois.

(d) X1—X; € U(A)

Proof. In case n =1, the theorem is trivial, and whence, let n = 2.
First, we shall show that (a) implies (b). If » = 2, the assertion follows
immediately from the result of [14, Th. 2.5]. Hence. we assume that n> 2
and the assertion holds for every g € RS, with 2 = deg g < n. Glearly A
= B[x;][x2,...,xn] is a universal splitting ring of g= I ,«, (X—x,) €
B[x][X; p]. Since 8(f) = O ic;(zi—x;)* € u(B)(Th. 3), we have &(g)=
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IIi<ici(xi—xs)* € U(B[x,]). This implies that g is s-separable over B[x,].
Hence, by the induction assumption, we see that A/B[W ] is S,.w-Galois
for every subset W of V containing x,, and whence A(S,) C B[x,].
Let a = 2320 xtbx (bx € B) be an element of A(Sy). Then

Sl xfbe+(bp—a) =0 fori=1,...,n

For the adjoint M of the matrix lxfll(0 < i< n, 0 < k< n), we have
M llxfll = (det lxf)T = (& I s (x;—2;))] where I is the identity matrix
of degree n. Then, it follows that (II ic;(x;—x,))(bo—a) = 0, and whence
bo—a = 0. This shows A(Sy) = B. Clearly, we have

NA) ' ics(xi—olxs))? = 810 (0 € Sv)

which can be written as 2; w; o(v;) ({u;l, |v:} € A). This gives a S,-Galois
coordinate system for A/B. Hence A/B is S,-Galois (cf. [8, p.116]).
Thus, we obtain (b). The implication (b) =>(c) is obvious. Assume (c), and
set A, = B[V\{x,, x,}]. Then, we have g = (X—x,)(X—x,) € A,[X; p]
and A=A, [X; p]/gA [X; p] (Ar-ring isomorphism with x, » X+
g8A.[X; p]). Since A is Galois over 4,, it follows from [14, Th. 2.5] that
8(g)=(xi—x,)* € U(A,), which implies (d). Lastly, we assume (d). For any
1<i<j<n we have x;—x; = #*(x1—x,) € U(A) for some »* € S..
From this and Th. 3, it follows that &(f) = I ic; (xi—x,)’ € BN U(A) =
U(B), and so, f is s-separable. This completes the proof.

As a direct consequence of Th. 4, we obtain the following

Corollary 5. Any s-separable polynomial in R, is a separable polyno-
mial of Galois type.

Next, we shall prove the following theorem which is useful in the
subsequent consideration.

Theorem 6. Let f be an s-separable polynomial in R§ of degree n = 2,
and A = B[V ; p] a universal splitting ring of f. Then, there exists a 1—1
correspondence between the set of (two-sided) ideals I of A with o(I) = I for
all 0 € Sy and ithe set of ideals J of B with po(J) = J such that
I=AJ——INB =J.

Proof. Let V=|x,,...,xs]. Then, we have bx, = x,0(b) for all b € B
(i=1,...,n). Now, let J be anideal of B with p(J) = J. Clearly Jx; =
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x;J(i=1,...,n). Hence by Th. 2, we have JA = AJ and o(AJ) = AJ for
all ¢ € Sv. Moreover, since B is a direct summand of As, we have AJ N B
= J. Next, let I be an ideal of A with o{I) = Iforall c € Sy, and set J =
IN B, Since x;—x. € U(A), it follows that (x;—x,) 'J(ax: —x,) = p(J)
C BN I and (x1—x:)J(xi—x:) ™' = p"'(J) C BN I. This implies p(J)
= J. Hence, it suffices to prove that AJ = I. Firstly, we consider the
case n = 2, thatis, A= x;B+B. Let a= x;b,+b, € I{b,, by € B), and
o0%1 & Sv. Then, we have o(x;) = x; and o(a) —a = (x; —x,)b,. Since
x,—x € U(A), it follows that (x;—x,) '(a—oa(a)) = b, € I N B=J,
and so, b, € J. Thus, we obtain I = AJ. Now, we assume that » > 2 and
the assertion holds for any s-separable polynomial g in R% with 2 <
deg g < n. We set here B, = B[x:], and g = (X—ux,)---(X—x,). Then g
B\[X; p]. Moreover, g is s-separable and A is a universal aplitting ring of
g over B,. Hence A(IN B,) = I by our assumption. Next, we shall show
B{INB)=IN B,. Clearly B{UN B) CIN B,. Let a= 24 ) xfb,
€ IN B, (bx € B). Then, for any i, there exists an element 0; € S such
that o/{x;) = x;. Hence we obtain

a,-(a) = ka:cbk (l == 1,...,")

Since the matrix llxfll (i=1,...,n, k=0, 1,....,n—1) is inversible in A,
it follows that be,...,0n.1 € IN B. Hence B:(IN B) 3 a, and so,
B.(INB) =1IN B,. Thus, we obtain

A(INB)=AB(INB)=AUNB,) =1L

This completes the proof.

Corollary 7. Let f be an s-separable polynomial in RS, and A a univer-
sal splitting ring of f.

(i) If Bis semisimple then so is A.

(ii) If B is semiprime then so is A.

Proof. (i). Let I = Rad(A), the Jacobson radical of A. Then o(I) =
Iforall ¢ € Sy, and whence A(IN B) =1 by Th. 6. Since A is Galois
over B(Th. 4), there holds that I N B C Rad(B). Hence, if B is semisim-
ple (that is, Rad(B) = {0}) then I= 10}, and so, A is semisimple. (ii).
Let N be a nilpotent ideal of A. Then I = X.ses, o(N) is a nilpotent ideal
such that ::J’(I) =1 for all o€ Sy, and IN B is a nilpotent ideal of B.
Hence, if B is semiprime then I = A(IN B) = {0}(Th. 6), and whence, A
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is semiprime.

3. On splitting rings of s-separable polynomials in R{ over a
simple ring. In this section, a simple ring means a two-sided simple ring
which is not necessarily Artin. Moreover, B will always mean a simple
ring. For f € R§,. a splitting ring of f which is a simple ring will be called
a simple splitting ring of f, Further, for any splitting ring B[E; p] of f,
the notation B[E; p] will be abbreviated to B[E].

First, we shall prove the following

Lemma 8. Let f be an s-separable polynomial in RS, and A= B[V] a
universal splitting ring of /. Then A is a direct sum of finite number of
simple subrings which are ideals of A.

Proof. Letdeg f=n, and V={x,,...,xz]. If n =1 then the assertion
is trivial. Hence, we may assume n = 2. Noting 1 € A, by Zorn’s lemma,
there exists a maximal ideal M of A. If M = |0/! then our assertion is
obvious. Hence, we shall prove the assertion for the case M #+{0{. Now,
we set I=(ses, o(M). Then o(I) =1 for all ¢ € Sy. Hence we have
I=10}by Th. 6. Let|M,,...,Ms}be a minimal subset of {a(M); ¢ € Sv|
such that M; N---N Ms =1{0}. Then, for all 1 << n, we have M; D
M,.: M,, that is, M;+(),+: M, = A, and whence, there exist elements u; €
M; and v; € (),;+: M; such that u;+#; = 1. Then, for any elements a,,
...,@s € A, we have

a0, +--Fasvs = a; (mod Mt)

Therefore, it follows that A is isomorphic to the (ring) direct sum A/M, @
--® A/M; by the mapping a = (a+M,,...,a+Ms). This shows the asser-
tion.

Corollary 9. Let f be an s-separable polynomial in RS, and A = B[V]
a universal splitting ring of f. Let E be the set of primitive idempotents of
C(A). Then E+ ¢ and E=|ole); o € Sy| for each e € E. Moreover
Zeeﬂe = 1.

Proof. By Lemma 8, one will easily see that E & ¢. Now, for e € E,
let F=1{ole): o€ Syl =]ey,....,er} where e; + e;if i = j. Then, d =
ei+:--+e; is an idempotent of C(A), and o(d) = d for all o € Sv. Since
A/B is Sy-Galois and B is simple, it follows that d =1, the identity
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element of B and A. Hence ¢ =de’ € F for all ¢ € E. This implies
E=F.

Lemma 10. Let f be an s-separable polynomial in Rf,, and A = B[V]
a universal splitting ring of f. Let e be a primitive idempotent of C(A), and
H= Su(e). Moreover, let Sy = ocH ---U osH (0, = 1) be the decomposi-
tion into right cosels relative to the subgroup H. Then, there holds the
Jollowing

(i) eAisa simple ring, eB= B, and A is a direct sum of simple rings
oled), i=1,...,s.

(ii) eA is a(H|eA)-Galois extension of eB.

(iii) eA = eB[eV] is a splitting ring of the s-separable polynomial ef
ineB[X; p|eB].

Proof. By Lemma 8, eA is a simple ring. Clearly eB= B. We set
ole) =e;, i=1,...,s. Then, e;F+ e;if i = j. Since |e; = e,e,....,e5}
=lole); o € Sii, it follows from Cor, 9 that

A=eAD D eA.

This shows (i). Next., we shall prove (ii). For any a; € A(H) N e,A(D
e.B), we set a, = a(ay))(i=1,..., s), and a = a,+---+a,. Let r be an
arbitrary element of Sy. Then | z{e)),..., t(es)} =leir....,esl. If z(e;) =e,
then 7o, € H, and so 7= no;' for some n € H, which implies t(a;) =
no; (a)) = nla,) = ai. Moreover, if z(e;,) = ey then ox'r(e;) = e., and
whence o' t{a;) = a,, which shows ©{(a;) = ox(a:) = ax. Hence we have
(a) = a. Thus we obtain a € A(Sy) = B, and so, a, = e;a € ¢,B.
Therefore, it follows that A(H) N e;A = e, B, that is, e,B= eB is the
fixring of H|eA in eA. Let|u, v;;i=1,....m| be an Sy-Galois coordi-
nate system for A/B. Then 2., u;0(v;) = 81.0(0 € Sy). Hence X eu:n(ev;)
= edinfor € H. Therefore, eA/eB is a (H|eA)-Galois extension. As
to (jii), let C be the center of A = B[V], V= |x,,....x,}, and ¢ an element
of C. Then (x;,—x:)c = c(xy—x;) = (x;—x,)p(c) where this p means the
extension of o to A which has been defined in §1. Since x,—x, € U(A4),
we have ¢ = p(c). Hence, it follows that o|C is identity, and so, o(e) =
e. This implies that p|eB is an automorphism of eB. Since ebex; =
exep(b) (i=1,....n, b € B), eA= eB[eV] is a splitting ring of ef(e
eB[X : pleB]). Clearly &ef) =II c;(exi—ex;)? = eIl i, (x;—x;)* €
U(eA). Hence ef is an s-separable polynomial in e B[X ; p | e B], completing
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the proof.

Now, by virtue of Lemma 10, we shall prove the following

Theorem 11. Let f be an s-separable polynomial in Rf,. Then, f has a
simple splitting ring. If S = B[E] and T = B[F] are simple splitting
rings of f then there exists a B-ring isomorphism ®: S — T with ®(E) = F,
and moreover, S is a G-Galois extension of B for G= 10 € Aut(S/B) ;
o E) = E|.

Proof. The first assertion is a direct consequence of Lemma 10(i, iii) .
Now, let E=|ai,....,anl, F=1|8..... 0], and A = B[V](V = {x,....,xn})
a universal splitting ring of f. Moreovr, let e be a primitive' idempotent of
C(A). Then, by Lemma 10(i), we have

A= ecADa(e)A D& agsle)A
for some o0,...,0s € Sy. Further, we have B-ring homomorphisms
¢:A->Sand : A>T
where @(x;) = a; and x;) =B (i=1...., n). Hence, since the o{e)A

are simple, there exist some ox, ox (01 = 1) and ring isomorphisms
u: on(e)A > Sand v: ox(le)A> T
such that {on(e)b) = b, don(e)x) = ai, ow(e)b) = b, and v(ok(e)x;)

= B;. Then, for = oxorn', we have t{ox(e)x) = ox(e) z(x;) with ¢(x;) €
V(i=1,...,n). Hence ® = vru~'is a B-ring isomorphism of S onto T
with ¢(E) = F. Moreover, by Lemma 10(ii), S/B is a Galois extension
with a Galois group K whose restriction to E is a permutation group on E.
Now, let G=|o€ Aut(S/B): olE) = E|. Then KC G, and whence
S(G) = B. Noting Ii; (a;— a)? =6(f) € U(B), we see that
N) ' iwcs (av—olay))? = 816 for all o€ G. This gives a G-Galois
coordinate system for A/B (cf. {8, p.116]). Thus S/B is G-Galois, and
G = K by [8, Prop. 2.2].

Corollary 12. Let f be an s-separable polynomial in R3. Then, any
splitting ring of f is isomorphic to a direct sum (of finite number) of simple
splitting rings of f, which is a Galois extension of B.

Proof. Let A be a universal splitting ring of f, and T any splitting ring
of /. Then, there exists a B-ring homomorphism of A onto T. Hence, it
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follows from Lemma 10 and Th. 11 that T is B-ring isomorphic to a direct
sum T* of simple rings A;’s such that 4, = A;(i=1,...,¢), and A, is a
G-Galois extension of B. Now, let G* be a group of automorphisms o* of
T* such that

o*: (a,....,a)) = (olar),...,0(ar) (0 € G)

and C a cyclic group generated by the automorphism
7: (al’ '“sal) - (aZy az,...,qy, al)-

Then y0* = o*y for all o* € G*. Hence CG*= G*C, which is a group.
Moreover T*(CG*) = B(=|(b,...,b) ; b€ B}). Let|(u;, v;);i=1,...,
7| be a G-Galois coordinate system for A,/B, and e, =(1, 0,...,0),...,¢, =
(0,...,0, 1). Then 25-: 205, (ues) t(vies) = 61z for all T € CG*. This
implies that T* is a CG*-Galois extension of B.

Lemma 13. Let f be an s-separable polynomial in R, and S = B[E]
a simple splitting ring of f. Then, for any a € E, there holds that
S(G(B[a]))= Bla], where G=|0c€ Aut(S/B); o(E) = E|.

Proof. Let A= B[V](V={x,...,xa]) be a universal splitting ring,
e a primitive idempotent of C(A), and H= Sy(e). Then, by Lemma 10, eA
is a (H|eA)-Galois extension of eB, and eA = eB[eV] is a simple splitting
ring of ef. Moreover, H|eA=]|r c Aut(eA/eB); r(eV) = eV|. Hence,
by Th. 11, there is a B-ring isomorphism ¢of eA to B[E] such that ¢(eV)
= E. Without loss of generality, we may assume that ¢(ex;) = a +0. Let
W = V\lx\|, and{ole) ; 0 € Su} =le; = ai(e) = e, e, = ais(e),...,e; =
ofe)} where g, € Sw, and e; F e;if i+ j (i, j=1,...,t). Moreover, we
set € = e, +---+e;, &€ =1—e, and B, = B[x,]. Clearly

ole) =cand o(e’) = ¢ for all ¢ € Sy
A=cADB A cA=e;,AD - D e, A
B1 = EB1 @ E'.B[.

Since A(Sy) = B, (Th. 4), we have e¢A(Sy) = ¢B,. Here, we set
H] = Sw(el), and Bo = elA(H]).

Clearly By D e,B,. Let a, € Bo, and a = 2}i., 0:(a,). Then by making
use of the same methods as in the proof of Lemma 10(ii), we have a €
eA(Sw) = eB,, which implies a;, = e;a = e,ca € e,eB, = ¢,B,. Thus we
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obtain By, = e,B,. Since H, C S,(e;) = H and H, C H(e\B\), e;B, =
eB[x,] is the fixring of H(eB[x,]) in eA. Therefore, combining this with
the above isomorphism ¢:eA — B[E] with ¢lex,) = a, we obtain
B[E](G(Ble])) = Ble].

Next, we shall prove the following

Theorem 14. Let f be an s-separable polynomial in R§, S = B[E]a
simple splitting ring of f, and G={o € Aut(S/B); ol E) = E|. Then,
for any subset F of E, B[F] is a simple ring, S(G(B[F])) = B[F], and if
F =+ ¢ {0} then S = B[F] ®, C(S) where K = B[F] N C(S).

Proof. Let E={a,...,ax} and C= C(S). Since S is simple and
aa; = ap(a) forallae S(i=1,..., n), we have EC U(S) U {0}, and C
is a field. Now, o # 0 will be an element in E. Then EC «C and so S =
B[a]C. Since S(G(B[a])) = Bla] (Lemma 13), it follows that P =
CNB[a] is a subfield of C, and C is a (G(B[a])|C)-Galois extension of P.
This enables us to see S = B[a] ®» C. Hence, if J is a proper ideal of
B[] then JC is also a proper ideal of S. Therefore, it follows that B[a]
is a simple ring. Next, let F be a subset of E containing a. Then, noting
FC oC, we have B[F] = Bla] ®»(B[F] N C), which is a simple ring.
Moreover S = B[F] ® C (K= B[F] N C). From this, one will easily
see that S(G(B[F])) = B[F].

Lemma 15. Let f€ R§), and f= gh in R. If g € RG, then h € R§,.
Moreover, g € R, and f is s-separable if and only if g and h are s-separable
and gR+hR = R.

Proof. Let deg f=n, degg = s, and g € R§,. Then gXh = Xf= fX
= ghX and gpS(b)h = bf = fp™(b) = ghp™(b) for all b € B. Since g is
monic, this enables us to see that h € R§. By Th. 2, g has a univer-
sal splitting ring B[V,]. Moreover, k(€ B[V,][X; p]) has also a universal
splitting ring B[ V,][V.] over B[Vi]. Then B[V, U V,] is a splitting ring
of fover B. Hence, by Th. 3, &(g) is a divisor of 8(f). Now, we assume
that f is s-separable. Since &(f) € U(B), we have &(g) € U(B). Hence
g is s-separable. Similarly, & is s-separable. Next, let « € V,. Then
g(e) =0, and h(a) € U(B|ea]) by Th. 3. Since R/gR is B-ring isomorphic
to B[a] under the map u(X)+gR — u(a), it follows that gR+hR = R. As
to the converse, we assume that g and % are s-separable and gR+hR = R.
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Then 0(g) and 6(%) are in U(B). Moreover, we see that h(a) € U(B[e])
for every a € V; and g(8) € U(B[f]) for every 8 € V,. Hence we have
&(f) € U(B) by Th. 3. Thus fis s-separable. (Cf. Y. Miyashita [9, Th.
1.10].)

Now, a polynomial f € R§, will be called to be irreducible in RS, if f=
gh and g € R{, then there holds always that either g =1 or A = 1.
Next, we shall prove the following

Lemma 16. Let f be an s-separable polynomial in RS, B[E] a simple
splitting ring of f, and G =1{o € Aut(B[E]/B); o(E) = E|. Let g be a
factor of f in R§,. Then, g is irreducible in R% if and only if R/Rg is a
simple ring. When this is the case, there exists an element a in E such that
for lola); o€ Gl =lan = o ao.ast (@ F s ifi#j), DL, (X—ap)
coincides with g, and Ble) is B-ring isomorphic to R/Rg under the map
u(a) » u(X) +Rg.

Proof. Let f= gh. By Lemma 15, g and h are s-separable. If R/Rg
is simple then, one will easily see that g is irreducible in R§,. To see
the converse, we assume that g is irreducible in R%. Now, let B[E,] be
a simple splitting ring of g, and B[E,][FE,] a simple splitting ring of A
(€ B[E\}J[X; p]) over B[E,]. Then, B[E, U E,] is a splitting ring of f
which is a simple ring. By Th. 11, we may assume that E, U E, = E,
For an element a € E,, weset{ola): e € G} =iy = @, ay, ..., asle; + a;
if i+ j), and gy = I, (X—a;). Thenby Th. 11, we have g, € R. More-
over, it is easily seen that g, is an s-separable polynomial in R{,, and the
set|l,qa,...,a°"| is B-free. Hence R/Rg:, = B[a] which is a simple ring
by Th. 14. Noting g.(a) = 0 and g(a) = 0, it follows that g, is a divisor
of g. Since g is irreducible in R$,, we obtain g = g,.

Now, in virtue of Lemma 16, we obtain the following

Theorem 17. Let f be an s-separable polynomial in R{, which is irre-
ducible in R&G,. Then, R/Rf is a simple ring, which is imbedded in a G-Galois
extension N of B such that N is a simple ring and N(G(R/Rf)) = R/RY/.

Lemma 18. Let f be an s-separable polynomial in Rf), B[E] a simple
splitting ring of f, and G =o€ Auw(B[E]/B); olE) = E|. Let E=
E, U---U Es be the decomposition of E into non-overlapping transitivity sets
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relative to G, and set g; = II,,EE‘(X—a) (1=i<s). Then, for any
decomposition f = fi---f; into irreducible polynomials in R{,, there holds that
= S, lfla"'vftl = {gl""’grly and Rfi+RfJ = RfO'r all l :#j.

Proof. Since f= Il qce(X—a), we have f= g1---gs. By Lemma 16,
we have that for each 1 < i < t, f; = gs for some j. From this fact and
Lemma 15, our assertion follows immediately.

In virtue of Lemma 15, Th. 17 and Lemma 18, we can prove the

following

Theorem 19. Let f be an s-separable polynomial in R, and f = fi---fs
a decomposition of f such that each f, is irreducible in Rf. Then, such
a decomposition of f is unique, and

R/Rf= R/Rf, ®---® R/Rfs
where each R/Rf, is a simple ring extension of B.

Proof. Let f= fi-+-fs where each f; is irreducible in R§. Then, by
the results of Lemma 17 and Lemma 18, it suffices to prove that R/Rf =
R/Rf, ®.--® R/Rfs. By Lemma 15, we have f;R+f:R= R for all i+ j.
Note fifi = fifs and fiR = Rf.. Then ffiR C fiR N fiR, where i+ j.
Conversely, for any g € fiR N fiR, we have g € gR = g(f.R+f:R) = gfiR
+gfiR C fifiR. Hence, it follows that fifiR = f;R N f,R. Moreover, for
k=i, j, we have also ffiR+ fiR=R and f.fifiR = fifiRN iR =
fiR N iR N fiR. Repeating the same procedures as in the above, we obtain
that (Nier fiR+ffR=R(1 <r<'s) and (& fiR = fR. Therefore, by
making use of the same methods as in the proof of Lemma 8 (i.e., by the
Chinese remainder theorem ), we obtain a B-ring isomorphism

R/Rf - R/Rfi ®---® R/Rfs
mapping A+ fR into (h+£iR,....h+fsR).

Remark 20. As in the theory of fields, we can define an s-separable
closure of (s-separable polynomials in) R{,, and we can prove that there
exists an s-separable closure of R{, which is a simple ring, and such closures
are unique up to isomorphism. Moreover, this closure is an infinite Galois
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extension of B, in which we can construct a Galois theory of Krull's type.
Further, we can characterize the s-separable polynomials in R, and the s-
separable closure of R{5. These results will be detailed in “On splitting
rings of separable skew polynomials [ ” to appear.
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