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Wallace: Inverses in Euclidean mobs

INVERSES IN EUCLIDEAN MOBS*
A. D. WALLACE

In this note we show, among other things, that if a clan is
contained in R® > 2, then all elements with inverses lie in the
boundary. This is preceded by results on acts.

It is pleasant to be able to record my obligations to members of
the Tulane Topology Seminar, and in particular to Dr. R. J. Koch.

We recall that a mob is a Hausdorff space together with a con-
tinuous associative multiplication. In what follows S will always
denote a mob.

If te S let, for n>1,

rt) = {t" jm2>n}*,
We write I'(f) = I",(f) and
K@) = n{r.)|n=>1}.

If ') is compact then K(f) is a compact (topological) group and
indeed, K{(f) is the minimal closed ideal of 7'(¢), see Kach [1], Numa-
kura [2] and Peck [3]. We refer to this result as (A).

An act is a map

z:8SxX — X

such that (i) S is a mob (ii) X is a Hausdorff space (iii) (4, ={t, x))
= a(tt,, ¥) for any {,,4.€S and xe€ X. We shall say that S acts on
X. If TcS and Ac X we write TA for #(T x A).

Let Sact on X, let £t€S and let I"(#) be compact. If A is a
compact part of X such that tAc A then

tA = n{trA | n>1)

for any # € K(#). This result is due to Koch [1). We refer to it
as (B).

Let f: X — Y be a function on X to Y and let ¢ be a descending
family of closed subsets of X, i.e, if A,, A,€a then A,cA,n A, for
some A€ a. Suppose that either (i) some A € e is compact and f-'(y)

* This work was done under Contract N7-onr-434, Task Order III, Navy Department,
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is closed for each y€ Y or (ii) f~'(y) is compact for each y€ Y. Then
fln{A]Aea}) = n{f(A) | Aea}.

If, in addition, for each A, € @ there is an A, € a such that A,c f(A)
then (with X = Y)

N{A|Aea}l c f(n{A] Aca}).
We refer to this result as (C),

Theorem 1. Lot the mob S act on the space X, let te S such
that T'(t) is compact and let A be such a compact part of X that
tA>A. Then t A=A for each t er(t), and each such t, acts as a
homeomorphism on A. In particular the unit of K(f) acts as the
identity on A.

Proof. The space I'({)A is compact so that the compact mob
I'(t) acts on the compact space I"'({)A by restriction. For notational
simplicity let S=7() and X=TI({#)A. Let e be the unit of K({.
For each #»>1 we have

ActAc -..... c PACX C e . c tXcX.
From (B) it follows that
A c tA c eX.
Since ¢* = e we get
A = eA c etA.
From (A) we know that ef has an inverse » in the group K(f). Thus
vAcvelA = eA = A.

We now apply (A) and (B) using v in place of #, noting that I'(v)c I'(%)
and thus I"(v) is compact. If f is the unit of K(») then

fA = n{vvA | n>1}.

Now ve K(?) so that fe K@)c K(t). Consequently f =e since f*=f
and K(¢) is a group. Hence

A = eA = fA c vA.

From this .
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tA = teA c etvA = eA = A.

It follows that A = A. Since also {"A = A for each #>1 we have
tA = A for any t €Tr({) because {{, ¢ ----- } is dense in I"(#). Since
¢ =c¢and ¢eA = A we clearly have ex =x for x € A. Now let ¢, € I'(?)
and let ¥,y€ A with x %y and {x = {,y. Let U, V be disjoint open
sets about x, y respectively. Since ex = x and ey =y there is an
open set W including e such that Wxc U and Wyc V. Now K(t)
is a subgroup of I'(t) and so K(f)c K(f) because K(f) is the maximal
subgroup of I'(f), see [4] and [5]}. Thus e is the unit of

K(t) = ni{lr,@) | n>1}.

Since W is open we have {7'e¢ W ifor some m>1. Thus "xe U and
trye V. But ¢{x = ¢,y and hence i7'x = #{"y. This contradiction com-
pletes the proof.

Corollary 1. Let the compact mob S act on the compact space X
and let T be a subset of S; suppose a is a descending family of sub-
sets of X such that if te T and if A€a then A ctA for some A, € a.

If
B = n{A* | A€ea}
then
tB =B

for each te M, the smallest closed submob of S including the set T.
Proof. If te T we easily see that BciB, using (C). We then
apply Theorem 1 to get ¢B= B for teT. It easily follows that.
tB = B for each te M.
If S is a mob we let S*S denote the mob obtained from the set.
S x S with the multiplication

(@, b) % (x, y) = (ax, yb).

Corollary 2. Let A be a compact subset of the mob S and let
a, be S be such that '(a), I'(b) are compact. If Ac aAb then A = aAb.
Proof. It is clear that S S acts on S using

z((a, b), x) = axb.

Moreover (@, b) in S*S is compact since I'(@) x I"() is compact.
The result follows by Theorem 1.
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We can apply Theorem 1 to improve (A), see [3].

Corollary 3. Let S be a compact mob, let J be a descending family
Of subsets of S, let R= u{T | Te]} and let

S = n{T*| TeJ}.

Assume further that, if t€ R and Te€ ], then T,ctT and T,c Tt for
some T,, T,eJ. Then S, is a compact (fopological) group and if M is
the smallest closed submob of S including R then S, is the minimal
closed ideal of M.

Proof. If te R we apply (C) to get tS,»S,c S,t. Theorem 1 then
gives &5, = S, = S,¢ for each ¢€ R and hence £S,=S,= S for each
te M. Thus S, is a group and a closed ideal of M. Hence S, is the
minimal closed ideal of M. That S, is topological is known, see for
example [4].

It is possible to reformulate Coro]lary 3 in various ways. In
particular let 7 be a submob of S such that ({7 |{e T} is a de-
scending family and assume that if £,, £,€ 7 then £,7c {7t for some
t,€ T. Then n{(T)* | te T} is a group and the minimal closed ideal
of T*. We assume that S is compact.

In what follows H"(X, A) will denote the Alexander- Kolmogoroff
cohomology group of the pair (X, A) over a random (and concealed)
coeflicient group, see Spanier [7].

Lemma 1. Let the connected mob S act on the compact space X,
let A be a closed set in X such that SAc A and let t€ S be such that
tXcA. If, for some z€ S, with I'(z) compact we have zX = X, then
H X, A =0, p>0.

Proof. If e is the unit of I'(z) then e acts as the identity on X,
see (A) and Theorem 1. For ae€ S define

Lo (X, A) —> S x X, S x A)

by u.(x) = (a, ¥). Using Spanier’s proof of the homotopy theorem [7]
we get

pi=pF i H'S x X, S x A) —> H"(X, A),

Thus #f = xf. Now #Xc A implies u¥zn* = p¥a* where = from
(S x X, S8 x A) > (X, A) is defined by =(a, x) = ax. Now ufz* = (zu,)*
and since np,: (X, A) — (X, A) satisfies n#,(X)c A we get (zu)* =0.
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On the other hand g¥*n* = (zx,)* and nu(x) = x for all xe X. Hence
(zp)* is the identity. Thus H*(X, A) = 0.

Lemma 2. Let X be a compact set in R*, let F be the boundary
of X and let A be a closed part of X satisfying FcAx X. If i,:AcX
then if; H*'(X) — H*(A) is not onlo, n > 2.

Proof. We may assume that

Xclnt EnE* = {y| lly] <1}
We may also assume that
0= (,0,--- ) € X\ A.

We have E* = By X where Bc (E"\ X)Uy A is closed because Fc A.
Further §*-', the boundary of E® is contained in Bc E”\{0}. Now

the map f: B — S*-! defined by f(x) = %”- is a retraction and thus
{

H*YB)%0. Let i,: Ac B. Since H"YE" =0 we get an iso-
morphism

J* s H™4(X) x H*(B) —> H"\(A)

with J*(h,, k) = ith, — i*h, (the Mayer-Vietoris Theorem, see [8]).
Take k.0 in H""4B) so that j*0, h) = —¥h. 0. If h e HYX)
and *h, = ith, then J*(h,, h) = 0. Thus (k,, i) = 0 since J* is an
isomorphism. Hence %, =0. This is a contradiction. Thus 7* is
not onto.

Theorem 2. Let the mob S act on the compact set Xc R*, n> 2.
Let t€ S be such that T'(t) is compact. If F is the boundary of X and
if tFoF then {,X = X for each t € I'(t), the unit of K(t) acting as the
identily on X.

Proof. From (A) and Theorem 1, eF = F, ¢ the unit of K(#).
Thus FceX. Now eX is a retract of X since ¢* =e. Hence
i¥:H"Y(X) > H*'(eX) is onto, i,:eXc X. By Lemma?2, eX = X.
By B), eX=n{"X|m=>1} so that X =1?¢X. By Theorem1 the
remaining results follow.

We recall that a clan is a compact connected mob with unit.

Theorem 3. Let the clan S be contained in R™, n>2. If the
closed ideal I of S includes the boundary of S then I = S.

Proof. Let F be the boundary of S. Then Fc I implies Fc SFSc 1.
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Then i¥: H*\(S) =~ H"-'(I) since, by Lemma 1, H*\(S, 1) = 0 = H*(S, I).
Hence 7= S by Lemma 2.

Corollary. Let the clan S with unit u be contained in R", n> 2.
If Hwu) is the subgroup of those elements of S with inverses and if F
is the boundary of S then

Hu) = {t|tF>F} c F.

Proof. If te H(u) then ¢t acts as a homeomorphism on S and
thus, as well known, # preserves boundary points so that (FoF. If
tFoF then by Theorem 2 we have #S = S. It follows easily that ¢
has a right inverse, &. Thus # = ». Hence Stf = S. By a result of
Koch’s [1] we have S = St so that #« = ¢ for some . A simple
argument shows that #, = 7 is the unique inverse of £. Thus #¢€ H(z).
As we noted earlier we have H(w)FH(x)c F and thus [6] SFSn H{z)
= FnHu). Now Fc SFS so that, by Theorem 3, SFS =S. Hence
H(#) = Fn H(x). This completes the proof.

We note that this corollary extends a result in [6].
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