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Tomita: Representations of operator algebras

REPRESENTATIONS OF CPERATOR ALGEBRAS
Minoru TOMITA

Introduction

In this paper we shall establish a decomposition theory of non-
commutative self-adjoint algebras of operators on Hilbert spaces, as
a generalization of J. v. Neumann’s, F. Moutner’s and 1. E. Segal’s
results. Their decomposition theories were established on the sepa-
rability assumption for Hilbert spaces, and the algebraic properties
of their decompositions were very obsqure. Then we shall construct
the theory extending the algebraic method by I. Gelfund, which is
applicable for every C*-algebra on every Hilbert space.

Our main theorem is the diagonal decomposition theorem of
states on C*-algebras which is explained in the following. And
applying this theorem we shall obtain several decomposition theorems
of operator algebras.

A uniformly closed self-adjoint algebra A of bounded linear
operators on a Hilbert space which contains the identity operator 7
is said to be a C*-algebra. A linear functional p on A such that
p(A* A) > 0 and p(A*) = p(A), is said to be a state on A. A state
p is said to be irreducible if there is no pair (g, ) of states with
p=gq+7r other than g =ap and r=(1 — a)p. Given a state p.
We can choose a Hilbert space L¥(p), a C*-algebra A, and an element
peL¥p) such that (1). There exists a =-algebraic homomorphism
A— A, of A ina dense subalgebraof A,. (2). Theset (4,p: Aec A)
is dense in L¥p). On L¥p) there exists at least one commutative
C*.algebra E, so called a diagonal algebra on L*p), which coincides
with the set of all operators commuting simultaneously to all
A,€eA, and all Ae E. Then the main theorem reads as follows.

Theorem 1. Let N denote the topological space of all irreducible
states u with u(I) =1, whose lopology is the functional weak fopology
as a subset of the conjugate space of A. Given a state p and a diago-
nal algebra E on LXp). There exisis a non-negative Borel measure p
on N with o(N) = 1 which satisfies the next conditions.

(1). Let M denote the Banach algebra of all bounded measurable
Sfunctions on R so that |¢ | =ess. max. | ¢1)| and ¢* =g. Then
for every o € M there exists K, € E such that
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(A, K5, 5) = | o) HA) do(d).

(2). The correspondence ¢ — K, is a x-algebraic isometric iso-
morphism between two algebras M and E.

Let S denote the full matrix algebra of order »# on an #n-dimen-
sional complex Euklidean space &". All the diagonal decompositions
of any state on S is obtained by the following method.

Define an inner-product in S by (4, B) = %‘,aub—“ for A = (a,),

B=(b,¢e¢S. Then (A, B) = (B* A*), and (4B, C) = (B, A*C) =
(A, CB*). Given a state p on S, we can choose PeS so that p(A)
= (A4, P), where P should be a definite Hermitian. Now we can
choose a unitary matrix UeS so that Q = U~'PU is a diagonal
matrix. Then

pA) = (A, UQU-Y) = (U AU, Q) = q(U- AU,

where g(4) is the state with ¢{A) = (A4, Q). Therefore by a suit-
able change of the base of (", the representative matrix P is ob-
tained as a diagonal matrix P= >« F,, where E, denotes the matrix
(es) so that ¢, =1, and e; = 0 otherwise. Now every state #,(4)
= (4, E)) is irreducible, and we have p = ;‘,aiu.,, where «, > 0. This
is a diagonal decomposition of p.

Chapter 1. Preliminaries.

Let A denote a C*-algebra on a Hilbert space . The set A’
of all bounded operators on  which commute with all A€ A is said
to be the commutor of A. The common part of A and A’ is said to
be the center of A, and denoted by 2. A is said to be irreducible if
its commutor consists of «f only. '

For two Hermitians A, B we shall denote by A>B if A— B is
a definite Hermitian. Also for two states p, ¢ on A we shall denote
by p=gq if p — q is a state.

Let p be a state on A. The set T,=(4: p(4*A4)=0) is a
linear set. Let S, denote the quotient space of A by T,, and let
A — A(p) denote the corresponding linear mapping of A on S,.
Then S, has an inner-product (A(p), B(p)) = p(B*A). Completing the
space S, by this inner-product, we obtain a Hilbert space L*). For
every A€ A we can choose® Be A with B¥*B=|A|*I—- A*A. Then

1) cf. Footnote of [19].
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| A [P X) [ = 1 (AX)(D) I* = p(X*(] A |*] - A* A)X)
= p((BX)*BX) = 0.

So |Al XD = | (AX)(p)]l. Now X(p)—> (AX)(p) is a many-one
bounded linear transform on S,, and there exists a bounded linear
operator A, on L(p) so that A,X(p) = (AX)(p). Denote by A,
the uniform closure of (4,: A€ A), and put p = I(p). Then

Lemma 1.1. Given a state p. We can choose a Hilbert space
Lp), a C*-algebra A, and an element pe L (p) such that (1). there
exists a -algebraic homomorphism A — A, of A in a dense sub-algebra
of A,. (2). The set (A,p: A€ AR) is dense in L¥p).

Lemma 1.2. Let p, q be two states on A so that p = q. Then
there exists 0 < K€ A, with q(A) = (A,p, Kp).

Proof. The mapping A,p— A,¢ from L*(p) into L¥g) satisfies
l A2l =l Al Then it is a many-one bounded linear mapping.
And there exists a definite Hermitian K on L*(p) with (KA,p, B,P)
= (Aqa’ Bqé) = Q(B*A)- So

(A,KB,p, C,p) = (KB,p, (A*C),p) = q(C* AB)
= (KA,B,p, C,p).

That is, A,K = KA,. This means 0 < Ke A,’. q.e.d.

Let # be an irreducible state. Then there is no state p <<%
other than p = au. For every definite Hermitian Ke A, with
| K| x£1, the state q(A) = (A, %, K#) satisfies g<#. Then g = au
and K= al. Now A,’ consists of «f only. Hence A, is irreducible.
This concludes the next lemma.

Lemma 1.3. A state wu is irreducible if and only if A, is ir-
reducible.

Chapter 2. Reducible states and center-reducible states.

A state 7 is said to be reducible if for every state p <7 there
exists at least one 0 << K€ Z so that p(A) = r(KA). For every linear
functional f on A, the linear functional f, on the center Z which
coincides with f on Z is said to be the part of f in 2. If p is a
state on A whose part p, in Z is a reducible state, then p is
called center-reducible. Let 3 denote the set of all states # on Z so
that w(KL) = w(K)u(L) for K, Le Z. Since Z is a commutative
C*-algebra, by the theorem of Gelfund.-Raikov 3 is a weakly comapct
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subset of the conjugate space of Z. And Z is isometrically repre-
sentable as the algebra C(3) of all continuous functions on 8. 3 is
called the spectrum of Z, and we regard Z as C(8). Let 2 be a
compact space. Every positive functional p on C(&) is expressed by
an indefinite integral of a non-negative Borel measure on 2. We

denote it by the same letter p. Then we have p(f) = S fdp for

every fe C(2). The support D(p) of p is the smallest closed set X
with p(X) = p(2). Now every state p on Z is a positive functional
on C(8). Then p denotes simultaneously its representative Borel
measure on 3.

Theorem 2. Let p be a center-reducible state. Let p, denote the
part of p in Z, and simulianeously its represeniative Borel measure on
8. And let D(p) denote the support of p,. Then for every 1€ D(p,)
there corresponds a uniquely determined state 2 on A such that

(1). For every fixed A€ A and Ke Z, 2°(A) is continuous in
D(p) and satisfies 2*(KA) = K(2)17(A).

@). p ={rapw,
where S ardp, is a Pettis inlegral so that p(A) = S 2*(A) dp,(2).

Hereafter the integral expression p = gl”dp,(/l) in the Theorem

is said to be the spectral decomposition of p, and every state 1 is
said to be the derivative siate of p at 2 € S(p).

Proof. For every A€ A with I> A >0, define the functional
v, on Z by ¢, (K)=p(KA). If 0L KeZ, we have K= KA >0,
and p(K) > p(KA) = ¢,(K) = 0. Then ¢, is a state on Z with
0. <p,. By the center-reducibility of p there exists 0 W, €2
with p(KA) = oK) = p(W,K). Now we define W, for every Her-
mitian A€ A as follows: If 0% A, B=I— A/|A| satisfies I=B
> 0. Then putting W,=I—| A | W, we obtain W,e Z and p(KA)
= p(KW, for Ke2Z. Also putting W, = W, + iW;, for every
X=A+iBe A, we define W, for every Xe A. Now put A7(A4)
= W) for every 1€ D(p,). Then

(1) For every fixed A, 4*(A) is continuous in £(p,), and satis-
fies

pEA) = | KQ)IA) dp3)

Such 4*(A) under the condition (1)’ is uniquely determined.
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Then 4? is a linear functional on A so that 2’°(4) = W, () >0 for
A>0. Further if K, Le Z, then

pELA) = | K@) L) () dpd) = | K 2(LA) dp,).

Hence L(2)i*(A) = i*(LA). This concludes the theorem.

The following theorem is a special form of the main Theorem 1.
But as we shall observe in the latter, the main theorem may be
easily derived from this theorem.

Theorem 3. A state p is reducible if and only if it is a center-
reducible state whose almost all derivative states on the support D(p,)
of the measure p, are irreducible.

The proof of the necessity part of the theorem, which will be
done in the next chapters 3 -4, is very interesting but somewhat long.
We prove here merely its sufficiency part. That is:

Lemma 2.1. Lel p be a center reducible state whose almost all
-derivative states on the support of the measure p, are irreducible, then
p is reducible.

Proof. Let p=¢t=0. Since p is center-reducible, from p, > ¢,
>0 there exists 0L TeZ with #(X) = p(TK). Then ¢ is also

center-reducible. Let p = S irdp(d) and ¢t = S it dt,(2) be the spectral

decompositions of p and ¢ respectively. Putting 2 =0 for 1€ D(p,)
— D(t), we can define 2* for every ie D(p,). For every fixed A,
T(2) 21(A) is continuous in T(p,). In fact, W= (1: T2 >0, 1€ D(p.))
is contained in 2(f,) because di,(1) = T(2)dp,(2). And 2 is relatively
open in ¥(p,). Then T(2)i%(A) is continuous in W. On the other
hand T7(2) #(A) vanishes in (p.) — T, where 1(A) is bounded in
D(p.). Hence T(2) #*(A) is also continuous in T(p,) — L.

Now if 0<LA€A and 0L KeZ, then KA>0 and KA <
p(KA). So

[ k7@ 14 dpy < S K(2) 12(A) dp,(4).

This proves T(2) 2(A) < i?(A) exactly on the whole ¥(p). Thus
TRy L2 for every 2€ D(p,), But almost all 1# are irreducible,
then a(2)4? = T(2) 2* hold almost everywhere. Now for every ie D(p,)
with T(4) >0 we have () =1. Then a(l) = a()1?(I) = T *(I)
= 7(%) hold almost everywhere. Hence
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#A) = | 70 1) dpd) = | T 7(4) dpd) = HTA).
This concludes the reducibility of .

Chapter 3. Extreme decompositions of reducible states.

Let P denote the set of all states p with p(J) =1. And let N
denote the set of all irreducible states # with #(l) =1. Let A¥
denote the real Banach space of all-Hermitian operators in A. B is
a bounded regularly convex sub-set” of the conjugate space of AZ.
Then the weak closure Nt of | is a weakly compact sub-set of PB.
For every A€ A let A" denote the weakly continuous function on
N so that A*() = 3(A) for every A€ N. For every linear functional
w on CM) let w' denote the linear functional on A so that w*(A)
= w(A*. For every linear functional w on C) and every fe CH)
let w, denote the linear functional so that w,(g) = w(fg). Now
if A>0, then A*>0. And if w is a positive functional on C®), w"

is a state on A such as w*(4) = SA(A) dw(d), i.e. w* = S Adwd).

By Theorem 3 of my separate paper [19], for every itate p on
A there exists at least one positive functional w on C(J) so that

b=w = Sldw(/l).

Now we shall consider a fixed reducible state  and a fixed posi-
tive functional 7 on C(OY) with m" = 7.

Lemma 3.1. Let KeZ and Ac A. Then (KA) = KA.

Proof. If 1€, the algebra A, on L) is irreducible. And
from Ke Z we have K, € A,’. Then K, = «l,. Now

AKA) = (K)\A}\/f, j) = a:(A,\i, j) = al(A).

Putting A = 7 we have a = A(K) and A(KA) = A(K)i(A). Therefore
K¥(1) A*@) = (KA)¥(4) is valid in the dense sub-space R of N, where
K" etc. are continuous in M. Hence (KA)* = K*Av,

Lemma 3.2. For every fe CR) there exists at least one Fe Z
S0 that (m,)* = (mg)*, where we can choose F =0 when f = 0. If we
define such F for every f € C(N), then it satisfies further m(f) = m(F")
and myv(gAY) = m(G°AY) for every f, ge C(N) and A€ A.

Proof. If feCM) satisfies 1>f=0, then m>m, >0 and 7
=m’>m," > 0. By the reducibility of » there exists 0 <L Fe Z so that

1) cf. Footnate of [19].
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myorA) = r(FA) = m(F*AY) = (mp)*(4).

That is, m,* = (m»,)". Now we can determine F for every fe C)
as follows. If f is real, we have f=aZ — Bk, where 1=h, 2=0.
Then put F = aH — K. If f is not real, then f = % + ik, where 5,
k are real. Hence put F= H 4+ iK. This F satisfies clearly (m;,)
= (mp)*. Further m(f) = m,(I’) = msv(I") = m(F*). And for f,
g€C®) and A€ A, we have

mv(gAY) = mgF*A") = m(G*F*AY) = m(G*AY). q.e.d.
Let 1 be a point in the support ©(m) of m. If U is an open set
which contains 2, there exists a positive continuous function fy on
9 with S fodm =1, which vanishes outside of U. Let {U} be a

filter of open neighbourhoods of 2 which coverges to 4. Then {m,}
coverges weakly to the “ Dirac inlegral’ ¢, which is the positive
functional on C@) defined by &,(f) = f() for fe C). For each fy
choose 0 < Fy, € Z which satisfies the conditions in Lemma 3.2. Since
| mey| = m(F) = m(fy) =1, {myp} is norm-bounded, and there
exists a suitable sub-filter {V} of {U} such that {m,} converges
weakly to a suitable positive functional # on C(t.

Lemma 3.3. 38" =u". u(gA) =uG'A) for geCH) and
A€ A.
Proof. We have

A" = lim m, (A) = lim me "(A") = u(A).
) Vald Vel
Then 6, = #*. Also for ge C®) and A€ A,
w(gA”) = lim my (gAY = lim myy(G*A%) = w(G*A).
Vaa VaA

This concludes the lemma.

Lemma 3.4, % =d,.
Proof. Let geC) and A€ A. Then by lemma 3.3,

u(gh) = w(GA) = H(G'AY) = 8,(G) (A,

Putting A =1, we have wu(g) = J\(G%. Then u(gA”) = u(g)d,(AY).
Now if A4,, 4,, -+ , A, €A, then
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u(A,“- A,“' cesene Anv) — M(Af“ sz' PYO A1]_1”)6A(A,l”)

= 2#(A.)0,(AY) - 8\(AY)
ON(AY) O\(AF) +e-eee I\(A4,))
= MAF Ay DAY

Now u(f) = 6,(f) is wvalid for every function f in the smallest
Banach ring € which contains all functions A*(A € A), where C
contains 1 = I¥, and self-involutive, i.e. f€ C implies fe C since
A¥ = A*> holds. Further for A% ze9N there exists A€ A with
A¥2) & A*(»), Then by the theorem of Gelfund-Silov C coincides with
C®). Hence u(f) = o\(f) for every f€ C®). This proves u# = 3,.

Lemma 3.5. For every fe CN) there exisis Fe Z such that F*
coincides with f on Dim).

Proof. Let 2€ D(m). By lemma 3.3-4 we have 8,(fA%) = 6,(F*AY).
Putting A = I we have f(4) = F*). Then F is a desired one.

By lemma 3.1 the part 2, of every 2€ 3 in the center Z satisfies
A,(KS) = 4,(K)2,(S) for K, Se Z. Then 2, belongs to the spectrum 3
of Z. And 12— 4, is a weakly continuous mapping of N in 3.
Further

Lemma 3.6. 1— 1, mapps Donm) homeomorphicly on a suitable
compact subset € of 3.

Proof. Let 2= #€D(m), then there exists fe CMW) with f1)
% f(r). Now choose FeZ so that F¥ coincides with f on Dim).
Then F¥2) &= F¥(x) and A,(F) &% #(F). So 12— 2, mapps D(m) one-to-
one continuously on a suitable €c 3. Since ®©(m) is compact, the
mapping is a homeomorphism between T(m) and €. q.e.d.

Let © denote the family of all bounded non-negative Borel
measures whose supports are contained in D(m). Also let ¥ denote
the family of all bounded non-negative Borel measures in 3 whose
supports are contained in . Let i— 4" denote the inverce mapping
of the homeomorphism 4 — 4, between £(m) and & Then 12— i" in-
duces a one-to-one correspondence w — w” between @ and 7 in the
following way. Given we @, w" is defined by w'(X) = w((X n€)") for
every Borel set Xc 8. Also given w” e ¥, w is determined by w(Y)
= w((Y nD(m)).).

On the other hand ¢ and ¥ represent simultaneously the respec-
tive families of positive functionals on C(R®) and Z which correspond
with these measures writen by the same letters.

I
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Lemma 3.7. w" =w>, for every we®. Then w — w" preserves
the order >=. Especially m" =r,. And the support of 7, is G.
Proof. For every Ke Z,

wik) = | 2K dw @) =

Then w* = w*,. Especially m" = m*, = 7,. And the -support of 7, is
B(mr) = 6.

Lemma 3.8. 7 is center-reducible.

Proof. Let s be a state on Z with 7, >s. The support of s is
contained in ©(r,) = & Then se#, and we can choose 7€ ® with
t"=s8. From m" =7,>1 we have m>1¢ and r = m*>1#. Since r
is reducible, there exists 0 <X Ke Z with #*(4) = »(KA). Then for
every Xe 2Z,

‘/D(m)r (K) dw(z) = w(K?).

s(X) = (X)) = X)) = r(KX).

This means the reducibility of ,. Hence 7 is center reducible. g.e.d.
From 7, = m" we obtain

r(A4) = S (A) dr ).

w(A) dm(ow) = S%!)

D(m)
That is, r = EA’ dp.(4). This expression satisfies all the conditions of

the spectral decomposition of 7 in the Theorem 2. Then

Theorem 3'. FEwvery reducible state r is center-reducible, and the
set  of all derivative states is contained in N. There exists a Borel
measure m on N with Dim) = D so that mX) = r((XND).) for every
Borel set XcN. This m is the only one positive functional w on C(%)
which satisfies w¥ = r.

Chapter 4. Derivative states of reducible states.

Now the Theorem 3 may be completed if we prove the irreduci-
bility of almost all derivative states of the given reducible state . In
first we shall prepare an extension theorem of positive functionals.

Let 2 be a compact space. Let B(2) denote the real Banach space
of all real bounded functions on 2. And let R(?) denote the real
Banach space of all real continuous functions in £. A positive func-
tional » on B(®) is called a Radon-integral on 2. If p is a positive
functional on R(2), then the Daniell’s outer integral of p is the func-
tional p* on B(2) defined by p*{f) = A’ilng“J D).

=he )
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Theorem 4. Let p be a positive functional on R(2), and lét p*
be its Daniell’s outer integral. For every he B(2) and every p*(h)
>t > —p*(—h) there exists at least one extended Radon-integral q of
P with qlh) = L.

Proof. We have p*(af) = ap*(f) for a>0, and p*(f + g) X
p*(f) + p*(g). Then by the theorem of Hahn-Banach there exists a
linear functional ¢ on B({@) with q(k) =¢ We show that ¢ is a
desired positive functional. If feR(Q), we have p*(f) = —p*(-f)
= p(f). Then q(f) = p(f). If 0 X ge B(2), then 0 = p(0) Z_o éiﬁfﬂ(n)ﬁ(k)
= p*(—g) and ¢q(g) = —p*(—g) =0. Therefore g is a Radon-exten-
sion of p. q.e.d.

Let p be a positive functional on R(®). A function (or a set) in
2 is called p-measurable, if it is measurable by the representative

Borel measure p. And we denote p(f) = S fdp if f is a p-integrable
function.

Lemma 4.1. Let p be a positive functional on R(2), and p*
denote its outer integral. If a real bounded function h satisfies p*(h)
= —p*(—h), then h is p-measurable and p(h) = p* (h).

Proof. We can choose a sequence of R(2): fi=>/fo= - >h so
that lim p(f,) = p*(#). Also we can choose another sequence g, < g

LIPS <k so that limp(g,) = —p*(—h). Put f=1Ilimf, and g

=limg,, then f2h>g and |fdp=p*u) = ~p*(-b) = [ gap.

Then % coincides almost everywhere with the measurable function
f, where p(%) = p(f) = p*(h). q.e.d.

Let us consider once more a reducible state i and the positive
functional m on C(M) with m* = 7.

Lemma 4.2. If a state p is not irreducible, there exists at least
one positive functional p' on CN) with P’ = p whose support contains
at least two points.

Proof. If p is not irreducible, there exists a state s <{p so that
s ap. Put $ =p — s, and choose two positive functionals s/, # on
CH) so that s’ =s and #*=¢ Then p =5 + ' satisfies p'* = p.
We show that p’ is a desired positive functional. If D(p) consists

of only one point A Then p'(f) = S,\f(t) dp' (t) = f(A)P' () = ad,\(f),

where « = p'(%), and 8, is the Dirac integral at i Thus p = ad,.
Now p’ > s’ implies D(s') E D(p’). Then we have also s’ = 84,. This
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means s’ =rp’ and s =rp. It contradicts s==rp. Then D(p’) con-
tains at least two points. q.e.d.

We can choose for every A€:R a positive functional ¥ in the
following way. If A€, weput ¥ =6,. Andif 2eR—-N, ¥ is a
positive functional on CM) with ¥ = 1, whose support contains at
least two points. For every fe RO) we define a function f/ on &
by f/(d = 2(f). f' belongs to BM) since | /()| = | ¥(f)| L¥D) | f|
= | f|. Further f— f’ is a bounded linear transformation which
mapps every positive function to a positive function.

Lemma 4.3. If feRM), then f' is m-measurable, and m(f) =
m(f’).

Proof. m is considerable as a positive functional on R(J). Let
m* denote the Danicll’s outer integral of m. If fe RM), then by
Theorem 4 there exists an extended Radon-integral # of m in B(R)
so that n(f’) = m*(f’). Let »n’ denote the positive functional on C(R)
defined by #»'(f + ig) = n(f’) + in(g’) for every f + ige C(M), (where
f, g€ RMY). Then for every Hermitian A€ A,

WA = nA”) = nlA) = mAY) = r(A).

That is, #* = m* = 7. But by Theorem 3’ there is no positive func-
tional w on C) with w* = 7 other than w = m. Then % = m, and
especially #*(f’) = #'(f) = m(f). Analogously we have m*(—f’) =

m(—f). Then m*(f') = —m*(—f) =m(f). Hence by lemma 4.1 f’ is"

m-measurable, and satisfies m(f) = m(f’).

Lemma 4.4. FEvery real bounded m-measurable function f on 9N is
A-measurable except for those X-measures whose A belong to a set of
m-measure 0. And the function f' in W defined by f'(d) = ¥(f) is
m-measurable and satisfies m(f) = m(f).

Proof. This lemma will be proved by an analogous consideration
with the Fubini’s theorem.

Let L denote the smallest family of bounded real functions which
satisfies the next two conditions.

Ly. COYs L. (). If |f.| is a sub-sequence of L so that
| ful <1, and lim f,(3) exists at each X€ I, then lim f, € L.

On the other hand let M denote the family of all real bounded
m-measurable functions 2 on N which satisfy the next two con-
ditions.

M). Each k is ¥-measurable except for those X-measures whose
2 belongs to a set of m-measure 0.
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M,). The fuuction ¥ in N so that B (2) = ¥ (k) is m-measurable,.
and satisfies m(k) = m(k).

Clearly M satisfies the conditions L, and L,. Then M contains
L. And every t€L satisfies M, and M,.

As is well-known, for every bounded m-measurable function f

there exists g, €L so that g>f>=#% and m(g) = mh) = m(f).
From g’ = /' and m(g’) = m(k’), it follows g'(}) = #'(2) except for a
set T of m-measure 0. Let A2e % — T, then we have ¥(g) = ¥(h),
where g>f>=% So that f is X-measurable, and satisfies ¥(g) =
X(f) = ¥(h). Hence f satisfies the condition M,. Further from g’
=f'= W and m(g’) = m(k’), f’ coincides with g’ except for a set of
m-measure 0. Then f’ is m-measurable and satisfies m(f’) = m(g’)
= m(g) = m(f). Hence f satisfies the condition M,. This completes
the lemma.

Lemma 4.5. FEvery bounded m-measurable function k coincides
with k' except for a set of m-measure 0.

Proof. If 0 << Ke Z, the state 7, of A defined by 7,(A4) = 7(KA)
is clearly reducible. Let 0 <{fe CPl). By lemma 3.2 we can choose
0L Fe Z with (m,)* = (mp) = 7. Then Lemma 4.4 should be valid
even if we replace » by 7, and m by m,. And every real bounded

m-measurable function k satisfies m, (%) = m,(k), i.e. S FR) k) dm =
S f(2) B (2) dm for every 0<fe RM). Hence k coincides with # ex-

cept for a set of m-measure 0.

Lemma 4.6. FEvery closed subset X of N satisfies m[X —

ST D) =0.

D) E

Proof. Since the characteristic function ¢, of X is m-measur-
able, we have ¢ () = ¥(¢z) = 2(¥), except for a set T of m-measure
0. If ¢X — %, then X(¥) =1 = ¥®). This means ¥ 2 D). Then
¥ — 3 D) =8T. This concludes the lemma.

D) E

Lemma 4.7. Every 2e T(m) — R satisfies T(X) — S(m) £ 0.

Proof. Let 2¢% and Fe Z. Putting a = A(F) we have 1 (jal
- — F*1)=0. Then al — F* vanishes on the whole ®(1). Hence
Fr(r) = F*(4) holds for every r e D). If 2, ¢ are different two points
in D(m), we can choose fe C(M) with f(2) % f(#). By Lemma 3.5
there exists Fe Z so that F* coincides with f on D(m). Then F*(J)
& F*(#). Now if r€ D), we have F’(z) = F¥(A) =% F*(¢) and r = .
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Then for every A€ D(m) the common element of D(m) and D(') is
at most 2 only. But if 1€ D(m) — N, D() contains at least two
points. Then (') — Dm) £ 0.

Lemma 4.8. m(® - N) = 0.

Proof. By Lemma 4.7 we have

Dm) —N = Dm) — 3 D).
D) E D(m)

Then by Lemma 4.6 we have

mR—N) = m@m) —R) € m[Dm) — 3> DA)] = 0.

D) S D(m)

Theorem 3". [Ewvery reducible state is center reducible, and its

almost all derivative states on the support of the measure r, are

irreducible.

Proof. Let ¥ denote the set of all 1€ D(z,) so that the deriva-
tive states I* are not irreducible. Then we have D(m) — N =3I~
= (A: 2€%). Hence by lemma 3.7, we have

7(Z) = () = m@) = m(Dm) —N) = 0.

This concludes the theorem.
From Theorem 3’ and Lemma 2.1, we obtain the Theorem 3.

Chapter 5. Diagonal decompositions of states.

Let MU N denote the smallest C*-algebra which contains two
algebras M and N on 9, and M NN denote the common part of
two algebras M and N.

Lemma 5.1. For every C*-algebra A there exists a commulative
C*-algebra E on $ so that (AU E) = E.

Proof. Consider the family 7 of all commutative C*-subalgebras.
of A’. IT is non-empty, and by the Zorn’s principle it contains at.
least one maximal algebra E. Let A be an Hermitian in (AUE)’.
The smallest C*-algebra S which contains A and E belongs to 1.
Then we have S =E and AcE. This proves (AUE) € E. But
(AUE) 2 E is clear. Hence (AUE) =E.

Given a state p on A. A commutative C*-algebra E on L}(p)
so that (EU A,)’ = E is called a diagonal algebra on L*(p). By lemma.
5.1, there exists at least one diagonal algebra E on L*p). Put R
= EUA,. Then the linear functional # on R so that #X) = (Xp, p)
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is a state, where L) = Lp), t =p and R, = R satisfy the .condi-
tions of Lemma 1.1.

Lemma 5.2. ¢ is reducible.

Proof. For every state s <t on R, there exists 0 < Ke R,/ = E
with s(A) = (A4,p, Kp) = t(KA), where E is the center of R. Hence
t is reducible.

Lemma 5.3. The support of the part ty of t in E coincides with
the spectrum G of E.
Proof. 1t is sufficient to show that

(KA K) = [ [ K@) 1*dts % 0

for every 0= KeE. If KcE satisfies to(K*K) = 0. Then for
every Ae A we have

| KAp 11" = | A,Ep " < | AP Kp|I* = | A" tu(E*K) = 0.

Then KA,p = 0. This means K =0. Hence the support of £, coin-
cides with .

Let ¢ = S@A‘ dtg(2) denote the spectral decomposition of ¢ For

2€ & denote by A, X,, A., R, and A, respectively instead of &, X,
(for X€R), A, (for A€ A), R, and the uniform closure of the set
{A\: Ae A).

Lemma 5.4. If Ac E, the linear functional 3* on A so that i*(A)
= MA,) is clearly a state on A. It satisfies L}(®), L*(), i» = i and
A,» = A,. Further A, coincides with R, .

Proof. The set X = (N E.A,: E,€E, A, € A) is uniformly dense
in R=EyuA. If 2¢E, every E€E satisfies E, = E(A)I,. Now
Xo=EMWMNA,: EcE, A,eA) = (A,: Ae A) is uniformly dense
in R,. Then R, = A,. And (A,\f: A€ A) is dense in L¥ Y.

Hence concerning the state-2?, the conditions of Lemma 1.1 are
satisfied by L") = L}, =1 and A,» = A,.

Lemma 5.5. 27 is irreducible if and only if A* is irreducible.
Almost all 2* (concerning the measure ty) are irreducible.

Proof. By Lemma 1.3 2 and 4* are irreducible if and only if R,
= A, is irreducible. Hence A* is irreducible if and only if 1t is irreduci-
ble. Since almost all 4 are irreducible, almost all 4* are irreducible.

Now putting r = #, we obtain the next theorem.
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Theorem 5. Given a state p on A and a diagonal algebra E on
LXp). There exists a reducible Borel measure = on the spectrum & of
E, and for each 2€ E there corresponds a state * on A with A*(I)
=1 such that:

- @). 22(A) is continuous in € for every fixed Ac A.
2). (A,Kp, p) = S(SK(A) 22(A)dr(2) for every Ke E and AcA.

(3). Almost all 2* (concerning the measure v) are irreducible.

Let 9 denote the set of all states p with p(J) =1, and let N
denote the set of all irreducible states # with (/) =1. 2—>1? is a
weakly continuous mapping of € into . And almost all 4* belong
to N. Then the image © of the mapping is contained in the weak
closure 9 of 9. For every set XD let X? denote the inverse
image (x¥: x*€ X). Then the Borel measure p in © relative to = is
defined by o(X) = r(X9 for every Borel set ¥ £ D. Clearly we can
regard p as a Borel measure on % whose support is ©. Then neces-
sarily p denotes the corresponding positive functional on CR).

Lemma 5.6. Let X =D be a set so that X° is t-measure 0. Then
X s p-measure 0.

Proof. Every Borel measure which corresponds with a positive
functional is regular. Then from r(¥9) = 0, there exists an open set
Uo¥* with () <e, where ¢ is any given positive number. Now
B = ¢ — U is compact, then WP = (x*: x€ W) is also compact, and
B =D W contains X. Hence U = B = X% and (V) = (V) L)
< e. This proves p(X) = 0.

Lemma 5.7. Almost all states in N (concerning the measure p)
are irreducible.

Proof. Let ¥ denote the set of all non-irreducible states in D.
3¢ is the set of all 2¢ & so that 2* are non-irreducible. Then we
have 7(%9 =0 and ¢(%) = 0. q.e.d.

Let M denote the Banach algebra of all bounded p-measurable
functions on N whose norms are defined by !¢ | = ess. max |e(2) |.
M is a =-algebra so that ¢* = . For every ¢ € M let ¢® denote the
p-measurable function on E so0 that ¢?(2) = ¢(4?) for 1€ E. Then

Lemma 5.8. Given o€ M. There exists K,c E so that K,
coincides with ¢*(3) almost everywhere. This K, satisfies

(A, Kb ) = [A) e do().
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Proof. Suffice it to prove the lemma on the assumption of 0
< ¢<1. Let r, denote the state on E = C(€) so that

(2) = {27 Z0) dr)

for every ZeE. Then r,<r. Since r is reducible, there exists
K, e E so that

t(Z) = (K, 2Z) = SQK‘D(M)Z(M) dr(w).
Now K, coincides with ¢?(») almost everywhere. Further
(4,50, ) = 0@ o) dew) = [ 2A) o doa.

‘This concludes the lemma.

Lemma 5.9. The correspondence ¢ — K, is a ralgebraic isometric
isomorphism between M and E.

Proof. For every ¢ € M we have

le| = ess.max | ¢"(w) | = sup | K (o) | = | K,

‘Then ¢ — K, is a +-algebraic isometric isomorphism between M
and a C*-subalgebra G of E. Now in order to show G =E, it is
sufficient to show that for every K€ E with 0 <{ K <1 there exists
v€M with K, = K. Given K€ E with 0 < K<{I. Let + denote a
positive functional on C(M) so that '

V(f) = Sfﬂ(w)K(w) dr (o).

From I> K(0) >0 we have p >+ >0. Then + is absolutely con-
‘tinuous with respect to the measure po. And there exists a bounded
p-measurable function ¢ on Dc RN so that Y(f) = Srp(l) F(Aydp(2). We

show K = K,. Since K, coincides with ¢”(w) almost everywhere,
‘we have

[ £ K@) driw) = [ £200) Kyf) dr @),
for every fe CQ).

Let A€ A, then A*e C() is defined by A*2) = 2(A). Now from

A¥?(w) = w?(A) it follows
[ o) Kot) dotw) = | 02() K@) do(a).
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That is
(A, Kby D) = (A, KD, p)-

Since (K,A,p, B,p) = (KA,p, B,p) holds for every A, Be A, we have
K, = K. Hence G coincides with E. q.e.d.

From Lemma 5.7 -9 we conclude that

Theorem 6. Let N denote the set of all irreducible states u with
u(I) =1, and N denote its weak closure. Given a state p on A and a
diagonal algebra E on LYp). There exists a Borel measure p on N
which satisfies the next conditions.

1). N — N is p-measure 0.

(2). Let M denote the Banach algebra of all bounded measurable
functions on N such that |¢| = ess.max |¢(3) | and ¢* = . Then
Sor every ¢ € M there exists K, € E so that

A4,K,p, p) = S o(2) (A) do(A).

(8). The correspondence ¢ — K, is a x-algebraic isomeltric isomor-
Dhism between two algebras M and E.

Now Theorem 1 in the introduction is obtained by a little change
of the expression of Theorem 6.

Let §t denote the support of the measure p in Theorem 6. Then

we obtain the integral expression p = Sﬁ/ld o(4) of p. This expression

is called the diagonal decomposition of the state p (concerning E), R
is called the kernel space, and the C*-algebra P = (K,: ¢ € C(®)) is
called a kernel algebra on L*p). The concept of the kernel! space and
the kernel algebra may be important to study the properties of
diagonal decompositions of states.

The kernel algebra P is isometrically isomorphic to C(®) by the
correspondence ¢ — K,. Now by the correspondence the spectrum
of P is homeomorphicly representative for the kernel space R Then
we express every point of the kernel space by the same letter with
the corresponding point of the spectrum of P. Then & denotes
simultaneously the spectrum of P. Every functions in C(&) and the
corresponding operators in P are denoted by the same letters. Then
for every A€ A and K€ P we have

(A,Kp, p) = S K3 2A) do(d).
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Theorem 7. Given a state p and a kernel algebra P on LXP)
which corresponds with a diagonal decomposition p = S@Ad o(d) concern-

ing a diagonal algebra E on L p). Then (1). E is the weak closure
of P. (2). We can regard the kernel space R as the spectrum of P.
(3). Then o is the measure which corresponds with the state o(K)
= (Kp, p) on P. (4). For every Ke P and A€ A,

A,Kp, 5 = | K® A dod.

Proof. We need to prove (1) only. Since E is weakly closed, it
is sufficient to show that P is weakly dense in E. Let L denote
the Banach space of all absolutely integrable functions on P. The
conjugate space of L is the space M of all bounded measurable
functions on P, in which C(f) is weakly dense. Given ¢€ M, we
can choose a filter {F}cC(®) with |F,| <r < + oo, which con-
verges weakly to ¢. Then for every A, Be A we have

lim SF‘,(A)Z{B*A) do(d) = Sgo(z)A(B*A) do(2).

That is,
liin (F“A’,j), Bpﬁ) = (KvApﬁ! Bﬁﬁ))

where F, express the bounded linear operators on L (p) with |F, | <~
which correspond with F,e C(®). Since the set (4,p: A€ A) is
dense in LXp), {F.} converges weakly to K,. Hence the weak
closure of P is E.

Theorem 8. Let p = Ss%'{ dp(A) denote a diagonal decomposition of

a state p on A.

(1). If A is separable, then & is a separable compact space.

(2). If A is commutative and has the spectrum 2, then o is the
usual representative measure for p, and the kernel space & is the sup-
port of p. Then the diagonal decomposition coincides with the usual
measure representation of p:

f) = Sl(f) do(d) = Sf(z) do(2).

Proof. (1). As is well-known, the conjugate space of a separ-
able Banach space is weakly separable. Since  is a weakly compact
sub-space of the conjugate space of the separable Banach space A,
& is a separable compact space.
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(2). Let A be commutative. Then the set R of all irreducible
state # with #(I) = 1 coincides with the spectrum 9 of A. There-
fore | =N =9A. By the definition § is a closed sub-space of TN =IA.
And o is a Borel measure on 9N = ¥, whose support is ® And it
satisfies

) = Slff) do(d) = Sf().) do(A).

Hence p is the representative measure for p.

Chapter 6. Decompositions of operator algebras.

Given a state p and its diagonal decomposition p = Sﬁa dp(2), con-
cerning a kernel algebra P on Lip). Let © denote the set
(é K A,p: KeP, A,e A). For every f= :\:‘,K}Ai,,ﬁ consider the

i=]

function f(1) on & so that f(3) = EK () A; 4. As we shall show
in Lemma 6.3, the function f(4) 1s umquely determined for every
fe&. We denote by f= S@ f(?) whenever f(2) be constructed from
an expression of f€ & by the method as we stated above.

. Lemma 6.1. f = S@f(ﬂ) and g = S @ g) imply af + Bg =
[ @ @ry + sgi).

This is clear.
Lemma 6.2. f={@f) and g={@ew imly (f, 2 =

[ v, gw) don.
Proof. By the definition f(4) and g(4) are represented as follows:
fi) = K@ AL for f= KAy, and g@) = 3 LABal for
g= jzﬂ;LjB,,,ﬁ, where A,, B;€ A and K;, L,e P. Hence

(f, 8 = DK Aud, LiB,b) = 33| KO LIHHBHA) doli
= | SEWAL SLOBL) aw
[ r, g) ao.

Lemma 6.3. f N S(2) s a one-to-one linear correspondence.
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Proof. Let f= S @) = S @ g(4). By Lemma 6.1 we have 0O

=f—f= S@ (f(A) — g(4)). Then 0 = S (| £ — g(4) [|*de(2), where
| f(2) — g2 || is continuous in & Hence f(2) — g(4) vanishes on &.
And the function f(2) is uniquely determined for every f€®&. Fur-
ther if f==0, S lAA1?de = || FII*+=0. Thus f— f(3) is a one-to-one

linear correspondence. .
We now define a topological direct integral of Hilbert spaces as
follows.

Definition, Let £ be a locally compact space with a positive
Borel measure p. Let C(2) denote the space of all bounded continu-
ous functions on 2. For each 2e¢ £ a Hilbert space 9(4) be given.
A set & of functions on £ so that f(2) € 9(2), is called a base of a
topological direct integral if it satisfies the next conditions.

(1). For every f, g€, (f(2), g(4) is continuous and integrable
in 2. .

(2). & is linear, i.e. f(%), g(A) €S imply af(}) + Bgl)eS. For
every ¢ € C(@) and every fe€ &, of = o(A)f(2) €S,

(3). The set (f(4): fe®) is dense in H(A).

In & we can define an inner-product by

. & = | . ) doa.
The Hilbert space © which is the completion of & is called the fopo-
logical direct integral of (1) and denoted by $ = Sfl@(l) TR

Let © = S-Si_)(l) Vv dp denote a topological direct integral with a

base &. For each i€ £ given a bounded linear operator A, on $(A).
If there exists a bounded linear operator A on $ so that ASc3
and that (4f)() = A, f(3) for every fe€ &, then A is called the direct

integral of these A,, and denoted by 4 = S @ A,.
Lemma 6.4. If A=S@A“ then | A | =sup | 4y ].
Proof. For every ¢ € C(2) we have |Aef|PS 1A 2| ef||>. Then
[ 1o 1A ide < 14 E [1ow > 17D 17 do.
This proves || Ayf) P AR f(A)]|> Hence |4\ Z 14

= |
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Now put y =sup | A, |. Tnen
A

[1aswirde < v {101 do.

Thatis, |Af|?<7%||f||> Thisproves r >|A| and |A| =sup | A,]|.
Lemma 6.5. Given a topological direct integral 9 = Sﬂb(l) Vide

with a base &. Then for each ¢€ C@), K, = S(—D o(N 1, exists, where

I, denotes the identity on D). The set K =(K,: ¢€C(2)) is a
C*-algebra isometrically isomorphic to C(2). K is called the kernel
algebra of the direct integral.

Proof. Let ¢ € C(2), then for every fe & we have [[ef|| <ol f].
Therefore f — ¢f is a bounded linear operator on &, and there exists
a bounded linear operator K, on § so that K,f = ¢f for every fe &,

where K, = S ® o(3)I,. Further
| Ko} = sup |e@ L] = sup [od | = ¢l

Hence ¢ — K, is an isometric isomorphism between two algebras
K and C(@).

Theorem 9. Given a topological direct integral © = SS_J(A) vde
with a base &. Let A be a C*-algebra on D so that every A€ A is a
direct integral A = S@A(l). Let A, denote the uniform closure of
the set (A,: Ae A). Then A — A, is a =-algebraic homomorphism of
A inlo a dense sub-algebra of A.. We denote this fact by A = S @A,,

and say that A is a direct integral of A. .
Proof. We only need to prove that the mapping preserves the

«-operation. Let A€A, then A= S@AA and A* = S@B,\. For
every ¢ € C(2) we have (Aef, g) = (¢f, A*g). Then

S o) (A f(R), gA))dp = S ¢ () (), Big(d)) do.

This proves (A, ), g(%)) = (f(%), B,g{d)). Then B, = A,*. Hence
A — A4, is a ».algebraic homomorphism of A. q.e.d.

Now from Lemma 6.1 - 3 we have immediately
Theorem 10. Given a state p on a C*-algebra A, and its diago-
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nal decomposition p = S Adp concerning a kernel algebra P on L¥(p).

Put &, = (S K A,p: KeP, A,€A), and for = ZK,A,,,pe@ let
) denote the functzon on & so that f(2) = 3 K() A, A€ L*A). Then
by the expression f— f(d) for f€ S,, LXp) is a topological direct integral

Lp) = SﬁLsu)\/Hp‘ with the base ©,. The kernel algebra on IXp) is
the kernel algebra of the direct integral. Every representative operator
A, on [Xp) for A€ A is a direct integral A, = S@A“ where A, de-
notes the representative operator on LX) for A. And the representa-
tive algebra A, on L*p) is a direct integral A, = S@A,\, where al-

most all representative algebras A, are irreducible.
Let © be a Hilbert space and A be a C*-algebra on . Given
Z2€9, let [Ag] denote the closure of the set (Ag: A€ A). For every

A€ A let A, denote the bounded linear operator on [Ag] which coin-

cides with A in {Ag]. Then the state g* defined by g*(4) = (Ag, g)
satisfies clearly L*g*) = [Ag), & =g and A, = A, for every A€A.
Further A, coincides with the uniform closure A, of the set (A4,:
A€ A). Then from Theorem 10 we have immediately.

Theorem 11. Let A be a C*-algebra on . Given ge D, [Ag] is
a direct integral [Ag] = g DNV do which satisfies the next conditions.

(1). © is the spectrum of the kem_el algebra K.
(2). The corresponding base & contains g, and || g || = 1.

3. A, is a direct integral A, = S @ A, so that almost all A, are

irreducible.

(4). For every A== 1 €® there exists at least pne A€ A so ﬂzat
(A2)(2), g2) * ((Ag)(»), &(»)).

Lemma 6.6. 9 is a direct sum = 3D [Ag.]°.

Proof. Consider the family 6 of all sets {g,} =9 so that any
two of [Ag.] are mutually orthogonal. Then 6 satisfies the Zorn’s
maximal condition, and there exists a maximal set {g,}. Assume
that & > ®[Ag.). Then there exists %230 which is orthogonal
to all [Ag,] Now (Ah, Bg,) = (h, A*Bg,) =0 for every A, BeA.
Then [AZ] is orthogonal to all [Ag.]. So {% g.} €6. It contradicts
the maximality of {g,}. Hence = ST®[Ag.]. aq.e.d.

1) M= s D My expresses the fact that these My are mutually orthogonal, and M
is the smallest closed linear set which contains all M.
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Consider a decomposition = > @®[Ag.) Then each [Ag,] is
decomposed by Theorem 11. Combining these two decompositions we
obtain the next decomposition theorem.

Theorem 12. Let A be a C*-algebra on . Given a direct sum
decomposition © = S\ @ [Ag.] of . Then each [Ag.) is a topological
direct integral [Ag.] = S@@(X)l/ dp, which satisfies the conditions of
Theorem 11. Let &, denote the concerning bases o lhese decomposi-
tions, and © denote the smallest linear set which contains all &,., Let

2 denote the discrete sum of the spaces ©,, and p denote the measure
on 2 so that o(X) = 20X NG,) for every Borel set X< 2, Then O is

a topological direct integral O = Sﬂ@(z)\/ ‘do with the base ©. And

correspondingly A is a direct integral A = g @ A, whose almost all A,
are irreducible.

Proof. For every f= > f.€S we define the function £4) on £
by f(A) = f.4) for 1¢@®,. We show that & is a base of a direct
integral by this expression f— f(3). & is clearly linear, and for
every ¢ € C(@) and f=>11,€6, of = S¢f,€S. Further if f =>f,,
g =>18.€©, then only finite numbers of these f,, g,.€ &, are 0.
Then

(f-! g) = Z‘.‘l (fan 8s) = 2": Sg‘(‘fm()‘)r gm(l))dpa,
ot gw) do.

|

Hence 9 is a direct integral $ = S%(/l) V'dp with the base &. Let
f=3/.€S and A€A, then Af=314, f,€S. Now put 4, =4,,
for every 1€ ®,, then clearly A = S @A, and A = S @® A., where

almost all A, are irreducible.

The J. v. Neumann’s decomposition.
Let M be a C*-algebra on 9, and N be a weakly dense C*-sub-
algebra of the commutor IM’'. Consider a decomposition of H:

o= S{)(l) v de in Theorem 12, concerning the algebra R = MUu N.

Then R is a direct integral R = S @® R, so that almost all R, are
irreducible. Let M, and N, denote the uniform closures of sets
(A,: AeM, A = S@Ah) and (B,: BeN, B =S@BA) respectively.
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Then M and N are direct integrals M = g @M, and N = SG-) N..

Let B, denote the algebra of all bounded linear operators on $(4),
and O, denote the algebra («l). Whenever R, be irreducible, we
have M,” = N,’. ' Further

M)\” U M;\’, N)‘”.U N)f 2 M,\” U N‘\" 2 R,\" = BA ’
and
M,\Il n M'\I = N)\II n N’\I —_ M‘\/l n NA” — oA .
Following v. Neumann, we call such a pair of algebras (M,”, N,”’) a

factorized pair. Then the v. Neumann’s decomposition theorem is
generalized as follows.

Theorem 13. Let M be a C*-algebra, and N be a C*-sub-
algebra of M which is weakly dense in M. Then © is a topological

direct integral © = S@(l) V'do, whick induces the decomposition of M

and N: M = S(—D M, and N = S@ N. so that almost all pairs (M,

N.”) are factorized pairs.
When the space  is separable, we can refine the Theorem 13
as follows.

Theorem 14, Let M be a C*-algebra on a separable Hilbert
space 9, and N be a weakly dense C*-subalgebra of the commutor NV.
Then we can choose g€ © with © =[(MuN)gl. © is a direct inte-

gral O = S@@(A) V'dp which satisfies the next conditions.
(1. @ is the spectrum of the kernel algebra K.

(2). K is weakly dense in NV nIMY.
(3). The concerning base © contains g, and g satisfies || gd) || = 1.

4). M and N are direct integrals M = SC—D M, and N = S @ N,

so that almost all pairs M,”, N.") are factorized pairs.
(5). For every A3 re® there exist two operators Ae M and
Be N which satisfy

(Ag)(D), (Bg)() + ((A2)(»), (Bg)(#))-

Proof. Choose a direct sum decomposition $ = SI@[(Mu N)g.]
by lemma 6.6. Since 9 is separable, these g,= 0 are at most count-
able. That is, $ = i @ [Rg:), where we put R=MuN. We .can

i=1
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assume here [ gl <2 since we can replace g, by 27'g./ll gl
whenever g, 4= 0. Then g= g g, converges. Now we show $ =[Rg].
Let P and P, denote the projections of [Rg] and [Rg,] respectively.
Then we can easily shown that P and P, belong to R = N'n M’
= M”nM’. Then these are mutually commutative. Further Pg = g,
Pg =g and P,P,=0 for i j. Now

Pg, = PP g = PPg = Pg = g.

This proves g;€[Rg] and [Rg,]=[Rg)]. Then $ =3 @ [Rg]=[Rg]
= [(MuN)gl

Now in the proof of Theorem 13, we can replace the use of
Theorem 12 by the direct use of Theorem 11. Then  =[Rg] is a
direct integral © = S@@(x) vds which satisfies (1), (3), (4) of the
Theorem, and the condition

(5). For every A% r€® there exists Xe Mu N so that (Xg)(d),
2(4) ¥ ((Xg) (»), g(x)).

Since the set (?nle;Bi: A,e M, B,.e N) is uniformly dense in
Mu N, we obtain the condition (5). Finally we show the condition
(2). The kernel algebra K of the direct integral is the kernel al-
gebra on L%*g®), where g° is the state on R = Mu N defined by
g'(X) = (Xg, g). But by Theorem 7, the kernel algebra K is weakly
dense in a diagonal algebra E on L¥g% = 9. Now E is a maximal
commutative C¥*-subalgebra of the commutative C*-algebra R’
=M’'nM. Then E coincides with R’'= M”nM/’. This concluds
the condition (2).

The Moutner’s decomposition.
Let A be a C*-algebra on . By Lemma 5.1 we can choose a
commutative C*-algebra E so that (AUE)’ = E. Consider a decom-

position = Sﬂ.i)(x) v dp in Theorem 12 concerning the algebra A UE.
Then AUE is a direct integral A UE = SG—)'(AU E), so that almost
all (AuE), are irreducible. Now for every ¢(1)e C(2), S @ eld) I,

commutes with all A = S ®A, e AUE. Then S @ v 1€ (AUEY
= E. So E contains the kernel algebra K of the direct integral.
Conversely let E = S @ E, e E. Then E commutes withall Ae AU E.
And E, commutes with all A,e(AuE),. Therefore, whenever
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(A U E), be irreducible, E, should be denoted as E, = a(d)l,. Then
we have E, = a(2)I, almost everywhere. Let & denote the con-
cerning base of the direct integral. Then for every A€ £, there
exists f€ & so that f(2) 0. Now (E,f(1), f(4) = a(2)|| f(2) ]|* holds
almost everywhere. Let U>4 denote an open set in which f() £ 0.
Then «(d) coincides with the continuous function (1) = (E,f(3),
FOO/SfA | in a dense subset of U. So for every g, h€S,
(Exg(?), 7(4)) and () (g(%), h(4)) coincide with each other in a dense
subset of U. Since these functions are continuous, these must coin-
cide in the whole U. Hence we have E, = y«(A) [, on U. Now E, is
denoted as 4r(3)1, on the whole £, where +(1) is a bounded con-

tinuous function on 2. Thus E = S@l,'r(l) I, belongs to the kernel

algebra K.

Therefore E coincides with the kernel algebra K.

Finally, T = (3 E,A,: E,€E, Ae A) is uniformly dense in AUE,
then T, = (3 EWXA;.: EcE, A eA) = (A.: A€ A) is uniformly

dense in (AU E),. Therefore A is a direct integral A = S D@AUE)..
Hence putting A, = (A UE), we obtain the next theorem.

Theorem 15. Let A be a C*-algebra and E be a commutative
C*-algebra so that (AUE) = E. Then © is a topological direct inte-

gral = S IO v'do so that E is the kernel algebra, and A is a

direct integral A = S @ A, whose almost all A, are irreducible.
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