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Abstract
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A REPRESENTATION OF RING HOMOMORPHISMS
ON UNITAL REGULAR COMMUTATIVE
BANACH ALGEBRAS

TakesHI MIURA

ABSTRACT. We give a complete representation of a ring homomorphism
from a unital semisimple regular commutative Banach algebra into a
unital semisimple commutative Banach algebra, which need not be reg-
ular. As a corollary we give a sufficient condition in order that a ring
homomorphism is automatically linear or conjugate linear.

1. INTRODUCTION AND RESULTS

Let A and B be two algebras. We say that a map p: A — B is a ring
homomorphism if p preserves both addition and multiplication. That is,

p(f +g) = p(f) +r(9),
p(fg) = p(frlg)

for every f,g € A. Moreover if such p preserves scalar multiplication, then
we say that p is a homomorphism.

In this paper, C(K) denotes the commutative Banach algebra of all
complex-valued continuous functions on a compact Hausdorff space K. We
say that a map p: C'(X) — C(Y) is a *ring homomorphism if p is a ring

homomorphism which also preserves complex conjugate: p(f) = p(f) for ev-
ery f € C(X). Semrl [6] made a study of *-ring homomorphisms on C/(X)
into C(Y) and remarked that the problem of a general description of all
ring homomorphisms on C(X) into C(Y) is much more difficult than the
problem of characterizing all *-ring homomorphisms. In fact, let G be the
set of all surjective ring homomorphisms between the complex number field
C. Tt is well-known that the cardinal number of G is 2¢ (cf. [1]). Here ¢
denotes the cardinal number of C.

Let A be a unital regular semisimple commutative Banach algebra and
B a unital semisimple commutative Banach algebra, which need not be
regular. In this paper, we consider a ring homomorphism p: A — B and
give a representation of p; hence a description of a ring homomorphism
on C(X) into C(Y) is given. This is an answer to the Semrl’s remark
above. As a corollary, we can show [5, Theorem 1] and a unital version
of [6, Theorem 5.2]. We also prove that an injective or a surjective ring
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homomorphism on A to B is linear or conjugate linear if the maximal ideal
spaces of A and B are both infinite and if every constant function is mapped
to a constant function.

Throughout this note, A and B denote a unital regular semisimple com-
mutative Banach algebra and a unital semisimple commutative Banach al-
gebra with the maximal ideal spaces M4 and Mp, respectively. The units
of A and B are denoted by the same symbol e. We simply write f for the
Gelfand transform of f. Before we state our main theorem, we need some
terminologies.

Definition 1.1. Let p: A — B be a ring homomorphism. For each y € Mp
we define the induced ring homomorphism p,: A — C and p,: C — C as

py(f) =p(F)y) (f €A,
py(z) = p(ze)(y) (2 €C).
Moreover, g,: A — A/ ker p, denotes the quotient map for every y € Mp.

A decomposition of a topological space T is a family {T1,T5,...,T,} of
finitely many subsets 17,75, ..., T, C T with the following properties:
k
T=|JT; and TjnTy=0if j #k.
j=1
Note that each T} need not be clopen.

Let A be a commutative algebra with unit. Recall that P is a prime ideal
of A if P is a proper ideal which satisfies that fg € P implies f € P or
g € P. Here and after the term ideal will mean algebra ideal. In particular,
every maximal ideal is a prime ideal. By Lemma 2.2, we see that the kernel
ker p, of the map p,: A — C is a prime ideal if ker p, # A. Hence, the
quotient algebra A/ker p, is an integral domain. Therefore, we can define
the quotient field F, of A/ker p, if ker p, # A.

Now we are in a position to state our results.

Theorem 1.1. Let p: A — B be a ring homomorphism. Then there ex-
ist a decomposition {M_y, My, My, My,, Mp} of Mp and a continuous map
O: Mp\ My — My with the following property:

For every y € M,, U M, there exists a non-zero field homomorphism
Tyt Fy — C such that

f(2(y)) ye M4
0 y € My
p(F)y) = f(®(y)) y € My
f(®() y€ Mn
) y € M,
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for every f € A.
Moreover, if p is surjective then the map ® is an injection defined on Mp
into M4.

Corollary 1.2. Let p: A — B be an injective or a surjective ring homo-
morphism satisfying p(Ce) C Ce. If M4 and Mp are both infinite, then p
18 linear or conjugate linear.

Recall that a subset S of C(X) is separating if for each =,y € X with
x # y there corresponds an f € S so that f(z) # f(y). We say that S
vanishes nowhere if for every = € X there exists a function g of .S such that

g(z) # 0.

Corollary 1.3 (cf. Molnar, [5]). Let p: C(X) — C(Y) be a ring homomor-
phism whose range contains a separating subalgebra of C(Y'). If the range
p(C(X)) vanishes nowhere, then p is surjective.

Corollary 1.4 (Semrl, [6]). Let p: C(X) — C(Y) be a *-ring homomor-
phism. Then there exist a clopen decomposition {Y_1,Yy,Y1} of Y and a
continuous map ®:Y_1UY; — X such that

f(@(y) yeY,
p(f)(y) =<0 y ey
f(@(y) yen

for every f € C(X).

2. LEMMAS

Let 7: C — C be a ring homomorphism. We simply say that 7 is a ring
homomorphism on C. For example, 7(2) =0 (2 € C), 7(2) = z (# € C) and
7(2) = Z (¢ € C) are ring homomorphisms on C; we call them trivial ring
homomorphisms.

Proposition 2.1. Let 7 be a ring homomorphism on C. Then the following
conditions are equivalent.

(i) 7 is trivial.

(ii) There exist mg, Lo > 0 such that |z| < mg implies |1(z)| < Lg.
(iii) 7 is continuous at 0.
(iv) 7 is continuous at every point of C.
(v)

v ) T preserves complex conjugate.
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Proof. (i) = (ii) It is obvious.

(ii) = (iii) It is enough to consider the case where 7 is non-zero. Then
by a simple calculation, we see that 7(r) = r for every r € Q, the rational
number field of real numbers. For every € > 0 fix an rg € Q with Ly < rge.
If |z| < mo/ro then we have |7(rgz)| < Lo by hypothesis. Since 7 fixes every
rational number, we obtain |7(2)| < Lo/ro < € if |z| < mg/ro. Thus 7 is
continuous at 0.

(iii) = (iv) Let {z,} be a sequence converging to z. Since 7 is continuous
at 0, we see that 7(z, — z) — 0 as n — oo. Hence 7(z,) converges to 7(z).

(iv) = (v) We consider the case where 7 is non-zero. Then 7(r) = r for
every r € Q. Since 7 is continuous, we have that 7(t) = t for every t € R,
the real number field. We also have that 7(i) = £i since 7(—1) = —1. This
implies that 7(z) = 7(z) for every z € C.

(v) = (i). By hypothesis, we have 7(R) C R, and hence 7(z+h?)—7(x) =
{7(h)}? > 0 for every x,h € R. It follows that 7(z) > 7(y) for x,y € R
with © > y. If 7 is non-zero, then 7 fixes all r € Q. Therefore, we obtain
7(z) = x for x € R, so that 7 is trivial. O

As remarked in the previous section, there exist non-trivial ring homo-
morphisms on C. By Proposition 2.1, non-trivial ring homomorphisms are
discontinuous at each point of C. Moreover a non-trivial ring homomorphism
7 on C has the following property:

For every pair m,L > 0 there exists a z € C such that
|z| < m but |7(z)| > L.
It is well-known that the kernels of non-zero complex homomorphisms on

a unital commutative Banach algebra are maximal ideals. Let N be the space
of all natural numbers and Ky = {0} U{1/n;n € N} with its usual topology.
Semrl showed the existence of a non-zero complex ring homomorphism p on
C(Kp) whose kernel ker ¢ is not a maximal ideal of C'(Kj) ([6, Example 5.4]).
We show that the kernel ker ¢ of a non-zero complex ring homomorphism ¢
on A is a prime ideal that is contained in a unique maximal ideal. De Marco
and Orsatti [4] gave a characterization of a commutative ring with unit of
which each prime ideal containing the Jacobson radical is contained in a
unique maximal ideal.

Lemma 2.2. Let ¢p: A — C be a non-zero ring homomorphism. Then the
kernel ker ¢ is a prime ideal which is contained in a unique maximal ideal

of A.

Proof. As a first step, we show that ker ¢ is an ideal of A. Since ¢ preserves
both addition and multiplication, it is enough to show that zf belongs to
ker ¢ for every z € C and f € ker ¢. Note that ¢(e) = 1 since ¢ is non-zero.
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Therefore, we have

¢(zf) = o(zf)d(e) = ¢(f)p(ze) =0

for every z € C and f € ker ¢. Hence ker ¢ is an ideal of A. It is now obvious
that ker ¢ is a prime ideal.

Since ker ¢ is a proper ideal, there corresponds an xzg € M4 such that
kerop C {f € A; f(zo) = 0}. We show that {f € A4; f(xo) = 0} is the unique
maximal ideal containing ker ¢. To this end, assume to the contrary that
there exists an z1 € M4 such that ¢ # x; and ker ¢ C {f € 4; f(z1) = 0}.
Let V; be an open neighborhood of z; for j = 0,1 so that 1NV} = (). Since
A is regular, there corresponds an f; € A such that

fi(z;)=1 and f;(Ma\V;)=0 (j=0,1).

Then fofi = 0 on My. Since ker ¢ is a prime ideal, fo or f; belongs to
ker ¢. This is a contradiction since f;(z;) = 1 for j = 0,1. Hence ker ¢ is
contained in the unique maximal ideal {f € A; f(zo) = 0}. O

Lemma 2.3. Let ¢: A — C be a non-zero ring homomorphism and q: A —
A/ ker ¢ the quotient map. Then ¢ is of the form ¢ = Toq for some non-zero
field homomorphism T on the quotient field F of A/ker ¢. If, in addition,
ker ¢ is a mazximal ideal of A, then we may consider T a non-zero ring
homomorphism on C and q € My.

Proof. Note that the quotient field F of A/ker ¢ is well-defined since ker ¢
is a prime ideal of A, by Lemma 2.2. We define the map 7: F — C by

_ el
(#) ([f1/19]) = 0) (LF1/1g] € F).

Here [f] € A/ker ¢ denotes the equivalence class of f € A with respect to
ker ¢. Then 7 is a well-defined non-zero field homomorphism on F. If we
identify [f] with [f]/[e], it is obvious that ¢ is of the form ¢ = 7o gq.
Moreover if ker ¢ is a maximal ideal of A, then the quotient algebra
A/ ker ¢ is isometrically isomorphic to C. Thus, we may identify A/ker ¢
with the quotient field F of A/ ker ¢. Let I be the isomorphism on A/ ker ¢
onto C. Then 7o I~! is a ring homomorphism on C and I o ¢ a non-zero
complex homomorphism on A with p = 70q = (toI ') o (I ogq). This
completes the proof. O

Definition 2.1. Let p: A — B be a ring homomorphism. Put My = {y €
Mp;ker p, = A}. We define the subsets Mp(,,) and Mp,) of Mp\ My as

Mp(m) = {y € Mp \ My; ker p, is a maximal ideal of A},
Mpy ={y € Mp\ My;ker p, is not a maximal ideal of A}.
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Let M_y, My, My, —1 and M,, 1 be as follows:

M_y  ={y € Mp(y; py(z) =% (2 € C)},

My ={y € Mp(y; py(z) =z (z € C)},

M, —1 = {y € Mp(y); py is non-trivial and py (i) = —i},

M1 ={y € Mp(y); py is non-trivial and py (i) = i}.
The subsets M), —1 and M, 1 of Mp,) are defined by

Mp,—l = {y € MB(p)»ﬁy(Z) = _Z}v
My ={y € Mpy); py(i) = i}.
Then we write My j = My, ; UM, ; (j=—1,1) and Mg = Mg _1U Mg;.

Note that p, is a non-trivial ring homomorphism on C for every y € M.
For if p, is trivial then

py(zf) = py(2)py(f) (2 €C,f €A

implies that ker p, is maximal for every y € Mp \ My. By definition, the
subsets M_1, My, M; and My of Mp are mutually disjoint and Mp =
M_1UMyU M, UM,. Hence, {M_1, My, My, My} above is a decomposition
of Mp. We call {M_1, My, My, M} the decomposition of Mp with respect
to p.

Until the end of this section, p: A — B denotes a ring homomorphism
and {M_1, My, M1, My} the decomposition of Mp with respect to p.

Lemma 2.4. The sets Mo, M_1 UMy _1 and My U Mg, are clopen in Mp.
Also M_1 and My are both closed in Mpg.

Proof. By definition, it is easy to see that

My = {y € Mp; py(i) = 0},

M_1UMy_1 ={y € Mp;py(i) = —i},

MiUMg, ={y € Mp;py(i) =1}.
Therefore, My, M_1 U Mg and My U Mg are clopen since the function
p(ie) is continuous on Mp.

Next, we show that M is closed in Mp. For every y € My we can find
a 29 € C such that py(z9) # 2o since p, is non-trivial. Put

V ={w € Mg;|p(20¢)(w) — p(20¢)(y)| < [20 — py(20)|/2}.

Then V is an open neighborhood of y with V'N M; = (). Since My U My, is
clopen, this implies that M; is closed. In a way similar to the above, we see
that M_; is closed and the proof is omitted. O
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Definition 2.2. By Lemma 2.2, for every y € Mp \ My there exists a
unique x € My such that kerp, C {f € A; f(z) = 0}. We denote the
correspondence defined on Mg\ My into M 4 as ®; That is, ker p,, is contained
in the unique maximal ideal {f € A; f(®(y)) = 0} for every y € Mp \ M.
We call @ the representing map for p.

Lemma 2.5. Let r € Q, G open in M and ® the representing map for p.
Suppose that h € A satisfies h(G) = r then py(h) =1 for everyy € ®~1(G).

Proof. Put h, = h —re € A and fix y € ®71(G). Since A is regular,
there exists a function g € A such that g(®(y)) = 1 and g(M4 \ G) = 0.
Then gh, = 0 on M4. Since ker p, is a prime ideal, g or h, belongs to
ker p,. On the other hand, g does not belong to {f € A; f(®(y)) = 0} since
g(®(y)) = 1. So we conclude that h, € ker p,. Therefore we have p,(h) =r
for every y € ®~1(G). O

Lemma 2.6. Let ® be the representing map for p. Then the range ®(My)
is at most finite.

Proof. Assume to the contrary that ®(My) has a countable subset {z,}22
such that z; # x; if j # k. Without loss of generality, we may assume that
each z; is an isolated point of {x,}>2 ;. By definition, for every n € N there
exists a y, € My such that x,, = ®(y,). By induction, we can find an open
neighborhood Uj of z; with

J
(Ui \{ash) N {wnlpzs =0 and Ty € Ma\ | Uy

k=1
for every j € N. Here U, denotes the closure of U; in M. Let V; be an
open neighborhood of z; so that V; C U;. Since A is regular, A is normal
(cf. [2, Theorem 6.3 of Chapter I]). That is, there exists a g; € A such that
g;(Vj) =1 and g;(Ma \ U;) = 0. Since p,; is non-trivial, there corresponds
a z; € C so that

|25l < @llgs I~ and  [py, (2)] > 27,

by Proposition 2.1. Here || -|| denotes the Banach norm on A. Put f; =
zjg; € A. Then py(f;) = py(2j)py(g;) for every y € Mp. Therefore, by
Lemma 2.5 we see that p,.(fj) = py,;(z;). Since [[f;]| < 277, the series
Y02 | fn converges in A, say fo. Note that f; = 0 on Vj if k # j. Thus

we see that fo = f; on Vj for every 7 € N. By Lemma 2.5, we obtain
py; (fo — fj) = 0. Therefore,

10y, (fo)l = lpy; (£)] = 1By; (z) > 20 (j €N).
This is a contradiction since p(fy) is bounded on Mp. Hence we have proved
that the range ®(My) is at most finite. O
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3. A PROOF OF MAIN RESULT

Proof of Theorem 1.1. Let {M_1, My, M1, My} and ® be the decomposition
of Mp with respect to p and the representing map for p, respectively. For
every y € Mp\ My, let g¢,: A — A/ ker p, denote the quotient map. Recall
that Mp,,) is the set of all y € Mp so that ker p, is a maximal ideal of A.
By Lemma 2.3, we can find a field homomorphism 7, on the quotient field F,
of the integral domain A/ ker p, into C such that p, = 7,0¢,. If, in addition,
Y € Mp(m), then we may consider that 7, is a ring homomorphism on C and
gy € My. In this case, we therefore have ker g, = ker p, = ker ®(y). Hence,
we see that g, = ®(y) for every y € Mp(,,). By the formula (§), we also
have 7, = f, for every y € Mp,,). That is, 7,(2) = Zif y € M_1, 7,(2) = 2
if y € My and 7, is non-trivial if y € M,;, _1 U M,, 1. Therefore, we have

(0 y € My

f(@2(y) y € Mpn

a(f))  y € Mpgy
f(@(y)) ye M

0 y € My

=4 f(2(v)) y € M

(f(®(y) y € My —1U My,
(@(f)  ye My 1UM,,

S J

for every f € A.

By Lemma 2.6, we may put ®(My) = {z1,22,...,2m}. Then we see that
the set My(z;) = {y € Mg; ®(y) = z;} is open in Mp for j = 1,2,...,m.
Indeed, assume to the contrary that Mg(z;) is not open. Then there exist
ay; € Mg(x;) and a net {y,} in Mp\ My(z;) such that y, converges to y;.
Since M_1 U My U M; is closed in Mp by Lemma 2.4, we see that My is an
open subset of Mp. Therefore, without loss of generality we may assume
{ya} C Mg\Mg(z;). Fix open neighborhoods O1, Oz of z; with O; C Oz and
Oy N®(M,) = {z;}. Here, = denotes the closure in My. Since A is regular,
we can find a function h; € A so that h;(O1) = 1 and h;(Ma \ O2) = 0.
By Lemma 2.5, we have that p,. (h;) = 1 and py,(hj) = 0 for every a.
This is a contradiction since p(h;) is continuous on Mp. Therefore, the set
My(z;) ={y € Mq; ®(y) = x;} is open in Mp for j =1,2,...,m.

Finally we show that the map ® on Mp \ My into M4 is continuous.
Indeed, we see that ® is continuous at each yg € My since My(P(yo)) =
{y € My;®(y) = P(yo)} is open as proved above. We show that ® is
continuous on M_1 UM;. Let y; be a point of M; and {ys}secr an arbitrary
net in Mp \ My converging to y;. Since My U M_; is closed in Mp, we see
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that M; U My is an open subset of Mp. Hence, without loss of generality
we may assume {yg}ger C My U My. We assert that there exists a fy € I’
such that yg € My U {y € Mg; ®(y) = ®(y1)} for every 5 € I' with 8 > .
In fact, let W7 be an open neighborhood of ®(y;) and Ws an open subset
containing ®(My) \ {®(y1)} so that W1 N Wy = . Then we can find a
go € A such that go(W1) =1 and go(W2) = 0. By Lemma 2.5, we see that
Py (90) = 1 and py(go) = 0 for every y € ®~1(Ws). By the continuity of
p(go), there exists a Gy € I" such that 8 > [y implies |p(go)(ys) — 1| < 1/2.
That is, ®(yg) & ®(Mg) \ {®(y1)} if B > Fo. Therefore, we see that yz €
My U{y € My; ®(y) = ®(y1)} for every 5 € I' with § > [By. Hence, if 8 > [
then we have

p(f)(ys) yp € M

o -
2 {f@(yl)) B(ys) = B(y1)
for every f € A. Consequently, 5 > Gy implies that

|£(®(yp)) — F(@y1))] < |p(f)(ys) — p(f)(y1)l

for every f € A. Thus ®(yg) converges to ®(y;). This implies that & is
continuous on M;. In a way similar to the above, we can show that ® is
continuous on M_; and the proof is omitted. Thus, we have proved that
the map @ is continuous on Mpg \ M.

Suppose that p is surjective. Then M; is an empty set. Hence ® is the
map defined on Mp into M4. We show that ker p, = {f € A; f(P(y)) = 0}.
Recall that kerp, C {f € A; f(®(y)) = 0}. So it is enough to show that
py(f) # 0 implies f(®(y)) # 0. Let a € A satisfy py(a) # 0. Since p,(A) =
C, there corresponds a b € A such that p,(a)py(b) = 1. Therefore, ab — e
belongs to ker p,. We conclude that a(®(y)) # 0 since (ab — e)(®(y)) = 0.
Thus, we have proved that kerp, = {f € A; f(®(y)) = 0}. Hence Mp =
M_ UM U Mm7,1 @] Mm,l-

Let wy,we € Mp satisfy w; # wa. Since p is surjective, there exists an
ap € A such that p(ap)(wi) =1 and p(ag)(w2) = 0. By the formula for p, it
is easy to see that

ap(®(w1)) =1 and ao(P(wz)) =0.
Therefore, we have ®(w;) # ®(wz). This implies that ® is injective. O

Proof of Corollary 1.2. Let {M_q, Mo, My, Mg _—1,Mg1} be the decomposi-
tion of M p with respect to p and ® the representing map for p. Since p(Ce) C
Ce, we have Mp = M_1 U My_1 or Mg = My or Mp = My U Mgy;. It is
enough to consider the case where Mp = M_1 UMy _1 or Mp = My UMyg;.

Suppose that Mp = M; U Mg ;. First, we show that M; # (. Suppose
not. Then Mp = Mgy,. If p is surjective, the map ® is injective by Theo-
rem 1.1. Since ®(My,) is finite by Lemma 2.6, so is Mg = Mp. This is a
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contradiction. Therefore, My # () if p is surjective. Consider the case where
p is injective. Since M4 is infinite, there exists an zg € My \ ®(Mg,1). We
can find an open subset V of My so that ®(Mz1) C V and 29 € V. Since A
is regular, there corresponds an fo € A such that fo(zo) = 1 and fo(V) = 0.
By Lemma 2.5 we see that p,(fo) = 0 for every y € My, = Mp. Since f
is not identically zero, this contradicts that p is injective. Consequently, we
have that M; # 0.

Now we show that Mp = Mj. Suppose that there exists a y1 € My;.
Since py, is non-trivial, we can find a z; € C such that p,, (21) # 2z1. Note
that py,(21) = 21 for every y € M;. This is a contradiction since p(Ce) C Ce.
Therefore, we have proved that Mp = My if Mp = M1 U Mgy;. In a way
similar to the above, we see that Mp = M_; if Mp = M_; UM, _;. Hence,
p is linear or conjugate linear. O

Proof of Corollary 1.3. Let {Y_1,Yp, Y1, Yy} be the decomposition of Y with
respect to p and ® the representing map for p. Since the range p(C(X))
vanishes nowhere, we see that Y[ is an empty set. Since p(C'(X)) contains a
separating subalgebra, in a way similar to the proof of Theorem 1.1, we can
prove that ker p, is a maximal ideal for every y € Y and that ®: Y — X is
injective. Hence, Y is homeomorphic to the range ®(Y). Let p: ®(Y) - Y
be the homeomorphism defined by

p(x) =0 (z) (ze(Y)).
Note that
f(@(y)) yeY
p(f)(y) = q f(2(y)) yem
T(f(®()) yeYq

for every f € C(X). Here 7, denotes a non-trivial ring homomorphism on
C. We define the continuous function h: ®(Y) — C by

9(p(x)) ze®(Yoy)
h(z) = { 9(p(x)) z € ®(11)
o) (9(p(2))) @ € D(Yy)
for each g € C(Y'). Since ®(Y_1), ®(¥1) and ©(Y) are disjoint closed subsets

Qf the compact Hausdorff space X, therg exists an h of C'(X) such that
hleyy = h. Then it is easy to see that p(h) = g. Hence p is surjective. [

Proof of Corollary 1.4. Let {Y_1, Yy, Y1, Yy} be the decomposition of Y with
respect to p and ® the representing map for p. Since p preserves complex
conjugate, by Proposition 2.1 we have that p, is trivial for every y € Y.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 44/iss1/6
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Therefore, Y, is an empty set. By Lemma 2.4, we see that Y_1, Yy and Y
are all clopen. This completes the proof. ]
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