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Abstract

Let F be a field of char(F) = p > 0 and G an abelian group with p-component Gp of cardinality
at most ℵ1 and length at most ω1. The main affirmation on the Direct Factor Problem is that
S(FG)/Gp is totally projective whenever F is perfect. This extends results due to May (Contemp.
Math., 1989) and Hill-Ullery (Proc. Amer. Math. Soc., 1990). As applications to the Isomorphism
Problem, suppose that for any group H the F-isomorphism FH ∼= FG holds. Then if Gp is totally
projective, Hp

∼= Gp. This partially solves a problem posed by May (Proc. Amer. Math. Soc.,
1988). In particular, H ∼= G provided G is p-mixed of torsion-free rank one so that Gp is totally
projective. The same isomorphism H∼= G is fulfilled when G is p-local algebraically compact too.
Besides if Fp is the simple field with p-elements and Gp FpH is a coproduct of torsion complete
groups, FpH∼= FpG as Fp Fp-algebras implies Hp

∼= Gp. This expands the central theorem obtained
by us in (Rend. Sem. Mat. Univ. Padova, 1999) and partly settles the generalized version of
a question raised by May (Proc. Amer. Math. Soc.,1979) as well. As a consequence, when
Gp is torsion complete and G is p-mixed of torsion-free rank one, H ∼= G. Moreover, if G is a
coproduct of p-local algebraically compact groups then H ∼= G. The last attainment enlarges an
assertion of Beers-Richman-Walker (Rend. Sem. Mat. Univ. Padova, 1983). Each of the reported
achievements strengthens our statements in this direction (Southeast Asian Bull. Math., 2001-
2002) and also continues own studies in this aspect (Hokkaido Math. J., 2000) and (Kyungpook
Math. J., 2004).
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COMMUTATIVE GROUP ALGEBRAS

OF ABELIAN GROUPS

WITH UNCOUNTABLE POWERS AND LENGTHS

Peter DANCHEV

Abstract. Let F be a field of char(F ) = p > 0 and G an abelian group
with p-component Gp of cardinality at most ℵ1 and length at most ω1.

The main affirmation on the Direct Factor Problem is that S(FG)/Gp

is totally projective whenever F is perfect. This extends results due to
May (Contemp. Math., 1989) and Hill-Ullery (Proc. Amer. Math.
Soc., 1990).

As applications to the Isomorphism Problem, suppose that for any
group H the F -isomorphism FH ∼= FG holds. Then if Gp is totally
projective, Hp

∼= Gp. This partially solves a problem posed by May
(Proc. Amer. Math. Soc., 1988). In particular, H ∼= G provided G is
p-mixed of torsion-free rank one so that Gp is totally projective. The
same isomorphism H ∼= G is fulfilled when G is p-local algebraically
compact too. Besides, if Fp is the simple field with p-elements and Gp

is a coproduct of torsion complete groups, FpH ∼= FpG as Fp-algebras
implies Hp

∼= Gp. This expands the central theorem obtained by us in
(Rend. Sem. Mat. Univ. Padova, 1999) and partly settles the gener-
alized version of a question raised by May (Proc. Amer. Math. Soc.,
1979) as well. As a consequence, when Gp is torsion complete and G
is p-mixed of torsion-free rank one, H ∼= G. Moreover, if G is a co-
product of p-local algebraically compact groups then H ∼= G. The last
attainment enlarges an assertion of Beers-Richman-Walker (Rend. Sem.
Mat. Univ. Padova, 1983).

Each of the reported achievements strengthens our statements in this
direction (Southeast Asian Bull. Math., 2001-2002) and also continues
own studies in this aspect (Hokkaido Math. J., 2000) and (Kyungpook
Math. J., 2004).

INTRODUCTION

Everywhere in the text of the present paper, the letter FG designates
the group algebra of an abelian group G, written multiplicatively, over a
field F of characteristic p 6= 0. As usual, V (FG) denotes the group of
all normalized invertible elements (often called normed units) in FG, and
S(FG) is its Sylow p-subgroup. For an abelian group G, the letter Gp will
denote its p-primary component.

For a p-subgroup A of G, we define by S(RG;A) the group 1 + I(RG;A)
where I(RG;A) is the relative augmentation ideal of RG with respect to A,
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180 PETER DANCHEV

and R is a commutative unitary ring of prime characteristic p. All calculated
heights are assumed to be p-heights for some arbitrary but a fixed prime
number p. All other notations and the terminology not explicitly defined
herein are standard and follow essentially the excellent monographs of Ch.
Curtis - I. Rainer [2], L. Fuchs [13, 14, 15], Ph. Griffiths [16], I. Kaplansky
[22], G. Karpilovsky [23, 24] and D. Passman [29].

In the theory of commutative group algebras there exist two global prob-
lems called the Direct Factor Problem and the Isomorphism Problem, re-
spectively. The first conjectures that S(FG)/Gp is always totally projective
whenever F is perfect, and the second says that the p-mixed abelian group
G may be retrieved from the F -group algebra FG. The main purpose of
this research exploration is to investigate these two conjectures under some
minimal restrictions on F and on G. Although F and G are not arbitrary
objects, our further established claims are major and they supersede a large
number of important classical theorems in this branch (see, for example, the
cited bibliography).

DIRECT FACTOR THEOREM

W. May proved in [28] that if G is a p-group of cardinality not exceeding
ℵ1 and length not exceeding ω1 and if F is either perfect or countable, then
S(FG)/G is totally projective. P. Hill jointly with W. Ullery extended in
[19] this result by removing the restriction on length(G). They, actually,
examined successfully even arbitrary coproducts of groups of power ℵ1 (see
[21] too).

In [8] we have argued that S(FG)/Gp is totally projective provided F is
perfect, Gp is separable and both F and G have cardinalities at most ℵ1.
Thus, we give a particular answer of our query formulated in [7].

Now, we shall illustrate that those power conditions on F and G may be
dropped as well as the length restriction on Gp can be decreased.

Theorem. Suppose G is an abelian group whose Gp is with cardinality
not exceeding ℵ1 and length not exceeding ω1, and F is a perfect field of
characteristic p > 0. Then S(FG)/Gp is a totally projective group and so
Gp is a direct factor of S(FG) with totally projective complementary factor.

In particular, under these circumstances, V(FG)/G is a totally projec-
tive p-group and thus G is a direct factor of V(FG) with totally projective
complement, provided G is p-mixed.

As immediate valuable consequences, we establish new criteria for total
projectivity and summability of S(FG) (e. g. [6, 7, 8, 10, 11] and [12]).

Corollary. Suppose G is an abelian group whose Gp is with power ℵ1

and F is a perfect field of characteristic p 6= 0. Then S(FG) is a direct sum
of countable groups if and only if Gp is.

2

Mathematical Journal of Okayama University, Vol. 51 [2009], Iss. 1, Art. 13

http://escholarship.lib.okayama-u.ac.jp/mjou/vol51/iss1/13



COMMUTATIVE GROUP ALGEBRAS OF ABELIAN GROUPS 181

Remark. This assertion improves the corresponding result in [7, 11].

Corollary. Suppose G is an abelian group for which Gp is with power
ℵ1 and F is a perfect field of characteristic p 6= 0. Then S(FG) is summable
if and only if Gp is.

Remark. The last affirmation generalizes a similar fact in [12] proved
when either Gp is of countable length or G is of cardinality no more than
ℵ1.

Before proving the formulated statements, we need some preliminaries
starting with

Lemma. Assume that 1 ∈ L ≤ R and that B ≤ A ≤ Gp, C ≤ G. Then
[AS(RG;B)] ∩ S(LC) = (A ∩ C)S(LC; B ∩ C).

Proof. Take an arbitrary element x from the left hand-side. Hence, we
may write x =

∑
c∈C αcc = a

∑
g∈G rgg such that αc ∈ L with

∑
c∈C αc = 1;

a ∈ A and
∑

g∈g′B rg = 0, g′ 6∈ B or
∑

g∈g′B rg = 1, g′ ∈ B, for any g′

∈ G. The canonical forms of the two sums imply αc = rg and c = ag. But∑
g∈G rgg contains a member that belongs to B ⊆ A, say b ∈ B ⊆ A. Thus,

ab ∈ A ∩ C and we derive x = ab
∑

g∈G rggb−1. On the other hand, we

observe that gb−1 ∈ C and hence gb−1 ∈ (g′B)∩C = g′(B ∩C) whenever g′

∈ C. Furthermore,
∑

gb−1∈c′(B∩C) rg = 0, c′ 6∈ B ∩ C or
∑

gb−1∈c′(B∩C) rg =

1, c′ ∈ B ∩ C, for every c′ ∈ C, i.e., equivalently, x lies in the set (A ∩
C)S(LC;B ∩ C), thus showing the wanted inclusion.

The converse part that the left hand-side contains the right hand-side is
trivial. So, the intersection dependence is verified.

We continue with an interesting and, in some special cases, well-known
for the specialist formula. Nevertheless, for the sake of completeness and for
the convenience of the reader, we shall give a detailed proof because there
is no such a proof in the literature yet.

Claim. Given A ≤ Gp. Then, for each ordinal α, the following formula
is fulfilled

Spα
(RG; A) = S(Rpα

Gpα
;Apα

).

Proof. It is not difficult to observe that it is enough to consider only
the case for limit ordinals α since the remaining one is easy. And so, it
is elementarily to see that the left hand-side contains the right hand-side.
Conversely, take an arbitrary element from the left hand-side. Hence, x ∈

∩β<αSpβ
(RG;A) = ∩β<αS(Rpβ

Gpβ
;Apβ

) by using the induction hypothesis.
Therefore, x =

∑
g∈Gpβ rgg =

∑
a∈Gpγ faa = . . ., where rg ∈ R so that

∑
g∈g′Apβ rg = 0, g′ 6∈ Apβ

or
∑

g∈g′Apβ rg = 1, g′ ∈ Apβ
, for each g′ ∈ Gpβ

,

and fa ∈ R so that
∑

a∈a′Apγ rg = 0, a′ 6∈ Apγ
or

∑
a∈a′Apγ rg = 1, a′ ∈ Apγ

,
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for each a′ ∈ Gpγ
; β < γ ≤ α are arbitrary ordinal numbers. The canonical

forms yield that rg = fa and g = a. On the other hand,

∑

g∈g′Apα

rg = 0, g′ 6∈ Apα

= ∩β<αApβ

or

∑

g∈g′Apα

rg = 1, g′ ∈ Apα

= ∩β<αApβ

for each g′ ∈ Gpα
= ∩β<αGpβ

that immediately ensures the desired equality.
In fact, we foremost consider all elements g from the support of

∑
g∈Gpβ rgg

that belongs to g′Apβ
for any g′ ∈ Gpβ

. Clearly g′ ∈ Gpγ
. Moreover,

g′gβ = aγ for some gβ ∈ Apβ
; aγ ∈ Gpγ

, g′′g′β = a′γ ∈ aγApγ
for some g′′

∈ Gpβ
, and g′β ∈ Apβ

. Hence g′g′′−1gβg′β
−1 ∈ Apγ

. But faγ + fa′
γ

= 0, i.e.,

rg′gβ
+rg′′g′

β
= 0, and so rg′gβ

g′gβ +rg′′g′
β
g′′g′β = rg′gβ

g′gβ(1−g′−1g′′g−1
β g′β) ∈

I(Rpγ
Gpγ

;Apγ
). By the same token, we obtain similar relations for the

other members of this type, as well. Consequently, by what we have shown
above, we conclude that the element

∑
g∈Gpβ rgg belongs to S(Rpγ

Gpγ
;Apγ

)

because its group members lie in Gpγ
or in g′Apγ

for some g′ ∈ Gpγ
.

Further, because we have finite sums of elements and an infinite intersec-
tion since α ≥ ω, we may without loss of generality presume that such equal-

ities will exist for infinitely many ordinals β. Thus, g ∈ ∩β<αGpβ
= Gpα

and more especially there are elements of the kind gdα where dα ∈ Apα
=

∩β<αApβ
and sums of coefficients rg + rgdα

= 0. These ratios substantiate
our identity, and we are done. The proof is finished.

Remark. It is worthwhile noticing that the same claim is also valid for
the ideal I(RG;A) even when A is not p-primary.

Moreover, by virtue of similar technique, the more general formulae are
true, namely:

If {Ri}i∈I , {Gi}i∈I and {Ai}i∈I ≤ {Gi}i∈I are infinite decreasing se-
quences of unitary commutative rings, groups and subgroups respectively,
then ∩i∈II(RiGi;Ai) = I((∩∈IRi)(∩i∈IGi);∩i∈IAi).

For arbitrary chains this intersection equality is wrong, even for the finite
case, as the following example shows: I(RG;A)∩ I(RG;B) ⊃ I(RG;A∩B)
since (1−a)(1−b) ∈ [I(RG;A)∩I(RG;B)]\I(RG;A∩B) whenever a ∈ A\B
and b ∈ B \ A.

As a direct efficacious corollary we have the following.

Corollary. The p-torsion group A is, ever, isotype in S(RG;A).

4
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COMMUTATIVE GROUP ALGEBRAS OF ABELIAN GROUPS 183

Proof. Exploiting the last formula, we elementarily deduce that A ∩
Spα

(RG;A) = A ∩ S(Rpα
Gpα

;Apα
) = Apα

, as required. The proof is com-
plete.

The following is crucial.

Proposition. Suppose that B ≤ A ≤ Gp and that F is perfect. Then
(a) AS(FG;B) is isotype in S(FG;A) if B is isotype in Gp. In particular,

A is an isotype subgroup of S(FG;A);
(b) AS(FG;B) is nice in S(FG;A) if A is isotype in Gp. In particular,

A is a nice subgroup of S(FG;A) when A is isotype in Gp;
(c) AS(FG;B) is balanced in S(FG;A) if B and A are both isotype in

Gp. In particular, A is a balanced subgroup of S(FG;A) when A is isotype
in Gp.

Proof. (a) Let z ∈ [AS(FG;B)] ∩ [S(FG;A)]p
α

for any ordinal α and
write z = au, where a ∈ A and u ∈ S(FG;B). Then the Claim applies
to show that au ∈ [S(FG;A)]p

α
= S(FGpα

;Apα
) ⊆ S(FG;Apα

B). There-
fore, a ∈ S(FG;Apα

B) and so, a ∈ A ∩ S(FG;Apα
B) = Apα

B. Hence,
owing to the Lemma, the Claim plus the modular law, we compute that
z ∈ [Apα

S(FG;B)] ∩ S(FGpα
;Apα

) = Apα
[S(FG;B) ∩ S(FGpα

;Apα
)] ⊆

Apα
[S(FG;B) ∩ S(FGpα

)] = Apα
S(FGpα

;B ∩ Gpα
) = Apα

S(FGpα
;Bpα

) =
Apα

[S(FG;B)]p
α
⊆ [AS(FG;B)]p

α
, which verifies our assertion.

(b) Because A is isotype in Gp, by conforming with the Intersection
Lemma in [7] or the Lemma alluded to above, we obtain that

S(FG;A) ∩ Spα

(FG) = S(FG;A) ∩ S(F pα

Gpα

) = S(F pα

Gpα

;A ∩ Gpα

)

= S(F pα

Gpα

;Apα

) ⊆ Spα

(FG;A),

i.e., in other words, S(FG;A) is isotype in S(FG). Thus all heights will be
calculated in S(FG) and Gp, respectively. After this, referring to ([15], p.
91, Lemma 79.2) together with the Claim, it suffices to establish for the nice-
ness only that ∩τ<α[AS(FG;B)S(FGpτ

;Apτ
)] = AS(FG;B)S(FGpα

;Apα
)

for each limit ordinal α. To this goal, we choose an arbitrary element x from

the left hand-side. Hence x = a(1+
∑

i,j ri,jgi,j(1− bi)).(1+
∑

i,j fi,jg
(τ)
i,j (1−

a
(τ)
i )) = a′(1 +

∑
i,j r′i,jg

′
i,j(1 − b′i)).(1 +

∑
i,j f ′

i,jg
(β)
i,j (1 − a

(β)
i ) = . . ., where

a, a′ ∈ A; ri,j , fi,j, r
′
i,j, f

′
i,j ∈ F ; gi,j , g

′
i,j ∈ G; bi, b

′
i ∈ B; g

(τ)
i,j ∈ Gpτ

, a
(τ)
i ∈

Apτ
; g

(β)
i,j ∈ Gpβ

, a
(β)
i ∈ Apβ

for some arbitrary β with τ < β < α. So,

we can write 1 +
∑

i,j fi,jg
(τ)
i,j (1 − a

(τ)
i ) = a′′(1 +

∑
i,j r′′i,jg

′′
i,j(1 − b′′i )).(1 +

∑
i,j f ′

i,jg
(β)
i,j (1 − a

(β)
i )), where a′′ ∈ A, r′′i,j ∈ F, g′′i,j ∈ G, b′′i ∈ B. Fur-

thermore, this equality assures that g
(τ)
i,j = a′′g′′i,j.g

(β)
i,j b′′i a

(β)
i and g

(τ)
i,j a

(τ)
i =

a′′h′′
i,j.h

(β)
i,j c′′i c

(β)
i , where h′′

i,j ∈ G, c′′i ∈ B,h
(β)
i,j ∈ Gpβ

and c
(β)
i ∈ Apβ

, etc. for

5
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all indexes i and j. Thus a
(τ)
i ∈ gBGpβ

for some g ∈ G. Moreover, we can
have eventually some other additional possibilities, namely:

- if u
(τ)
ij = a′′g′′ijb

′′
i g

(β)
ij , then g

(τ)
ij u

(τ)−1

ij = a
(β)
i ∈ Apβ

;

- if v
(τ)
ij = a′′g′′ijg

(β)
ij a

(β)
i , then g

(τ)
ij v

(τ)−1

ij = b′′i ∈ B;

- if w
(τ)
ij = a′′g′′ijg

(β)
ij , then g

(τ)
ij w

(τ)−1

ij ∈ BApβ
;

- if g′′ij ∈ h′′
ijBGpβ

, then a
(τ)
i ∈ (BGpβ

) ∩ A = BApβ
. In particular, when

g′′ijb
′′
i ∈ h′′

ijc
′′
i G

pβ
, a

(τ)
i ∈ Apβ

;

- if g
−(τ)
ij = a′′g−′′

ij b−′′
i g

−(β)
ij a

−(β)
ij so that g′′ijb

′′
i ∈ g−′′

ij b−′′
i Gpβ

, then

g
(τ)
ij g

−(τ)−1

ij ∈ Gpβ
;

- if e
(τ)
ij = a′′b′′i a

(β)
i and d

(τ)
ij = a′′b′′i g

(β)
ij a

(β)
i , then

a′′e
(τ)−1

ij ∈ BApβ
and d

(τ)
ij e

(τ)−1

ij ∈ Gpβ
.

And so, as it is not difficult to be seen, 1 +
∑

i,j fi,jg
(τ)
i,j (1 − a

(τ)
i ) may be

written as a finite sum of elements of the types gβ(1 − aβb) and g(1 − aβ)

with coefficients from F , where gβ ∈ Gpβ
, aβ ∈ Apβ

, b ∈ B and g ∈ G. But
1 − aβb = 1 − aβ + (1 − b)aβ , and g(1 − aβ) = 1 − aβ + (g − 1)(1 − aβ).

We will combine only those members of the sum which belong to 1 +

I(FGpβ
;Apβ

). Furthermore, 1 +
∑

i,j fi,jg
(τ)
i,j (1 − a

(τ)
i ) = ayz, where a ∈

A, y ∈ S(FG;B) and z ∈ S(FGpβ
;Apβ) = Spβ

(FG;A) such that y and z

are functions of g
(τ)
i,j and a

(τ)
i , that is they may exclusively be written by

these group elements.
Since we have finite sums of elements, the relationships between the group

members are a finite number, while the equalities are infinite because the
intersection is infinite taking into account that α ≥ ω. Therefore, we can
assume that the above presented dependencies between the elements from
the group basis are valid infinitely many times, i.e. for almost all ordinals
β. Thus, repeating the same procedure for each of these ordinal numbers β,

we have z ∈ ∩β<αSpβ
(FG;A) = Spα

(FG;A) and we are done.

Finally, we infer that 1+
∑

i,j fi,jg
(τ)
i,j (1−a

(τ)
i ) ∈ S(FGpβ

;Apβ
) for all but

a finite number of ordinals β, or that 1+
∑

i,j fi,jg
(τ)
i,j (1−a

(τ)
i ) ∈ AS(FG;B).

That is why, by what we have just argued,

x ∈[AS(FG;B)][∩τ<αS(FGpτ

;Apτ

)]

= AS(FG;B)S(FGpα

;Apα

) = AS(FG;B)Spα

(FG;A),

as desired. The claim is proved.
(c) Follows immediately combining points (a) and (b).
The proof of the Proposition is completed.

6
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Remark. This Proposition is stronger than Lemmas 4 and 5 used by May
in [28].

Question. Whether the assertion in (b) is true even when A is not
isotype in Gp?

Without any reference we shall freely use in the sequel the simple facts
that height(g) = height(g−1) for every g ∈ G, and that if 1 6= v ∈ V (FG;C)∩
V (FG) = [1+I(FG;C)]∩V (FG) for any subgroup C of G then there exists
1 6= c ∈ C so that heightV (FG)(v) ≤ heightG(c).

We are now ready to proceed by proving the following auxiliary techni-
cality.

Proposition Structure. Suppose A is a countable isotype p-subgroup of
the abelian group G and C is a subgroup of A. Then S(FG; A)/AS(FG; C)
is totally projective, provided F is a perfect field of characteristic p.

Proof. We write down A = ∪n<ωAn, where An ⊆ An+1 and all An

are finite groups. By utilizing (b) and its proof, S(FG;A) is an isotype
subgroup of S(FG), whence all heights will be computed in the whole group
S(FG). Moreover, the subgroup AS(FG;C) is nice in S(FG;A), hence
S(FG;A)/AS(FG;C) is a group of countable length since length(A) < ω1

and so S(FG;A) is with such length by employing the Claim.

After this, we construct the subgroups Sn = 〈x(n) = f
(n)
1 g

(n)
1 + f

(n)
2 g

(n)
2 +

. . . + f
(n)
sn g

(n)
sn ∈ S(FG;An)|f

(n)
1 , f

(n)
2 , . . . , f

(n)
sn ∈ F with f

(n)
1 + f

(n)
2 + . . . +

f
(n)
sn = 1; g

(n)
1 , g

(n)
2 , . . . , g

(n)
sn ∈ G〉 such that for all possible finite products be-

tween the degrees of group members: heightG(g
(n)±εi

i g
(n)±ξj

j . · · · .g
(n)±ηk

k ) ∈

M = {0, 1, . . . , n} ∪ {the height spectrum of An} ∪ {≥ length(A)} whenever

0 ≤ εi, ξj , . . . , ηk < min(order(x(n)), order(g
(n)
i ), order(g

(n)
j ), . . . ,

order (g
(n)
k )); 1 ≤ i ≤ sn ∈ N. Clearly, Sn are correctly defined generating

subgroups because the height conditions are really satisfied, An ⊆ Sn ⊆ Sn+1

and S(FG;A) = ∪n<ωSn = ∪n<ωS(FG;An).
We will show now that all Sn are height-finite in S(FG). Indeed, every

element from Sn is of the form x
(n)ε1

1 . · · · .x
(n)εt

t , where x
(n)
1 , . . . , x

(n)
t are gen-

erating elements and 0 ≤ εi ≤ order (x
(n)
i ); 1 ≤ i ≤ t ∈ N. By construction,

we see that x
(n)εi

i has height as computed in S(FG) that belongs to M for

all indices i. It is also worthwhile noticing that if g
(n)
1 ∈ Gpτ

, . . . , g
(n)
sn ∈ Gpτ

,

then x(n) ∈ S(FGpτ
)∩S(FG;A) = Spτ

(FG)∩S(FG;A) = Spτ
(FG;A) = 1,

whenever τ = length(A). Further, if 1 6= x
(n)ε1

1 . · · · .x
(n)εt

t , then this product
as an element of S(FG;An) possesses height less than or equal to the height
of some an ∈ An. That is why, we presume that in the canonical form of

7
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x
(n)ε1

1 . · · · .x
(n)εt

t all elements of An have infinite heights; otherwise we are
done.

Besides, we can assume that t = 2 and that ε1 = ε2 = 1, since the general
case follows by making use of the same arguments presented below.

Next, write x
(n)
1 = f

(1n)
1 g

(1n)
1 + f

(1n)
2 g

(1n)
2 + . . . + f

(1n)
s g

(1n)
s and x

(n)
2 =

r
(2n)
1 a

(2n)
1 +r

(2n)
2 a

(2n)
2 +. . .+r

(2n)
s a

(2n)
s , hence x

(n)
1 x

(n)
2 = f

(1n)
1 r

(2n)
1 g

(1n)
1 a

(2n)
1 +

. . .+f
(1n)
1 r

(2n)
s g

(1n)
1 a

(2n)
s +. . .+f

(1n)
s r

(2n)
1 g

(1n)
s a

(2n)
1 +. . .+f

(1n)
s r

(2n)
s g

(1n)
s a

(2n)
s .

We note that there are no zero divisors in the coefficient field F , i.e.

f
(1n)
i r

(2n)
j 6= 0 for 1 ≤ i, j ≤ s ∈ N.

On the other hand, it is a routine matter to check that the following can be

realized: In the canonical form of x
(n)
1 and x

(n)
2 must exist elements from An

with nonzero coefficients, say for instance g
(1n)
1 ∈ An and a

(2n)
1 ∈ An. The

same is also true for the canonical form of the product x
(n)
1 x

(n)
2 . Henceforth,

with no loss of generality, we may assume in this situation that g
(1n)
1 a

(2n)
1 ∈

An. Consider now the member g
(1n)
1 a

(2n)
s ; we shall further estimate its

height. In fact, if height(g
(1n)
1 a

(2n)
s ) ≥ height(g

(1n)
1 a

(2n)
1 ), we are done. In the

remaining case when height(g
(1n)
1 a

(2n)
s ) < height(g

(1n)
1 a

(2n)
1 ), we derive that

height(g
(1n)
1 a

(2n)
s ) = height(g

(1n)
1 a

(2n)
s .g

(1n)−1

1 a
(2n)−1

1 ) = height(a
(2n)
s .a

(2n)−1

1 ).

By the same token, we obtain that height(g
(1n)
s a

(2n)
1 ) ≥ height(g

(1n)
1 a

(2n)
1 ) or

height(g
(1n)
s a

(2n)
1 ) = height(g

(1n)
s .g

(1n)−1

1 ), and height(g
(1n)
s a

(2n)
s ) ≥

height(g
(1n)
1 a

(2n)
s ) or height(g

(1n)
s a

(2n)
s ) = height(g

(1n)
s .g

(1n)−1

1 ). The difficulty

is when height(g
(1n)
1 a

(2n)
s ) < height(g

(1n)
s a

(2n)
s ) < height(g

(1n)
1 a

(2n)
1 ), where

g
(1n)
1 a

(2n)
s and g

(1n)
s a

(2n)
1 have zero coefficients and g

(1n)
s a

(2n)
s has nonzero co-

efficient in the support of x
(n)
1 x

(n)
2 . Without harm of generality, let

g
(1n)
1 a

(2n)
s = g

(1n)
s a

(2n)
1 with f

(1n)
1 r

(2n)
s + f

(1n)
s r

(2n)
1 = 0, since we can replace

the indices. Therefore, height(g
(1n)
s a

(2n)
s ) = height (g

(1n)
s g

(1n)−1

1 a
(2n)
s a

(2n)−1

1 )

= height((g
(1n)
s .g

(1n)−1

1 )2), and etc. for all other analogous variants. Indeed,

if g
(1n)
1 a

(2n)
s 6= g

(1n)
s a

(2n)
1 , then g

(1n)
1 a

(2n)
s and g

(1n)
s a

(2n)
1 are equal to some

products of group elements from the support of x
(n)
1 x

(n)
2 . Thus, it is not

hard to be seen that (we omit the details because of technical difficulties and

leave them to the reader) we can obtain the explicit kind for g
(1n)
s a

(2n)
s such

that either height(g
(1n)
s a

(2n)
s ) ≥ min[height(g

(1n)
t a

(2n)
1 ),height(g

(1n)
1 a

(2n)
t )] for

some 1 ≤ t ≤ s for which at least one of g
(1n)
t a

(2n)
1 and g

(1n)
1 a

(2n)
t lies in the

support, or height(g
(1n)
s a

(2n)
s ) = height(d) for some element d ∈ G that is a

multiplication of g
(1n)
i ’s or of a

(2n)
i ’s for 1 ≤ i ≤ s, or height(g

(1n)
s a

(2n)
s ) ≥

8
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height(cn) for some cn ∈ An. Hence, height(g
(1n)
s a

(2n)
s ) ≥ δ ∈ M . We

may obtain similar inequalities for the other members from the canonical

sum of x
(n)
1 x

(n)
2 as well. Finally, taking into account that height(x

(n)
1 x

(n)
2 ) =

min{height(g
(1n)
1 a

(2n)
1 ), . . . , height(g

(1n)
1 a

(2n)
s ), . . . , height(g

(1n)
s a

(2n)
1 ), . . . ,

height(g
(1n)
s a

(2n)
s )}, where, of course, these elements eventually have nonzero

coefficients in the canonical form of x
(n)
1 x

(n)
2 , we argue the claim that we pur-

sue. So, employing the Hill-Ullery necessary and sufficient condition for total
projectivity in [20], we detect that S(FG;A) is therefore totally projective.

After this, an appeal to the Proposition and more especially to the half
on niceness leads us to the fact that height(vnAS(FG;C)) = height(vnawn)
for every vn ∈ Sn and some a ∈ A and wn ∈ S(FG;C). Apparently
height(vn) ≤ height(vnAS(FG;C)) and hence height(awn) ≥ height(vn);
otherwise height(vn) ≤ height(awn) < height(vn) which is a contradiction.
Furthermore, let height(awn) = height(vn) since in the remaining case
height(vnAS(FG;C)) = height(vn) and, by what we have already shown,
there is nothing to prove. It is self-evident that height(vnawn) ≥ height(vn).
Write wn = r1c1 + . . . + rkck whence awn = r1ac1 + . . . + rkack. Besides,
there exists a member of the canonical sum of awn, say ac1, such that
height(ac1) ∈ M . Next, we shall study the product vnawn. First, we write
vn = α1d1 + . . . + αkdk. Thus vnawn = (α1d1 + . . . + αkdk).(r1ac1 + . . . +
rkack) =

∑
i

∑
j αirjdiaci. What we need to have is the canonical form

of this element and to evaluate its height. First of all, we observe that
αirj 6= 0 because the field possesses no zero divisors. Next, since vn ∈ Sn,
we shall presume that d1 lies in An ⊆ A ∩ Sn. Thereby, according to the
form of vnAS(FG;C), we may assume also that d1 = 1. Consequently,
vnawn = α1r1ac1 + . . . + α1rkack + . . . + αkr1dkac1 + . . . + αkrkdkack. In
the case when ac1 has a nonzero coefficient in the canonical form of vnawn,
we are done. But it is of a real possibility some relation between the group
members of the last sum to exist such that ac1 to be with zero coefficient
in the final canonical record. In this situation, bearing in mind that some
of d2, . . . , dk has height in M , specifically this with minimal height, and
that a ∈ Ar for some natural number r, and adapting the same technology
as to the above presented, we can compute that the heights height(dkac1)
etc. lie in M , whenever the elements dkac1, . . . have nonzero support.
By the same token, we may successfully estimate the other heights of el-
ements with nonzero coefficients, i.e. those which belong to the support
of vnawn. We consequently can deduce that height(vnawn) ∈ M , hence
SnAS(FG;C)/AS(FG;C) are subgroups of S(FG;A)/AS(FG;C) with fi-
nite height spectrum, as expected. Finally, since S(FG;A)/AS(FG;C) =
∪n<ω[SnAS(FG;C)/AS(FG;C)], we can apply again the aforementioned

9
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Hill-Ullery’s criterion for total projectivity in [20] to finish the proof in gen-
eral after all.

Remark. The last proposition supersedes [28, Lemma 6].

Now, we have at our disposal all the information necessary for proving
the central Theorem. We shall develop the idea of May materialized in [28].

Proof of the Theorem. Owing to the hypothesis from the formulation,
we write down Gp = ∪α<ω1

Gα, where G0 = 1, Gα ⊆ Gα+1, |Gα| ≤ ℵ0 and
for every limit ordinal β < ω1 it is true that Gβ = ∪α<βGα, i.e., in other
words, the union is smooth. Moreover, in accordance with ([15], p. 98,
Exercise 5), all Gα may be chosen to be isotype in Gp. Invoking to the
Structure Proposition, S(FG;Gα+1)/Gα+1S(FG;Gα) is a totally projec-
tive factor-group. On the other hand, point (c) gives that Gα+1S(FG;Gα)
is balanced in S(FG;Gα+1). Therefore, as is well-known (see [15]), we
may write S(FG;Gα+1) = (Gα+1S(FG;Gα)) × Tα, for some totally pro-
jective p-group Tα. Next, we shall prove via ordinary transfinite induc-
tion that S(FG;Gα) = Gα × (

∐
β<α Tβ) for each ordinal α. In fact, in

[11] we have proved that S(FG;G1) = G1 × T0 for some p-torsion totally
projective p-group T0. Consider now the group S(FG;Gα+1). Using the
foregoing interpolation formula and the induction hypothesis, we yield that
S(FG;Gα+1) = [Gα+1(Gα × (

∐
β<α Tβ))] × Tα = [Gα+1 × (

∐
β<α Tβ)] ×

Tα = Gα+1 × (
∐

β≤α Tβ) = Gα+1 × (
∐

β<α+1 Tβ) since Gα+1 ∩ (
∐

β<α Tβ) =

Gα+1 ∩S(FG;Gα)∩ (
∐

β<α Tβ) = Gα ∩ (
∐

β<α Tβ) = 1. This completes the
induction after all. Further, our approach exploits routine set-theoretical
arguments, namely both the obtained decomposition and the Main Lemma
in [3] insure that

S(FG) = S(FG;Gp) = S(FG;∪α<ω1
Gα)

= ∪α<ω1
S(FG;Gα) = ∪α<ω1

[Gα × (
∐

β<α

Tβ)]

= [∪α<ω1
Gα] × [∪α<ω1

(
∐

β<α

Tβ)] = Gp × (
∐

β<ω1

Tβ),

where the complementary group is totally projective, as well. The proof is
finished.

We continue with checking of the validity of the corollaries.

Proof of the first Corollary. Because length(S(FG)) = length(Gp) ≤
ω1 (for instance, cf. [15]), we will employ the Direct Factor Theorem to
extract that S(FG) ∼= Gp ×S(FG)/Gp, where S(FG)/Gp is a direct sum of
countable groups. Consequently, the statement holds invoking to [15]. The
proof is completed.
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Proof of the second Corollary. Since length(S(FG)) = length(Gp) ≤ ω1

(see, for example, [15]), we apply the Direct Factor Theorem to obtain
S(FG) ∼= Gp × S(FG)/Gp, where S(FG)/Gp is a direct sum of countable
groups. Therefore, the assertion follows directly in virtue of [15]. The proof
is finished.

We shall describe now the more general configuration by formulating of
the so-called isotype tower of abelian groups. So, we can give

Definition. We shall say that {G}α<λ is an isotype tower (or, in other
words, an isotype family) of abelian groups which form the abelian group
G if G = ∪α<λGα, Gα ⊆ Gα+1, Gα = ∪β<αGβ , whenever α is limit, and all
groups Gα are isotype in G such that |Gα| < |G|. It is worth noting that
every uncountable abelian group has a pure tower (see [17]).

And so, adopting the proof of our central Theorem for the direct fac-
tor, we may pose the following scheme of proof of the Generalized Direct
Factor Problem for mixed abelian groups with uncountable cardinality (for
countable groups everything was made in [30], [20], [7]), namely:

If for any isotype subgroup A ≤ (Gα)p with |Gα| < |G| is fulfilled that
S(FGα)/(Gα)pS(FGα;A) is totally projective, then the same is true for
S(FG)/Gp. Thus the Direct Factor Problem holds for all abelian p-mixed
groups which have an isotype tower.

Notice that a reformulation of the Direct Factor Problem in terms of
σ-summable groups was made in [18] (see [3] and [10] as well).

As an application of our group attainment, listed above, we state

ISOMORPHISM THEOREMS

We begin with proofs of the applied results.

Theorem 1. Let G be a p-mixed abelian group for which Gp has cardinal-
ity at most ℵ1 and length at most ω1, and let F be a field with characteristic
p. Then FH ∼= FG as F-algebras for arbitrary group H implies that there is
a totally projective p-group T with the property H × T ∼= G × T.

Proof. Referring to [24], we deduce |Hp| ≤ ℵ1. Therefore, our Direct
Factor Theorem does imply that G × V (FG)/G ∼= V (FG) ∼= V (FH) ∼=
H × V (FH)/H, where V (FG)/G and V (FH)/H are both totally pro-
jective p-groups. Choosing a totally projective p-group T with cardinal
Ulm-Kaplansky functions more than the maximal of the Ulm-Kaplansky in-
variants of V (FG)/G and V (FH)/H, we find that T × V (FG)/G ∼= T ∼=
T × V (FH)/H. Finally, it is easy to see that G × T ∼= H × T , and so we
are done.

The following theorem partly resolves a problem of May from [27] (see
[3], [4], [7] and [11] too).
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Theorem 2. Assume that G is an abelian group so that Gp is with
cardinality not exceeding ℵ1 a coproduct of countable groups. Then the F-
isomorphism FH ∼= FG for some group H yields H p

∼= Gp. In particular, H
∼= G , provided G is p-mixed of torsion-free rank one.

Proof. By making use of [24], we derive |Hp| ≤ ℵ1. So, our Direct
Factor Theorem guarantees that Gp × S(FG)/Gp

∼= S(FG) ∼= S(FH) ∼=
Hp × S(FH)/Hp, where S(FG)/Gp is totally projective. Thus S(FG) is
totally projective and Hp as its direct factor is one also (see [15] too). But,
according to [25], the Ulm-Kaplansky invariants of Gp and Hp are equal.
Hence, Gp

∼= Hp. After this, we can apply our algorithm developed in [6]
together with a theorem of Megibben-Wallace (see, for example, [15] or [31])
to conclude that G and H must be isomorphic. The proof is completed.

The following theorem refines the main result in [5] and answers a question
due to W. May [26].

Theorem 3. Suppose that G is an abelian group such that Gp is with
cardinality ℵ1 a coproduct of torsion complete groups and F p is the simple
field of char(F p) = p. Then for any group H the F p–isomorphism F pH ∼=
F pG does imply that H p

∼= Gp. In particular, H ∼= G, when G is p-mixed
of torsion-free rank one and Gp is torsion complete of power ℵ1.

Proof. In the sense of an affirmation due to Beers-Richman-Walker [1],
it is sufficient to show only that Hp is a coproduct of torsion complete
groups. In this direction, as we have observed above, Gp × S(FpG)/Gp

∼=
S(FpG) ∼= S(FpH) ∼= Hp×S(FpH)/Hp, where S(FpG)/Gp is totally projec-
tive. Besides, Gp being separable ensures that S(FpG) is separable whence
the same holds for S(FpG)/Gp as ”a subgroup”. That is why, S(FpG)/Gp

is a coproduct of cyclic groups. Furthermore, Hp as being a direct factor of
a coproduct of torsion complete groups is with the same property (see cf.
[15]), as required. After this, we may apply the method developed by us in
[6] along with a result of Megibben (e.g., cf. [15]) to infer that G and H are
isomorphic. The proof is finished.

Theorem 4. Let G be a coproduct of p-local algebraically compact groups
whose Gp has cardinality at most ℵ1 and F p be the finite field with char(F p)
= p. Then F pH ∼= F pG as F p–algebras for some group H if and only if H
∼= G.

Proof. As we have just shown above, G × V (FpG)/G ∼= V (FpG) ∼=
V (FpH) ∼= H×V (FpH)/H, where V (FpG)/G is a totally projective p-group.
Because of the separability of Gp, we yield that V (FpG)/G ∼= S(FpG)/Gp

is also separable and so it is a coproduct of cyclic groups. Consequently, H
as a direct factor of a coproduct of p-local algebraically compact groups is
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one also (for instance, see [15]). Therefore, invoking to a result of Beers-
Richman-Walker [1], we derive that G and H are isomorphic groups. The
proof is completed.

The following isomorphism affirmation improves the corresponding one in
[9].

Theorem 5. Suppose G is a p-local algebraically compact group such that
Gp is of power not exceeding ℵ1. Then FH ∼= FG as F-algebras for arbitrary
group H if and only if H ∼= G.

Proof. First, we exploit [24] to conclude that |Hp| ≤ ℵ1. After this,
because length(Gp) = length(Hp) ≤ ω, the main Direct Factor Theorem
implies that G × V (FG)/G ∼= V (FG) ∼= V (FH) ∼= H × V (FH)/H, where
V (FG)/G is a coproduct of cyclic p-groups. Adapting the technique de-
scribed in [15], we are in a position to write H = A× C, where A is p-local
algebraically compact and C is a coproduct of p-primary cyclic groups. Con-
sequently, we can employ the scheme for a proof developed by us in [9] to
conclude that G and H are isomorphic. The proof is finished.
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