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Isao KIKUMASA and Takast NAGAHARA

Throughout this paper, A will mean a commutative ring with identity
element 1 which is an algebra over a finite prime field GF(p), and all ring
extensions of A will be assumed with identity element 1, the identity element
of A. Moreover, B will mean a Galois extension of A with a cyclic Galois
group G = (o) generated by ¢ of order p”, which will be called a cyclic
p™extension of A (with a Galois group G). If B is generated by a single
element z over A then we say that B/A has a primitive element and z is
a primitive element for B/A.

This paper is about the existness of primitive elements for cyclic
p™ extensions. In [2], K. Kishimoto made a study on primitive elements for
cyclic 22%-extensions. In §1, we shall present a sharpening of [2] and some
generalizations. In §2, we shall give some applications and generalizations
of the results of §1 to cyclic p™extensions with p =22 and n = 1.

In what follows, given a Galois extension S/R with a Galois group G,
we shall use the following conventions: For any subring T of S and any
subgroup H of G,

1) MT)=1iM; M is a maximal ideal of T},

2) G(T) =1{oc€ G: ola) = a for all a € T},

3) S(H)=1a€ S; ola) =a for all ¢ € H},

4) tfa) = Dlgen ola) for each @ € T, which will be called the
H-trace of ¢. Moreover, for any set V and its subset W,

5) | V| = the cardinal number of V,

6) V\W = the complement of W in V.

Now, we shall here consider a cyelic p™extension B/A with a Galois
group G = (o). Then, there exists an element a in B whose G-trace is
1 ([1, Lemma 1.6]). If, in particular, |G|= p then there exists an element
b in B such that o(6) = b+1. When this is the case, there holds that
B = A[b] and t;(b) =0 if p > 2 ([7, Theorem 1.2]). Such an element
b will be called a o-generator of B/A (cf. [2]). In case |G| = 2, an element
¢ in B is a o-generator of B/A if and only if #;(¢c) = 1.
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1. On primitive elements of cyclic 22-extensions. In this section, we
shall discuss the case p =2 and n =2, i.e., |{o)| =4. Throughout
this section, H will mean a subgroup of G generated by o?, i.e., H = (g?).
Moreover we put T = B(H) and ¢|T = &

First, we shall prove the following theorem which contains the result
of K. Kishimoto [2, Lemma 1].

Theorem 1. The following conditions are equivalent.
(a) There exists a primitive element for B/A whose G-trace is zero.
(b) There exists an invertible element of T whose (G)-trace is 1.

Proof. (a)=>(b). Let B= A[z] and is(z) =0, andset b = 2+
o(z). Then, we have o%(b) = b. This implies that b € T and b+4(b) €
A. By[4. Theorem 3.3], b and b+0(b) = z+ o%z) are invertible in B.
Hence x = b(b+ o(b))™" is an invertible element of T and t,(x) = 1.

(b) = (a). Letx be an invertible element of T whose (&)-trace is 1.
Then, o(x) = x+1. Hence we have T = A[x] by [7, Theorem 1.2].
Since B is a Galois extension of A, there exists an element y in B such that
tely) =1. Put

b =x*+x and z = xy+xo(y)+ olxy+xa(y)).

Then, since x is invertible, o{x) = x+1 is also invertible and so is b =
xo{x). Moreover, since t;,(y) =1, we have ¢¥2) = 2+1. Hence B=

T(z]. Further,

2+ o0(z) = xy+xo(y) + o¥ay+xa(y))
= xt(y) = x.

Hence we have ¢(z) = z+x. Then we obtain o(z*+2+xb) = 22+ 2+ xb.
Therefore, it follows that ¢ = z*4+2+xb € A, and x = (2°+24¢c)b™ ' €
A[z]. This implies that A[z] = A[z,z] = T[z] = B. Moreover, noting
o(z) = z+x and o(x) = x+1, we have #,(z) = 0.

Corollary 2. Let x be an invertible element of T with t;,(x) =1 and
y an element of B with t,(y) = 1. Then
z = xy+xo¥y)+oly)+dy)

is a primitive element for B/A whose G-trace is zero and so is z+ a for any
a € A. Moreover
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z, = xy+xo(y)+ aly) + (¥ +y+y*
is also an element which has this property.

Proof. 'The first part is shown in the proof of Theorem 1. Moreover,
it is clear that A[z+a] = Alz] = B and ts(z+a) = t;(z) =0 for any
a € A. Since tc(y) =1 and

z2+2z, = y+ o(y)+y*+ o¥(y?).
olz+2,) = (aly)+0%(y) +(oly®) + o¥(y*)
= (y+ o¥y) +1) +(y*+ o¥(y*) +1)
= z+2z,.

Hence, z+2z, is in A and 2, = 2+5 for some b € A. This shows the last
part.
Remark 1. Assume that there is an invertible element x in T whose

(@)-trace is 1. Then, for any element y of B whose G-trace is 1, we set

b=x*+x, z=axy+xo(y)+oley+xo(y)), ¢ = 2’ +z+xb and
f=X—2)(X—0(2) (X —0%2))(X—a¥(2)).

Then, noting o(z) = z+x, we have
F= X H(b+H1) X+ bX+(b*+be +c?)
and B= A[z] = A[X]/(f) by [4, Theorems 3.3and 3.4]. Clearly

i1, 2, 2% 2z*| is a linearly independent A-basis for B.
Next, for the z; in Corollary 2, we set a = z;,+2z (€ A), and

h = (X—2)(X—a(z,))(X— %2, ))(X— 0%(2,)).
Then
f =X b+ 1) X+ bX+(b*+blc+a*+a)+(c+a’+a)?)

and B= A[z,] = A[X]/(f). This primitive element z, for B/A and the
polynomial f; are of K. Kishimoto's type in [2, Lemma 1].

Next, we shall present an alternative proof of [2, Lemma 2] which is
simple.

Lemma 3 ([K. Kishimoto]). Assume that B/A has a primitive element.
Then, given M € M(A), if A/M = GF(2) then T/TM = GF(4).
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Proof. LetM € M(A) and A/M = GF(2). Moreover, let x and z be
primitive elements for T/A and B/A, respectively. Then B/BM is a cyclic
2%.extension of A/M with a Galois group (o) where p is the automorphism of
B/BM induced by 0. We set r = x+BM and s = z+ BM in B/BM. Then
B/BM = GF(2)[s] and (B/BM )(p*) = T/TM = GF(2)[r]. We shall here
assume that r’—r =0, i.e., r* = r. Then, noting [GF(2)[r] : GF(2)] = 2,
we have T/TM = GF(2)r & GF(2){1 —r). Hence the units of T/TM are
only 1. Clearly s+ 0%s) € T/TM. By [4, Theorem 3.3], s+p%s) is
a unit in B/BM, and so is in T/TM. Hence s+ p%s) = 1, which implies
that #,:(s) = 0. Thus, by Theorem 1. there exists a unit ¢ in T/TM such
that t+po(¢t) = 1. For t =1, we have t+p(t) = 0, and this is a contra-
diction. Hence r?*—r # 0, and so, r®*—r = 1. Since f= X*+X+1 is
irreducible over GF(2), GF(4) = GF(2)[X]/f) = GF(2)[r].

Now, we define here three sets M,, M, and M, as follows:

Mo =M€ MA); TM € M(T)|,
M, =|NeMT); BN€ MB)| and
M =|NEMT); NN A€ My}

We will often use the sets in the rest of this section.

Lemma 4. (i) IfNE M(T)then NN o(N) =T(NN A) and
IN“e M(T): NN ACNY|=|N, o(N)I.

(ii) For N € M(T), there holds N € M| if and only if o(N) = N;
and hence N € M} if and only if o(N) %+ N.
(i) M =|{TM: M € M} C M,.
Proof. (i) Set No= NN o(N) and M, = NN A. Then, since
O'(No) - I’V() and G(T.IM()) - TA’ 0

T/N, and T/TM, are Galois extensions over the field A/M, of order 2.
Hence,

[T/No: A/M,] = [T/TM,: A/M,] = 2.

Moreover, since TM, C N,. we have a natural A/M,-homomorphism of
T/TM, to T/N,. Therefore, T/TM, = T/N, and TM, = N,. This shows
the first equality.

For any N € [N € M(T); NN AC N7,

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 29/iss1/6



Kikumasa and Nagahara: Primitive elements of cyclic extensions of commutative rings

PRIMITVE FLEMENTS OF CYCLIC EXTENSIONS OF COMMUTATIVE RINGS 95

No(N)CNNo(N)=T(NN A) C N

Thus N C N’ or o(N) C N’ because N’ is a prime ideal of T. Hence we
have N = N’ or ¢(N) = N’ by maximality. This implies that

IN€ M(T): NN ACNI|CIN, olN).

The converse inclusion is trivial.
(ii) Let N be an element of M(T). Assume that N € M{. Then,
by (i), NN o(N) =T(NN A) € M(T). Hence. by maximality,

NN o(N)=Nand NN ¢(N) = o(N).

It follows therefore that o(N) = N.
Conversely, assume that ¢(N) = N. Then. by (i),

TINNA)=NNo(N)=Ne I(T).

Thus we obtain N € M.

(iii) By (i) and (ii), we can easily see that M{ = | TM; M € M,}.
Let N be any element of M{. Then, N = TM for some M € M,. Since
TM € WM(T), T/TM is a field. Thus, by [7, Theorem 1.8), B/BM is also
a field. Hence

BN = B-TM = BM € M(B).

This implies that N € M, and so M C IM,.

Theorem 5. Assume that |IM(A)\M,| is finite and T/TM = GF(4)
Jor any M € M(A) such that A/M = GF(2). Then, there exists an invert-
ible element y in T with t.5,(y) = 1. Therefore B/A has a primitive element.

Proof. First, we shall show that there exists an element y in T such
that y+o(y) =1 and y &€ N for all N € M(T)\M|. Since |M(A)\IM,|
is finite, so is |M(T)\M{|. Hence by Lemma 4, we can put

S.D}(T)\‘IR{ = {I,VH, P\Gg. I‘Vz], sz. veuy IVH. l\r”[

where o(N,) = N, (i =1,2,...,t) and N;;, = N,,, N, for j % i. More-
over, set

M=ANN,(i=1.2, ... 1)
Then, if i = j then M; & M;. Indeed, if M; = M, for some i = j then
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N,;1 m A :le m ACle and C.!V“.

Since N;; # o(Ny), this is a contradiction by Lemma 4(i). Therefore,
for I =M, A/I=A/M, ® A/M, ®---® A/M,. Since all A/M, are
fields, there exists a set of orthogonal idempotents |é,, é,, ..., &,| in A/I
such that

1=¢+é+--+eé,,

e; €A, e, € M,ande; € M;(j % i). Moreover, by our assumption, A/M,
is a field such that A/M,. & GF(2). Indeed, if A/M, = GF(2) then T/TM,
= GF(4). This means that TM, € M(T) and N;, € M!. This is a contra-
diction. Hence, there exists an element a; of A such that a;e; & e, and & 0
(mod M,;). This shows that

(ai+a)e; & 0 (mod M,).

Now, for an element x in T with ¢ (x) = 1, we define an element y in
T as follows:

If x &€ N, for all { and & then y = x (in this case, it is clear that
y+o(y) =1 and y € N for all N € M(T)\M).

If x € N, for some i and £ then, without loss of generality, we may
choose an integer s (1 = s =) such that

xEN,orx €N ifl <i=5s and
xENy,andx E Np if s <j=1.

For the s and the above a;, we put

a=a,e,+ae,+ - +ases and
y = x+ta.

Then, since ¢ € A, y+o(y) = x+o(x) = 1.
Now we shall show that y &€ N for all N € (T )\M{. As is easily

seen,
a’+a = (al+a)e +(ai+a,) e+ +(ak+as)es (mod I).
Since e; € M, (j % i),

a’+a = (a?+a;)e; 0 (mod M;) (1 = i=s5s) and
a’+a =0 (mod M;) (s < j=t).

It follows that a®*+a & M, (1 £ i < s)and a®*+a € M; (s <j=1t). We
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note here that xo(x) is contained in A = B(¢) and
xo(x) ENaNo, CNy NN, (IS0 s).
Then
xo(z) € A N(NEL(Na N Np)) = NEM.
Moreover, yo(y) = xo(x) +a*+a. Hence, we see that
yoly) €M, (1 =i =<5s).

For j(s <j=1), x and o(x) are not in N, (k =1,2) by the definition
of s. Since N;, is a prime ideal, xo{x) € N;, and so xo(x) € M;. Thus
we have

yoly) € M; (s < j=t).

Therefore, y € N;, and o(y) € Ny, (1 =i < t). Since o(y) € N, means
that y € N,,, we see that ¥ € N for all N € (T )\M;.

Now, we are in a position to complete the proof. Indeed, it suffices to
show that y € N for all N € M|. Because if y & N for all N € WM(T)
then y is an inversible element of T. In this case, B/A has a primitive
element by Theorem 1.

Let N be any element of I{. Then, by Lemma 4, N = TM for some
M € M,. Hence, o induces an automorphism p of T/N. Thus, T/N is
a Galois extension of A/(A N N) with a cyclic Galois group {p). Since
y+o(y) =1, we have ¥+ p(3) =1 in T/N. Hence 5y & 0 and so y & N.

Corollary 6. Assume that |M(A)\IM,| is finite. Then the following
are equivalent.

(a) B/A has a primitive element.

(b) B/A has a primitive element whose G-irace is zero.

Proof. (b) = (a) is trivial.
(a)=>(b). By Lemma 3, T/TM = GF(4) for any M € M(A4) such
that A/M = GF(2). Hence, by Theorem 1 and Theorem 5, we obtain (b).

The following theorem contains the result of [2, Theorem 3].
Theorem 7. Assume that |I1M € M(A): A/M %= GF(2)|| is finite.

Then, the following conditions are equivalent.
(a) B/A has a primitive element.
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(b) T/TM = GF(4) for any M € M(A) such that A/M = GF(2).

Proof. (a)=>(b). It is clear by Lemma 3.

(b)=(a). Let M be an element of M(A) such that A/M = GF(2).
Then, TM € M(T) because T/TM = GF(4) is a field. Hence we have M
€ M,. Since [|M € M(A); A/M ¥ GF(2)}] is finite. so is |IM(A)\M,]|.

Thus, by Theorem 5, B has a primitive element over A.

2. On primitive elements of cyclic p”extensions. Set B, = B(¢*)
(i=0,1,2,....,n) and M, ={M € MB,): B;s.M € M(B,,,)| (i =0,1,
2, ...,n—1). Then, obviously B= B, and A = B,. Moreover, B, is
a cyclic p“”-extension of B; with a Galois group {(¢*|B,).

Theorem 8. Assume that p = 2 and | B,)\M,| is finite. Then, the
Jfollowing conditions are equivalent.

(a) B,/B, has a primitive element.

(b) By.2/Byx has a primitive element for any k(0 < k < n—2).

Proof. (a)=(b). We note that By., is a cyclic 2%extension of B,
with a Galois group (o**|By.,,). First, we shall show that |IR(B,)\M,]| is
finite for each £ (0 = k = n—2) by induction. To prove this, let i be any
integer such that 0 = i <n—2 and N an element of M(B,,,) such that
NN B, € M,. Then, by Lemma 4(iii), we have N € M,,,. Hence, if
L € M(B,.,)\M,,, then L N B, € M(B;)\M,. Combining this with Lemma
4(i). we see that if |M(B,)\M;| is finite then |M(B,,,)\M,,,| is also
finite.

Now, we shall show that By,,/B; has a primitive element for all k£
(0 = k= n—2) by induction. We assume that B,,,/B; has a primitive
element for all k(0 =< k < n—2). Then. it is enough to show that B,,,/N ¥
GF(2) for any N € M(By..). Indeed, in this case, we see that B,,;/Bx-,
has a primitive element by Theorem 5.

Assume that By,,/N = GF(2) for some N € M(B,.,). Then, since

Bi/(Bx N N) C By.\/N,

we obtain B./(B: N N) = GF(2). Hence, by Lemma 3, By, ,/(Bx N N)By,,
= GF(4), which is a field. Thus, we have (B, N N)Bx., = N by the
maximality of (Bxy N N)By.,. It follows that By,,/N = GF(4). This is
a contradiction.

(b) = (a) is trivial.
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Theorem 9. Assume that p =2 and ||M € M(A); A/M * GF(2)}|
is finite. Then, the following conditions are equivalent.

(a) B,/By has a primitive element.

(b)  Bys:/Bx has a primitive element for any k (0 = k = n—2).

Proof. (a)=>(b). Let M be an element of M(B,) such that A/M =
GF(2). Then, by Theorem 7, B,/BiM = GF(4). Hence B,M € IM(B,)
and so M € M,. This implies that

SJJ}(Bo)\mn C {AM (S EU?(A), A/AM * GF(Z)}

Thus, |M(B,)\M,| is finite. Therefore, we have (b) by Theorem 8.
(b) = (a). Trivial.

Corollary 10. When B/A is in the situation of Theorem 8 or 9, this has
a system of generating elements consisting of m elements where m = n/2 if
n is an even number, and m = (n+1)/2 if n is an odd number.

Proof. The assertion is obvious by Theorems 8 and 9.

Theorem 11. Assume that p = 2 and M(A) = M,. Then, B/A has
a primitive element. Moreover, if x € B with te(x) =1 then x is a primitive
element for B/A and is invertible.

Proof. Let M be any element of M(A). Then, B/BM is a cyclic
p™extension with a Galois group {p) where p is the automorphism of B/BM
induced by . Further, (B/BM) (p?) = B,/B,M which is a field. Hence,

by [7, Theorem 1.8], B/BM is also a field. We will here denote b+ BM
(€ B/BM) by b. For an element x of B satisfying t(x) =1, pi(x) * %
for any i (1 =i =< p"—1) since t;,,(¥) = 1. Indeed, assume that p (%) = x
for some i and put H = | 7 € {p): (%) = x|. Then, H is a subgroup of
{p) and hence |H| = p® for some integer s (1 < s < n).

Since

(=pHU pHU---U poH (p, € {p); 1 £ i< m)

for some integer m, we have 1,,(Z) = p®p,(x) = 0. Hence, t«>(x) =10
which is a contradiction. Therefore. by the Galois theory of fields,

B/BM = (A/M)[x].
This implies that B = A[x]+ BM. Since M is any maximal ideal of A, we
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have B = A[x] by [8, Theorem 9.1].

Next, we shall prove that the x is invertible. For any M € I(A),
X % 0 because t.,,(x) = 1. Noting that B/BM is a field, we have (B/BM)x
= B/BM. This means that Bx+BM = B. Thus, by the same way as in

the above, we have Bx = B and so x is invertible.
Remark 2. Let

B = GF(3°) & GF(3*) ® GF(3?)

and 7 an automorphism of GF(32) of order 3. Moreover, let ¢ be an auto-
morphism of B defined by

o((x1, 22, 203)) = (2lxa), 21, X).
Then, by [6, Lemma 1.1], B is a cyclic 3%extension of
A=|(a,a a); a € GF(3)|

with a Galois group {¢). As is seen in [3, p.555], the following polyno-
mials are irreducible over GF(3):

fi= X*4+2X+1,
fi= X*+2X+2 and
£ = X3+ X+2.

Clearly, each f; and f; (i % j) are relatively prime. Hence for g = f, f, fs,
we have

A[X]/e) = ALX]AA) ® ALX]AL) @ ALX]AS).

Since A[X]Af,) = GF(3%) (i =1,2,3), it follows that A[X]/g) = B.
Noting A[X]/g) = A[x] for x = X+(g), B/A has a primitive element.
However, we have

B(¢*) = GF(3) @ GF(3) ® GF(3)

which is not a field. Hence Lemma 3 does not hold for p = 3. Clearly,
in the extension B(s%)/A, (2,1.1) is an invertible element whose trace
is 1, but there are not invertible o-generators. Moreover, there are 8
irreducible polynomials of degree 3 in GF(3)[X]. On the other hand, the
ones of degree 2 in GF(2)[X] are only X*+X+1 (cf. [3, pp.553—
555]). ‘

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 29/iss1/6
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Remark 3. Let B be a cyclic 2™extension of GF(2) with a Galois
group (o), B, = B(s?), and B, = B(o¢'). If B,/GF(2) has a primitive
element then B, = GF(4) by Lemma 3, and whence by [7, Theorem 1.8],
B is a field, which has a primitive element over GF(2). However, the
converse does not hold. This is seen in the following example. Let

B = GF(2*) & GF(2*)

and ¢ an automorphism of GF(2*) of order 4. Then B is a cyclic
2% extension of A = {(a, a): a € GF(2)| with a Galois group (o) where
o((xy, x,)) = ((x,), x;). Now, as is seen in [3, p. 553], the following
polynomials in GF(2)[X] are irreducible over GF(2):

fi = X*+X*+1 and
L= X'+ X+ X+ X+1.

Hence, for g = f,f,, we have the A-ring isomorphisms
A[X1/g) = ALX1AS) @ AX]/f) = GF(2') ® GF(2*) = B.

Let b be an element of B which corresponds to X+(g) under the above
isomorphisms. Then b is a primitive element for B/A. However, since B
is not a field, B, = B(¢*') has no primitive elements over A by the preceding
statement. Moreover. it can be easily checked that t.,y(b) = a(1,1) where
a is the sum of the coefficients of X® in f, and f,. In this case, t;;,(b) =0
because @ = 0. But if we replace the f, by X*+X+1, which is irreducible
over GF(2), then @ =1 and so t,53(b) = 1. This shows that B/A has at

least two primitive elements, each trace of which is 0 and 1.

Remark 4. Let
B=GF(4) &..-® GF(4)

which is the direct sum of 2° copies of GF(4). Then B is a cyclic
2% extensionof A =|(a, a, .... a); @ € GF(4)} with a Galois group {¢) where
o((axy, x5, oo 205)) = (a5, 20, oax7) (x; EGF(4) ;1 =7 < 8). We set here
B, = B(¢?) and B, = B(¢*). Then by Theorem 7, B,/A has a primitive
element. Hence by Theorem 9, B/B, has a primitive element. However,
B/A has no primitive elements. Indeed, if B = A[x] for some x in B then
the elements 1, x, ..., x" are linearly independent over A by [4. Theorems
3.3 and 3.4]; on the other hand. since a* = a for all a € GF(4). there holds
x' = x, which is a contradiction. As is seen in Corollary 10, B is generated
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by two elements over A.

Remark 5. Let
B = GF(4) @ GF(4) ® GF(4) & GF(4).

Then, B is a cyclic 2%extension of A ={(a, a, a, a); a € GF(4)} with
a Galois group (o) where o((x;, x,, x3, x,)) = (x4, X1, X2, x3) (x; € GF(4) ;
i=1,2,3,4). Then, by Theorem 7, B/A has a primitive element. Let
x = (x;, x,, x3, x,) be any primitive element for B/A. If x, = x; for some
i < j then x—¢'~¥x) is not invertible in B, which is a contradiction by
[4, Theorem 3.3]. Hence-if 1 < i % j =< 4 then x, * x,. It follows there-
fore that t,(x) = 0 because 2 .gecrua = 0.
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