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1. Introduction. For a compact S'-manifold M and S'-vector bun-
dles E, F over M, the S'-index of an S'-elliptic operator D: I'(E) — I'(F)
is defined by (see [3])

ind D = [Ker D] — [Coker D] € R(S")
Note that we can decompose it into a finite sum
indD =% a,L"

where L™ denotes the representation of S! on C sending €' to "¢ and
an € Z. We call the operator D rigid if a, = 0 for all n # 0. Rigidity
theorems of S'-index are obtained in [4],[6],[7].

In [4, Proposition 12.2], the rigidity of r,(M;E'(V/T)) (see §2) is
stated and the proof is left for the readers. In this paper we give the proof
of this proposition. The construction of this paper is as follows. In §2
we give the precise statement of the rigidity theorem, in §3 we show that
7,(M; E'(V/T)) can be considered as a meromorphic section of a flat line
bundle over a torus, finally in §4 we show that it has no poles.

2. Statement of the theorem. Let G be a compact Lie group,
X a G space and EG the total space of the universal G bundle. Denote
X x EG/G by X¢g where the quotient is taken relative to the product
action. The equivariant cohomology H(X; R) is defined by

HiH(X;R)= H*(Xg; R)

where R is a commutative ring with unit. For a G vector bundle V over
X, Ve (= V x EG/G) is a vector bundle over X so that the characteristic
classes of Vg are well defined in H3(X).

For each 1 < k < oc, consider Z (= Z/kZ) C S! where Zo, = S!. We
have natural maps

a(Sl;Zk) P Xg, — Xan
199
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which induces
a(8§YZ)* s Hy — Hg,.
Note that if Z; acts trivially on X, then Xz, = X X BZ; and there is

a map
T: Xg, — X

which induces
7 H'(X)— Hyg (X).

Let M be a smooth oriented compact manifold, T its tangent bundle and
V' a real oriented vector bundle over M. Then we define the formal series

in g,
0 n o0 o0
R(T)= Y Rig2 =@ A 1T @ SnT
n=1 n=0 9 2 mqm=1
, _ o0 o0 -1
E\V/IT) = (n% A 1V) (n@l A \T)
where

Sa(V) = ¥ a*Se(Ve), and (V) = 2 a“A¢(Ve)

and Sé, Aé denote symmetric and exterior powers over C, Vo =V @ C.
Recall that the S'-index of an S!-elliptic operator D can be specialized
to individual elements of S!. For A € §! we can define

indyD = trace(A|kerp) — trace(A|cokerD)-

We can state the theorem.

Theorem ([4, Proposition 12.1]). Let M be a smooth oriented com-
pact spin manifold of even dimension, on which §' acts by isometry, and
V an even dimensional real oriented vector bundle over M with a compat-
ible S action and wy(V) = 0. For each 1 < k < oo, let i: My — M be
the inclusion of the fized point set of Z C §' = S in M and so i induces
is:(My)s — Ms. Assume the following two conditions are satisfied.

(i) a(S";Zx)* o i?‘fz(Vs —Ts) =0 € H (M};Zs) .

(i) a(S';Zk)" o is §p1(Vs —Ts)=71*0a(S';Z) oi §p1(V5 -Ts) €
H;k(ﬂlk;Z)
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Then
T(M;E') = ind(§ ® Ry(T) ® E(V/T))

is rigid, where J: I'(AY) — I'(A™) is the Dirac operator (see [5]) on spin
bundle A = &Y @ AN~ over M.

Remark. Note that wy(Vs — Ts) =0, p1(Vs — Ts)/2 = 0 imply (i)
and (ii).

3. 7,(M;E') and meromorphic sections. First, we define a torus
and a flat line bundle. For 7 € H = {upper half plane} C C, we set

T, =C/ZxTZ
and define the flat line bundle L over T; by

LL=CxC/zxzZ-T,
where Z X Z acts on € x C by sending (k,[) € Zx Z and (z,v) € Cx C to
(z 4k + 1.7, (1)),

We consider special sections of L!. For this purpose, we introduce a
function 7,. For 7 € H and z € C, we define

0 1 L
mr(2) = 11 (1+¢"¢72A)(1 + %7227

where q = €2™7, q1/2 = ¢™7 and A = €?™*. Since 7 € H,0 < |q| < 1, and
so 7, converges for all z € C. Let F be a complex vector bundle over a
space X. Then define

ﬁf(E)(Z) = n@] (‘4Aq"_%E ® A)‘_]qn—-%E*)

which is a formal power series in ¢/2 whose coefficients are vector bundles
® finite Laurent series in A = €22, If E is a line bundle

EN) = & W) s log B

where 7,(%) = (a%)kﬂr and therefore, by the splitting principle, we can
consider 7(E) as an element of K (X)®z{meromorphic functions over C}
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for general F. Similarly we define

1 1 "
(E)2) SATALE)T @ (4, 0 yE® A, o yE)
® (S1gmE® Sy-14m E7)

where A1/2 = ¢™2 for z € C. Then we can view X, (E) € K(X) ®z
{meromorphic sections over Ty of (L’)3™<E} (see [4, §12]).

We want to use the fixed point formula (see [1],(2]), therefore we con-
sider the fixed point set of S action. Let P be a connected component of
the S!-fixed point set. We decompose the tangent bundle into

(3.1) Tlp=TP& @ E!
1

where Ezu is the underlying real bundle of a complex bundle F; — P, on
which S? acts by A = A™ for some integer m; and |m;| # |m;| if i # J.
We write

Np=@EL
Similarly

Vip=Vh& @ F!

where S? acts trivially on V5 and by A — A% on F;.

Lemma 3.1.

(M ENA) = ¥ up(A)
{P}:51-fixed

point sets

#p(A)

iV 1y (Fi
=7 (Pdewp;@’uﬁmazf(&)(z) ® E\(Vh/TP)® ity (F3)

- z) (1
®i"/)m,'7]'r(Ei)( ))( )
where for a complez line bundle L over a manifold X and a formal power
series in q E, with coefficients in K(X), we define

(X1i Eg)(A) = ind\(ds ® A(TX; L)™' ® RY(TX)® E,)

where A(TX; L) is a Sping-bundle defined by L and ds is the signature
operator. And v,, denotes the operation of raising A to the m-th power.
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Proof. By the fixed point formula, we can show the idenity (see [4,

(12.11)])
ind\ (9@ R)) = 2 il Paee e ® Yim Xr(E0)(2))

Now 7,(M; E')(A) = ind \(#® Ry ® E') by definition, therefore we have
only to show

®it 71 (Fi)(2)
ch(E'|p) = ch(E’ Vp/TP) @ ——=—
(E'lP) = eh( E(VEITP) 8 2210
but this can be shown by direct calculation.
Now we can interpret 7,(M; E) as a section.

Lemma 3.2, 7,(M : E)(e?™%) can be considered as a meromorphic
section of (L!)* over T,, where ¢ = 0 if the action of S is even and e = 1

if odd.

Proof. By [4, Lemma 12.2], 7,(Paet Np: ¥m, Xr(Ei)(2))(1) is a mero-
morphic section of (L )*. We consider the #-part. For € € C,

e27ri(§+1) — 62“i£, lei(E+T] — e21ri're27ri§ - q627ri£

s0
(6 + 1) = n:(8)
(€ +7)= nT_I(1+q I+ g Tg7 A
Lt
1+ g2
= I (E).
Therefore

Ym0 (E + 1) = n(m€ + m) = n-(m€) = Y- (§)
Ym0 (€ + 7) = n-(m& + mT)

-1 -m, —(m-1)

=q"2A™™q nr(m€ + (m — 1)7)
m m2—m

=g 2A™g T p(me)

m2

= /\_m2q_ 2 Ym0 (€).
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These imply

chib, i (F)(z + 1) = chth, i (F)(2)

hipin(F)(z +7) = 4 SN e Vehihin(F)(z)
where y = ¢, (F). Write y; = ¢1(F}) and z; = ¢;(E;), then

2

~3\ =2 v
(+) I1q 22/\ Fiemhy :/\(Em?—zu?)q%(Emf—Zu?)e(Emsxi—Ewy;)

2
[ TAemmin
but one can show that (X" m? — Y v?)/2 =0, and " m;z; — S viyi = 0
(see [4, (11.22), Lemma 11.3}).
Therefore (¥} = 1, and Té(Pdeth;®'¢m;i’f(Ei)(z) ® Eé(vfl’/TP) ®
(®%y, 71 (Fi)(2))/(® ¥m; - ( E:)(2))]) can be viewed as a meromorphic sec-
tion of (L])?. Therefore with Lemma 3.1, we complete the proof.

4. Proof of theorem; poles of 7 (M;E’). Note that ¢, 7, has
zeros at 2™/ ¢/ modulo exp[2ri(Zx 7-Z)], therefore 7,(M; E') possibly
has poles at a® where a = €?™7/¥ for some integers k and s. We may
assume k is positive and & and s are relatively prime. We define

tacTi(M; E')(A) = T4(M; E')(0°A)

and if we can identify t,s7;(M; E') with the S'-index of an appropriate
elliptic operator on some auxiliary manifold, since S'-index has no poles
on {|A| = 1}, we conclude that 7,(M; E’) has no poles.

Let M be the fixed point set of Zy C S, and for odd k we decompose
the tangent bundle into

(4.1) T, =TMi @I} ®---®Th,
2

where each T} is a real bundle which has a natural complex structure so
that £ € Zi acts as £”. For even k, we have

(4.2) T, =TM 8T -0 T;_ &Ts
2
where T}/, is a real bundle on which £ € Z; acts as (—1). Similarly we have

Vie=Voo Ve --aVL, (k: odd)
2

=VodVi® ---EBVg_l ® Vi (k: even)
2
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M|, denotes M), but oriented as follows. When k is odd, M has an
induced orientation with respect to the decomposition (4.1). Call this
orientation +1. Let P be a component of the S! fixed point set with
P C M and decompose T|p as (3.1). Choose the signs of m;’s so that
each m; # 0 (mod k) is congruent modk to some = € {1,---,(k — 1)/2}.
Choose the orientation of TP and choose the signs of those m; = 0 (mod k)
so that the induced orientation on T'|p is correct one, then the induced
orientation on TMy|p will be the +1 orientation. For each mj, define
(l,w;) €Zx{0,---,k -1} by

sm; = lj-k 4+ w;

and define
E(P) = Z(dimc Ej)-lj.

The orientation for M is defined to be (=1)¥®) on the component of
My which contains P. This orientation is well defined under the spin
assumption (see [4, §§8,9]). When k is even, an orientation is induced on
TM; @ Ty, by (4.2). Choose an orientation for TM; and call it +1. Let
P be a component of S! fixed point set with P C M) and choose the
signs of those m; # 0,k/2 (mod k) so that m; (mod k) € {1,---,k/2 — 1}.
Choose the signs for those m; = 0,k/2 (mod k) and choose the orientation
of TP to make the induced orientation on T My &Tj/,|p correct. Introduce
g0 = 0,1 with g9 = 0 if the induced orientation on T My|p is correct, and
gp = 1 if incorrect.
Set

e(P) = €0 + Y (dimg E;)-{;

and the orientation for M/ is given by (—1)5(") as above.
Now we consider the transfer formula. Introduce

w(r) = s-r (mod k) € {0,--+,k - 1}.

Case 1; k is odd.

Lemma 4.1. If the assumptions of Theorem hold, then the complex

line bundle
k=1

v = ® [(det V)0 @ (det T,) )]

r=1
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admits a k-th root V_:/k over M.

Proof. This is [4, Lemma 11.3].

Proposition 4.2.

(L EYO) = 071 (M i @ (1) (2

0.k
®E,V/T)®n'(‘/)( ).

)

where

S w(r){dime V; ~ dime T,
(514t - 3 (51 +i8) ),

1

¢

(£, wi) €Zx{0,-+,

1
2k
>
k — 1} is defined by s-v; = li-k + &, and

L= é) det 75.

Proof. By Lemma 3.1

T (M3 E)(X) = D W' (P)(A).
{P}

tasp(N)
! ) v 8 !yt
= Tq (PdeLAVp;®wm,-X1-(E,’)(Z + ET) X Eq(‘/P/TP)
LA (o4 20)) )
i ".bm,-n‘r(Ei) k

and by the index theorem,
dim P . s
=972 (ch [A(TP;det Np)™ @ RY(TP) ® um,QT(E-)(z + E«r)
' Y, e (F3) )
® Ey(Vp/TP)® S *rps (z+ 27)] 2P )1P)
12+w, L)— E( F24wlil) /\Elimz'—zlﬁv,f_-zdhgp

=(-1
( I'-E' Vich [A(TP det Np)~' @ R (TP)® xT(E )(m z+ TT)

o sirrno B i
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On the other hand, if M} replaces M; in the right hand side x1/a?, and

apply the fixed point formula, the contribution from the S! fixed point set
Pis

w(r

<
P
&
4O

g, eV
(eh[A(TMk;L) '@ (T 1)@ Fory(v /T")%(T)

(ch,\6( T,) [ehrd( é T, ® «:)) -IE(P)) (P].

By the help of [4, (12.24)], we have only to show

k

i @~|

e Sl Sl i (F)(viz + %7)
,\‘-‘lm‘ I:'U’.CEIPT' El{yz. h(E' V TP ® nT( t i k )
¢ (V/ i (Ei)(miz + 52 7)

—ch,\(Vs ® E;(Vo /TU)TQ Z:(;’i( g )| )

but this can be shown by direct calculation.
Case 2; k is even.
Lemma 4.3. If the assumptions of Theorem hold, then
(1) The complez line bundle
£

@ [(det V)0V @ (det T, )]

admits a (k/2)-th root v2* over M.

(2) The vector bundle Ty, ®Vi/a — My has a Spin-structure defined

by the line bundle uf/k.

Proof. See Lemma 11.4(1) and (11.38) of [4].
Proposition 4.4.

tas (M3 E)(H) = 077 (\m, ® 5(1)(A2r) @ Ry(ry)

2
% A(TE & Vk,Vsk) 0 Aq"VE
3 2 2 2
Rus @ A(TL @ Vk) n@l A nTk

' WT(V) w(r)
® Ey(Vo/To) ®] o ))(/\)
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where
E_1q
12 201 . ,
= 35 ; w(r)*{dim¢ V; — dim¢ T, }
—+ Lo(5) {dima Vi - dima Ty)
4ku) 2 1mpg % Impg I2_c

(X E)(\) = ind, (ds ® ATX & Ti;L)' @ B(TX)® E,)

£
L= ® detT,, and

r=1

" B o) o
Rq(Tg) = A(T_g_ ® C) n§1 Aang m@;l Sqm_%Tg.

The proof of this proposition is quite similar to that of Proposition 4.2,
so we omit the proof.

Thus 7,(M; E') has no poles on T, so is rigid and we complete the
proof of Theorem.
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