Mathematical Journal of Okayama
University

Volume 29, Issue 1 1987 Article 19
JANUARY 1987

On an exponential sam involving the
arithmetic function ca(n)

Isao Kiuchi®

*Nihon University

Copyright (©)1987 by the authors. Mathematical Journal of Okayama University is produced by
The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou



Kiuchi: On an exponential sam involving the arithmetic function

Math. J. Okayama Univ. 29 (1987), 193—205

ON AN EXPONENTIAL SAM INVOLVING
THE ARITHMETIC FUNCTION o,(n)

Isao KIUCHI

1. Introduction. Let —1 < ¢ =0 and ou{n) = § d® be the sum of

the a-th powers of positive divisors of the positive integer n, so that g,(n) =
d(n). Jutila [4] has investigated the exponential sum

D(X; h/k) = rgd(n)'e(hn/k)

for large X, where h and k are co-prime integers with 1 < k, e(t) = ™%,

and the symbol ):',); denotes that if X is an integer, then the term corresponding
ns

to X is to be halved. Let s = o-+it be a complex variable, and
E(s: h/k) = )3 d(n)-e(hn/k)-n~5, Re(s) > 1.
The function E(s; h/k) can be analytically continued to a meromorphic - func-

tion in the whole complex plane (Estermann [2]). We put

(1.1) A(X: h/k)
= D(X; h/k)—k " (log X+2y—1—2"-log k) - X—E(0; h/k),

where 7 is Fuler's constant. Using the truncated Voronoi summation formula,
Jutila [4] proved that if 1 =< k < X, and N is a positive integer such that
1 = N X, then

(1.2) A(X; h/k) v )
= (m/2)"-k*r-XJf~1§v d(n)-e(—hn/k) 'n""-cos(él nk_1n+X+—Tn)

+O(k-N"t-X*°°),
where the class
(1.3) h(mod k)
is defined by 2h = 1 (mod k).

The first purpose of this paper is to derive a formula of the Voronoi
type (Theorem 1) for the exponential sum

(1.4) DX h/k) = g{\ oo{n)-e(hn/k).
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Theorem 2 gives an asymptotic formula for the mean square of the error
term in the asymptotic formula for Do(X; h/k). Jutila's proof of the above
formula (1.2) can be modified so as to give an analogous expression for
Do(X:; h/k), and such a modification is the basis of our proof.

We may appeal to an analogy between the function E(s; h/k) and

(1.5) Eus: h/k) = i‘, oaln)e(bn/k) n=°, Re(s) > 1.

The basic properties of the function E,(s; h/k) are given in Lemma 1. In
what follows, ¢ is taken an arbitrarily small positive number, and not neces-
sarily the same in each occurence. The constants implied by the symbols <
and O( ) always depend at most on ¢ and a. ¢(s) is the Riemann zeta-

function,

To formulate the analogue of (1.1) for Dy(X; h/k). we define that if
a =0, then
(1.6) A X; h/k) = AX; h/k),

and if —1 < a <0, then

(1.7)  Ad(X: h/k)
= Do(X: /k)—k* " t(1—a) - X—k"'"%(14a) ' {(1+a)-X'"°
—Ea(0; h/k),

which are the “right” analogy of (1.1) for D.(X: h/k). Then we have the
following

Theorem 1. For —1 <a =0, k=< X andl £ N € X we have
(1.8) A«(X: h/k)
=(xv/2) " kE XS goln)el—Tn/k) T cos (4,,k— Lt Xﬂ;_%ﬂ)
+O(k-N-¥-X*¥*¢9).

Remark 1. As an immediate corollary of (1.8) with N = g*/*%®

- X1-20/8-2a e have

(1.9) AdlX: k) < komressmrase. isamtane
for k =X, and —1 < ¢ £ 0.

Remark 2. In case £ =1, other formulas of the Voronoi type were
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studied first by Wigert [9], next by Cramér 1] and later by Oppenheim [5].

A plausible conjecture as to A.(X; h/k) may be inferred from the
following mean value theorem.

Theorem 2. For 1 = k= X, and —% < a=0 we have

=k-[ 6-+4a) 7] ‘-;(3/2—a)-§(3/2+a>-§2(3/2>-[;(3)]"‘-)0““
_|_O(kz_X1+e)+O(kq~_X%+-§-a+e).

This argument is essentially similar to that of Cramér (see e.g.[3]).
Theorem 2 suggests the following
Conjecture. For —% <a=0, and " £ X,

(1.11) Ao X1 h/k) € k7 -XFrore

2. Some lemmas.

Lemma 1. The function Eq(s; h/k) can be analytically continued to
a meromorphic function, which is regular in the whole complex plane up to
two simple poles at s =1, 1+a(—1 < a < 0), and is regular in the whole
complex plane up to a double pole at s =1{(a=0). The function E.(s; h/k)
satisfies the functional equation

(2.1) E.(s; h/k)
= zr”-[k/(er)]”a'zs'r(l—s)-ﬂ1+a—s)'[cos (%‘I(ﬂ)

E.(14+a—s; h/k)—cos (ns—%rm)-Ea(l +a—s; —F/k)],

and has for —1 < a < 0 the Laurent expansions

kel —a)(s—1)""4--, ats=1,

(2.2) Ea(8§ h/k) = lk“‘“-é‘(l +a‘).(s_a_]_)‘l+...’ als = 1+a,

and has for a = 0 the Laurent expansion

(2.3) Eus;h/k) =k (s—1)"*+k - (2y—2-log k) -(s—1)" "+

at s = 1.
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Proof. We start from the following identity, valid for Re(s) > 1:

(2.4) Eus: h/k) = i > % elhn/k) -0~
= lim [Z 1% 3 e(hrt/k)'-r_s]
N-o \ tgN rsN/t
= lsék t(s—a; b, k)-t(s; e(hb/k)),
where
(2.5) t(ssa k) = Eaédm n%,
and
(2.6) t(ss elalk)) = S'j e(an/k) -n~".

The functional equations (2.5) and (2.6) have been investigated by Estermann
[2]. We quote from [2] that

(2.7) t(sia, k) = G(s)-k’s-[e(i—s)f(l—s; e(a/k))
—e(— %s)'é’(l—s: e(—a/k))),
and

(2.8)  tls; ela/b) = Gls) k=" o5 ) 21 —5;~a, k)

—e(—%s)-é(l—sz a, k)],
where
Gis) = —i(27)5 - T(1—5s).
Applying (2.7) and (2.8) to (2.4), we obtain
(2.9) Ea(s;h/k)

=2G(s) -G(s—a)~k”°'”'[cos<ns—%na)lsbskg'(l+a—s;e(b/k))
E(1=s5 —hb, k) —cos (3ma) 33 £(1+a—s;e(b/k)
~E(1—s3 hb, k):l
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Hence, by (1.3), we have proved the functional equation E(s: h/k).

It easily follows from (2.4) that E,(s; h/k) is regular everywhere
except at s =1,14+a(—1 <a<0) or s =1(a=0). We shall investi-
gate the Laurent expansion in the neighbourhood of these points.

In case of the simple pole s = 1, by the property of (2.6} and (k, k) =
1, we have

Eo(s: h/k)—¢(s) t(s—a; k. k)
= (s elhb/k)) - E(s—ay b, k).

1sbsk-1

Since ¢(s; e(hb/k)) is regular at s =1 for 1 = b = k—1, the above iden-
tity means that E,(s; h/k) has the same meromorphic part as ¢(s)-¢(s—
a; k, k) in a neighbourhood of s = 1. And in case of the simple pole s =
1+a, by (2.5), we have

Eo(s; hW/k)—¢(s—as k. k) ls;ik L(s; e(hb/k))
= 2, [t(s—as b, k)= s —a: &, k)] -¢(s; e(hb/k)).

The above identity means that E,(s; h/k) has the same meromorphic part as
k1+a—2s‘§(s) '{(S—G,)

in a neighbourhood of s = 1+4a. Thus we have proved the Laurent expan-
sions (2.2). Lastly in case of the double pole s = 1, the Laurent expan-
sion (2.3) has been investigated in detail by Estermann [1]. Therefore
we have proved Lemma 1.

Lemma 2. Let F(t) and G(t) be real functions, G(t)/F(t) monotonic,
|F'(¢)/G(t)| = m > 0, throughout the interval [a, b]. Then

[f (1) -exp GF(1)) -di | < 4/m.

The proof of this lemma depends on Titchmarsh [7].

3. Proof of Theorem 1. Let T be a parameter given by

(3.1) BT (472X) = N+%.
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By Perron’s formula (see e.g.[7]), and (3.1), we have
2. oa(n)-e(hn/k)
nsXx

1+E+EIT

— (270" f Eu(s: h/k)-X5 s~ -ds+ O(k-N—F-X+¢).

1+&—-LT

The above integral is evaluated by the theorem of residues using the rectangu-
lar contour with vertices at 1+e=xiT, a—exiT. By the equation (2.1),
and the Phragmén-Lindelsf principle, we have

(3.2) Eu(s; h/k) € (k|t])'* % fora—e= o= 1+¢, [t| = 1.
By (3.1) and (3.2), the integrals over the horizontal sides are
L k-NF.Xt+e,

If —1 < a<0,by(2.2), the residues of the integrand at s = 1, 1 +a yield
the second and third terms on the right-hand side of (1.7), and the residue
at s = 0 gives E,(0; h/k). If a =0, by (2.3), the residue of the integrand
at s = 1 yields the second term on the right-hand side of (1.6), the residue
at s = 0 gives Ey(0; h/k) = E(0; h/k). Hence we have, for —1< a< 0,

Aa(X; h/k)
a—-€+IT

=(27zi)"‘f Ey(s: h/k)-X%-s-V-ds+ O(k-N-+-X+*).
a-e-3iT

After substituting the expression (2.1) in the right-hand side, this becomes
(3.3) AdX; h/k)
= (i)™ (2m) 7k cos (gma ) 33 oaln) el —Fn/k) m~' 1,

—(7i) ' (27) 7%k ' -sin (%zta) ’g',l goln)-e(—hn/k) a1,

+ 772 (27) % k% cos (%za) nil; go(n) sin (Zﬂﬁn/k) "9,
+O0(k-N"* - XH+e),

where
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a-€~iT

L= f I1—s)-I14+a—s)-[1—cos (rs)]-(47°k*nX)% 5" ds,

a-&—iT

a-e+il

I, = f F(1—s) T{1+a—s)-sin (xs)-(472k-2nX)- s~ -ds.

a-e-iT

a—-€+i T

L= f INl1—s) I(14a—s) - (472%nX)% s ds,

a-e-iT

The integral I is estimated by the Stirling formula as
(3.4) < kTN XOE.p7E,
And. it is easily shown that the contribution of (3.4) to (3.3) is
& kOt NE. X OtE
Hence we have
(3.5) Ad(X; h/k)
= (7)) " (27)" %% k%" -cos (Lna) ni.l oa(n) e( —hn/k)-n%" I,

(71’1) “1.(27)7% 2.k%* .gin (—na) :El Ua(")'e(—h_n/k)'n_a_l-lz
+O(k-N"F-X*+e),
Now, we consider the contribution of the terms with n > N in the first two

terms of the right-hand side of (3.5). Each of the integrals I, and [, can be
divided into the three parts ;

a-e+iT a-&+i a—-€—t

(3.6) [f+f+ f J-F(l—s)-F(l—i—a—s)-[l—cos(ns)]

a—-€&+1i a-€-i a—-e-iT

(47z2k TLX)S -t S'—Ill+IIZ+II3

and

(3.7) [“ 7‘T+°j“+ a_j:i ]-T‘(l—s)-]"(l +a—s)sin(zs)

a-e+i a-€~i a—e—iT

(4 7%k X)) s vds = L+ 15,4+ 1,3, say.
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The integral 1,,, is estimated by L.emma 2 and the Stirling formula as
& k- N-Fare. xda. pa-e

By similar estimations, The integrals I, 5, I,,. and I,; are
& k. N-tere. yte, pa-¢

And we easily estimate that the integrals I,, and I,, are
& k0. NE. X0+ . poc.

Hence, it is easily shown that the contribution of (3.6) and (3.7) to (3.5) is
& k-N-Foe. xde

Hence we have

(3.8) AdX; h/k)

= (7)™ 22k wcos (370 )+ 3 oaln) -e(—Fn/k) -0~ L,

— (xi)"(27) "k sin (im) 53 ou(n)e(—n/k) n =1,
+O0(k-N~F.X¥+e),
Next, each of the integrals I, and I, can be divided into the five parts:

(3.9) [f (f fi+ft f)]r(l—s)r<1+a—s)

_iw
‘[1—cos (7s)](4 7%k 2nX)%s\ds
= Il,(_(I!,S"'ll.G +Ix.7 +Ix,s),

and

(3.10) [f (f /”+a7” f J] I(1—s)-I'(1+a—s)

—ica foo ir

-sin(rs) (4 2%k *nX) s~ \ds
= 12,4 —(Iz,s+12.e+12.7+12,s), say.

Firstly, we calculate the integrals I,, and I,,,.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 29/iss1/19
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Applying Mellin’s inversion formula (see e.g.[6]), we obtain that if —1 < a

1
< o then

2+2Q+ i

L,= —2%%(47°k’nX)" " f 28_0_3-F<%s>-F<%s—a—l)

2420~

2+2a+ix

(k0¥ Xt) S -ds+2° {4 'k~ *nX)" "2 f 2s-a-?

2+2a—ico

TN (L ). . (L o

'F(23> F(zs—a 1)7{ cos (5 ms—7a 7r>
(Ark 0¥ X¥) S ds

— _2i(2”)a+2_k—a—1_(nX)-;-an-i-

* [Ka+1(4 ﬂk_lﬂ_;_X-!-) +%JTYa,1(4”k_ln_i_X+)],

and

24+2a+iw

L = 29 {4k ~nX)'+ f 23-a-2r(%s)[r(2+a—%s )]

(4 wk 'n*X¥)"%ds
— ni(zn)2+a.k-a—l _(nX)-}+-i-a.Ja+l(4ﬂk—1n+X+) )

where Kq.1, You1. and Jou, are Bessel functions (see e.g. [8]). Next, we es-

timate 1,5, L6, Los, and I,,. We must be divide into the following two cases

with a view to satisfying the monotone condition in Lemma 2. If n < [N—l—%]

exp(—2/a), we have, by Lemma 2 and the Stirling formula,

I, < T"'[log (n(N-!-%))]

By similar estimations, The integrals 1,4, 1,5, and I, ¢ are
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< T“-[log (n'(N-i-%)_l)]-l.

If n> [N+%J-exp(—2/a), we have, by Lemma 2 and the Stirling

formula,

Is = c[f+/}-G(t)'exp(iF(t))-[l+0(t_‘)] -dt

£ T [log '(4]T2k_2To_an)] !
< T"-[log (n-(N+%)_l)]—l,

where ¢ is a constant,
F(t) = 2t(—log kt+log 272+1)+1t-log nX,
G(i) =t

and
To = 27k 'n* Xt exp (1/a).

By similar estimations, the integrals 1,4, I,s, and 1,4 are

< 1 {1og (n:(N+3) )]
Lastly, by easy estimations, we estimate that the integrals I,;, I,4, [57, and
I,4 are
& |- N-Fave. xa.ome
Hence, by the results (3.9) and (3.10), we obtain
Ad(X; h/E)
= —2rcos (%”a)'x+++a‘2 oaln) -e(—hn/k) -n *¥°

nsN
1

' [Ka+l(47fk_lﬂ+X+) +?7tYa+1(4Hk—ln+X"}) ]—Sin (%na)
XEH T ga(n) e(—ha/k) nFFJop (47wt XY)
+O(k-N-F.xF+e),

By the usual asymptotic formulas for Bessel functions [8], for 1 = N < X,

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 29/iss1/19 10
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we have
Ao X5 h/E)
= (x/2)7 k- XHH 5 galn) el —hn/k) 7 THE

-cos (4 X ¥~ )+ O(k- N+ X++),
We have proved Theorem 1.

4. Proof of Theorem 2. It will be sufficient to prove the correspond-

ing formula for the integral over [%X X ] and then to replace %X by %X,

X/8, and so on, and to add up all the results. We start from the result of
Theorem 1 with N = X. By integrating term by term and using the first
mean-value theorem for integrals, we obtain

X

(3.1)

X/2

Adl(t; h/k)‘ -dt

X

= (227! -k'mzﬂ oa(m) - aaln) (mn)*-¥o. f 1% o(—hm/k)
s i

-e (hn/k)-cos (4frk"m%t+—%7r) ‘cos (47rk"n”lft"f—%n)-dt

X

-+ O(k“’f X rEare, f

X/2

3 oaln) e(—hn/k) -n T ¥0

nsx

-cos (Mk”ﬁﬁ—%n) dz)+0<k2-X'+f).

In the first sum in the right-hand side of (3.1) we distinguish the cases m =n
and m ¥+ n contribute

X
27k oi(n)-n~Fo f t+*%. cog? (47rk"n+t+——1—n)-dt
nex 7 4

= 6 +4)x1 k(x40 (3)7) - ) at

+O(k_Xl+£)+O(k2.Xl+a*—€)‘

Produced by The Berkeley Electronic Press, 1987
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It is seen that the terms in (3.1) for which m % n are a multiple of

k3 oa(m)ou(n)e(—hm/k)e(hn/k)(mn) t-¥°

mEnsX

X
f t¥*%cos (A k" ‘m¥t¥—Ank~'nti¥)di
i

+k 3 oa(m) oa(n)e(—hm/k )e(hn/k)(mn) +¥e

X
f 1P 9in (dmk'mEtY +dnk 't ) ds

X/2

= S,+S,, say.
Estimating the integral in S, by Lemma 2 we have
Sy < KX T o)+ ao(n)-(mn) H 0 (mt )
< k*-X'e
Analogously, we obtain
S, < kz-X'“‘-[ 2+ ]-aa(m)'oa(n)-(mn)‘%‘*“-(mﬁL—n%)“‘

nsm/2 mj2<n
msX msX

= kX" [S,.+S,.], say.
By partial summation formula, we have
Sl,l < Zl Ua(m) 'm__i—__i_a' Z Ua(n) .n——i'-—-i-a < X_aH:-
msX n=m/2

S12 € 25 og(m) m™"% 3 gan)(m—n)Tt € X7,
msX mi2<n<m

Therefore the first sum in (3.1) is equal to

1

k[(6+4a)*] -[X%*“—(?Xf*“].g oi(n)-n¥-e

+ O(kz .X1+a+£) + O(k‘X1+E).
The first O-term in (3.1) is estimated by the Cauchy-Schwarz inequality as
< k—}x—i—+—§—a+e

when we square out the modulus under the integral sign and treat the terms
m = n and m = n similarly as before. We have proved Theorem 2.
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