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1. Introduction. Let Z, denote the set of positive elements of the ring
Z of integers. Let R be an arbitrary associative ring, with center denoted
by C. Call an element a € R poient if there exists an integer n> 1 for which
a” = a: call R a J-ring if every element is potent. Define R to be periodic
if for each x € R, there exist distinct m, n € Z. such that x™ = x".

It is well known that if R is periodic. then R = P+ N, where P and N
denote respectively the sets of potent and nilpotent elements of R. Whether
R = P+ N implies that R is periodic is apparently not known, except in the
presence of additional hypotheses. A recent result in this area. due to Bell
and Tominaga [3]. is the following:

Theorem B-T. IfR isa ring in which every elemeni has a unique rep-
resentation as a sum of a potent element and a nilpotent element, then R isa
direct sum of a J-ring and a nil ring. In particular, R is periodic.

The major purpose of this paper is to study periodicity of rings in which
the zero divisors satisfy conditions of Bell-Tominaga type. Specifically, let-
ting D and E denote respectively the sets of right zero divisors and idempo-
tents of R, we consider the following conditions:

(t) Each x € D is uniquely representable in the form x = a+u.
where a € Eand v € .
(tt) Each x € D is uniquely representable in the form x = a+u,
where ¢« € Pand u € N.
Condition (1) was introduced by Abu-Khuzam and Yaqub in [1]. and ( 1) is a
natural analogue. The condition of the final theorem of [1] suggests another
condition we shall explore briefly, namely D C P U N.

An indispensable tool in the study of periodicity is a result due to Chacron
[4](see also [2]): specifically. if R is a ring such that for each x € R, there
exist m € Z, and p(X) € Z[X] for which x™ = x™*'p(x), then R is periodic.
[t follows at once that if R = P+ N and NV is an ideal, then R must be periodic.
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2. Rings with (11). Before stating the first theorem, we establish two
lemmas, the first of which applies to rings satisfying either (1) or ( 11).

Lemma 1. Let R be any ring with the property that each x € D has at
most one representation as a sum of an idempotent and a nilpotent element.
Let e be an arbilrary idempoient of R.

(1) Ife& D, then x = xe for each x € R; if e € D, then ex = xe
Jor each x € R. In particular, eR = eRe.

(ii) If R = R/AA{R), where A{R) is the right annihilator of R, then
every idempotent of R is central.

Proof. (i) For arbitrary x € R, consider the idempotents f; = e—
(ex—exe) and gx = e—(xe—exe). Incase e & D, (x—xe)e = 0 implies
x = xe. In case e € D, by hypothesis, e = fi+(ex—exe) = g+ (xe—exe)
implies ex—exe = xe—exe, i.e., ex = xe.

(ii) Suppose, to the contrary, that there exists a non-central idempotent
f=f+A{R) in R. Then R(f*—f) =0; in particular, f* = f% so that
e = f? is a non-central idempotent of R with f =2 By (i), e € D and
Re = R, and furthermore R(ex—x) = 0 for each x € R, whence we see that
ex = X = xe. This is a contradiction,

Lemma 2. Let R be any ring which satisfies (11) and has the property
that N°C N, Ifa € Pandu € N, thenau € N,

1

Proof. Suppose that u* = 0 and a” = a, n > 1; and consider e = a™~
€ E. By Lemma 1 (i), either e € Cor e is a right identity element for R.

Note that (a*ua™')* = a(ue)* 'ua™* ' (i =1,2,.--, n—2), which is
equal to either a‘eu*a™ ~' = 0 or a‘u*d* "' = 0, depending on the nature of
e. In either event, a’ua™ '€ N, Since N> N, we now get (au)"'=
(aua™?)(a*ua™ ?).--(a® *ua)u € N. Thus au € N.

Theorem 1. Let R be a ring satisfying(tf). If N*C N, then either
N = Dor R is a direct sum of a J-ring and a nil ring.

Proof. Assume N # D, and choose an element x of D\N: yx =0, y #
0. We write x =a+u, where a®=a # 0 and u € N We assume without
loss n =3, Then ¢ = a™ ! is a non-zero idempotent with ea = ae = a. Left-
multiplying the above by a®? gives a"*x = e+a" *u, where a"*u € NN
eR by Lemma 2. Hence a™ %x is invertible in eR = eRe (Lemma 1 (i)):
a" *xw = e with some w € eR. Our first task is to show that e is in D, and
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consequently in C (Lemma 1 (i)). Suppose, to the contrary, that e & D.
Then e is a right identity element of R. and so 0 = yexwa™? = yag-a™?
xwa™? = ya.-ea™?* = ye = y, a contradiction.

Noting that eR C D and e is central, we can easily see that eR satisfies
the hypothesis of Theorem B-T, hence is a J-ring. It follows that eN = 0.
Now consider the direct decomposition R = eR @ A(e), where A(e) is the
annihilator of e. Since A(e) C D and eN = 0, we see that A(e) satisfies
the hypothesis of Theorem B-T, hence is a direct sum of a Jring and a nil

ring: consequently so is R itself.

Corollary 1. Let R satisfy (1t), and suppose that D# N. If N is com-

mutative, then R is commutative.

Proof. Since N commutative implies N* C N, the result follows from
Theorem 1 and the well-known fact that J-rings are commutative.

In what follows, we shall frequently find it convenient to compute in R =
R/A.(R). For x € R, denote by x the element x+ A-(R) of R; and let N
be the set of nilpotent elements of R. Note that x € N if and only if x € N,
hence N is an ideal of R if and only if N is an ideal of R.

Theorem 2. Let R satisfy (1), and suppose that N°C N. IfR=P +
N, then R is periodic.

Proof. If N+ D, the conclusion is immediate from Theorem 1. Sup-
pose, then, that N= D. Since nil rings are obviously periodic, we may
assume that R # N, in which case the hypothesis R = P+ N guarantees the
existence of a non-zero idempotent e. The proof of Lemma 1 (ii) shows that
for each such e, e is a multiplicative identity element for R. It follows that
for any non-zero a € P, @ is invertible in R.

Now, consider x € R\N. Since x ¢ N, there exists a non-zero a € P
and u € N such that x = a+u; and we may assume a" = a with n > 2.
Then, as in the proof of Theorem 1, we can see that @* *x is invertible in R.
Thus, as is well known, R is a local ring with radical N, Therefore, N is
an ideal of R, and Chacron’s result implies that R is periodic.

3. Rings with (1). While () does not seem to vield nice direct-sum

decompositions, we can establish periodicity theorems which parallel Theorem
1 and Theorem 2. The following lemma will be needed.
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Lemma 3. Let R be any ring satisfying (1).

(i) Ifx € D, then there exists a positive integer m and central idem-
potent f in {x) such that x™ = x™f. If, furthermore, x € yR (resp. x € Ry),
then x™ € y’R (resp. x™ € Ry?).-

(ii) Ifue Nand v € R, thenur € N and ru € N.

Proof. (i) Writing x = e+u, where e € Fand u € N, and noting
that & is central (Lemma 1 (ii)), we see that x—x¥* = é+a—(e+u)* = u—
#*—2ei € N. Thus (x—x*)™ = 0 withsome m € Z.. By standard com-
putation, we obtain x™ = x*"x' with some ¥ € (x) . Then f=x"x' € (x)
N E and x™ = x™f; and f is necessarily central by L.emma 1 (i). Now.
assume further that x = yr (r € R). Since f is central, we see that (yr)" =
(yr)"f = yfr(yr)"™' € ¥°R.

(ii) Suppose the assertion is false. Then choose u € N, of minimal
index of nilpotency, such that «R &€ N. Then ur & N for some r € R, and
u?R C N. Since ur € D, there exists a positive integer m such that (ur)”
€ w* R C N, by (i). This is a contradiction.

Theorem 3. Let R be any ring satisfying (1) and having N # D. Then

R is periodic. Moreover, if N is commutative, then R is commutative.

Proof. Since D 2 N, Lemma 3 (i) guarantees the existence of a non-
zero central idempotent e in D, Then for any x € R, ex € D; hence by the
proof of Lemma 3 (i), e(x—x?)™ = (ex—(ex)*)” = 0 for some m€ Z,.
Therefore (x—x?)™ € D. Again by the proof of Lemma 3 (i), (x—x%)"—
(x—x*)*™ & N. It is now clear that Chacron’s condition is satisfied for all
x € R, so that R is periodic.

Suppose now that N is commutative. Continuing with the same central
idempotent e, we have R = R, & R,, where R, = eR and R, = A(e). Clearly
R, C D. Moreover, if x € R; is represented as f+v with f€ Eand v € N,
it is easy to show that f € D, hence f€ C(Lemma 1 (i)). It is now clear
that R is commutative.

Theorem 4. If R = P+ N and R satisfies (1), then R is periodic.

Proof. If N# D, Theorem 3 yields the desired conclusion. If N= D,
the proof of Theorem 2 works, the only change being the replacement of Lemma
2 by Lemma 3 (ii).

4. Rings with D C P U N. Our final theorem provides another appli-
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cation of Chacron’s theorem.,

Theorem 5. Let R be a ring with N commutative. If each element of
D is either potent or nilpotent, then N is an ideal. Moreover, if D # N, then
R is periodic.

Proof. Of course, (N, +) is a subgroup of (R, +). Assume N is not an
ideal, and choose u € N, of minimal index of nilpotency, for which «uR & N.
Then v’ R © N. Let 7 be an arbitrary element of R. Since ur € D, ur is
either potent or nilpotent, hence there exists ¥ € Z, such that e = (ur)* is
an idempotent, possibly 0. Since re—ere €N and ue € u’R, we have

(ur)**® = u[re—ere,u]r +u*(re—ere)r+uereur € u*R < N,

contrary to the original supposition. Thus, N is an ideal.

Assume now that N # D. Let d be a fixed element of D\N, so that d is
potent and some power of d is a nonzero idempotent e in . Let r be an
arbitrary element of R, and note that both er and r —er are in D,

If er € N, then e(r*—r) € N for all £k € Z.. On the other hand, if
er € P, there exists m > 1 such that (er)® = er. Now ere = er mod. N,
so (er) = ey’ for all j; in particular, (er)™ = er = er™ mod. N and hence
e(r™—r) € N.

Repeat the argument with » —er instead of er. Noting that if er and r—
er are both potent, we can find a single m which works for both. Thus in all
cases, there exists m > 1 such that e(+"—7) € Nand r*—r—e(r™—7r) €
N. Consequently 7™ —r € N, and Chacron’s condition is satisfied.
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