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ON GALOIS THEORY OF DIVISION RINGS III

Noruo NOBUSAWA and Hisa0 TOMINAGA

Introduction. Throughout the present paper, we shall deal with a
division ring K which is (left) locally finite over a division subring L, and
use the following conventions: Let T be an arbitrary intermediate subring
of K/L. Then, ®&'(7/L) means the totality of L-(ring) isomorphisms of T
into K. (In particular, if T/L is Galois, the Galois group of 7/L will be de-
noted by &(7T/L) as in [3].) And, if ¢ is a map defined on a given subset
U of K containing T, then ¢| T means the contraction of ¢ to 7. Similarly,
if & is a set of maps defined on U, then &|T = {¢|T; s € &}. Finally,
we set H =V,(x(L)), and for other notations and terminologies used here
we follow [3].

Recently, in [3], the notion of locally Galois extensions was intro-
duced: If, for any finite subset F of K, there exists a division subring N
containing L[F] such that N/L is Galois and [N : L], <<oo, then K/L is
said to be locally Galois. In the present paper, we shall consider a class
of locally finite division ring extensions which contains locally Galois ex-
tensions and also Galois extensions. More precisely, we shall consider the
following conditions :

(I) For any subring L' of K such that L' 2 L and [L': L], << oo,
&'(L'/L) contains an isomorphism different from the identity map :
G&(L'/ L)~ 1.

(I H/L is Galois.

(1) &(L,/L)|L, = &'(L./L) for any intermediate subrings L, and L. of
K/Lsuchthat L, 2 L. 2 L and [L;:L], < ce.

(II" & (T/L)| H=®&'( H/L) for any intermediate subring 7 of K/ H with
{T: Hl, < oo,

We introduce here the notion of quasi-Galois extensions: If K/L is locally
finite and satisfies the conditions (I) and (II), the extension K/L will be
called gquasi-Galois. Needless to say, if K/L is locally Galois, then it is
quasi-Galois. It is also clear that, if K/L is Galois, then it is quasi-Galois.
The notion of quasi-Galois coincides with that of Galois when K is finite
over H as is seen later. In this sense, one may regard the notion of quasi-
Galois as a natural generalization of that of Galois.

We shall start our study with §1, which contains preliminary lemmas
that will play important roles in the subsequent sections. Secondly, in
§2, we shall see that K/L is quasi-Galois if and only if K/L is locally
finite and either the conditions (I') and (II) or (I') and (II') are fulfilled,
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and prove our principal theorem, which claims that, if K/L is quasi-Galois,
then so is K/T for any division subring T containing L such that [V.(L):
V&(T)], << oo. We shall conclude our study with §3, which contains some
supplementary remarks to the results cited in [3].

1. Preliminaries. In this section, we always assume that K is a
division ring which is locally finite over a division subring L.

Lemma 1. Let T be an arbitrary subring of H containing L.

(1) If the condition (I1) is satisfied, then T®&'(T/L)C H.

(ii) If the condition(l") is satisfied, then also T®'(T/L) C H. In par-
ticular, &'(H/L) = &(H/L).

Proof. 1t suffices to prove our lemma for the case [T : L], << oo,

(i) Let s bein &(T/L). If Te € H, then there exist a non-zero ele-
ment v in V(L) and an element ¢ in T such that v~ '({s)v~ts. Since ¢7'E
&(To/L) = &((To)[v]/L)| Te by (II), there holds #' = ¢|Ts for some
tEG®'((Te)[v]/L). Then, v- being evidently contained in V,(L), we have
t=(:)"Hv:) = (v"(to)v)- 55 ta- = ¢, which is a contradiction.

(ii) Let N be an intermediate subring of H/T such that N/L is
Galois and [N: L]; < e [2, Theorem 3]. Since Hom, (N, K)=8(N/L)K,
we obtain Hom, (7, K) = (8(N/L)|T)K, = &(T/L)K.. Accordingly, for
each ¢ € &/(7T/L), we can find some - € & N/L)|T such that ¢K, is T,—
K, —isomorphic to -K,. And then, one will easily see that ¢ = -0 with
some v € V,(L). Recalling here that T- C NC H, we obtain ¢ = z. Con-
sequently, it follows T+ C H. The latter part is a conseduence of [2,
Theorem 11].

Corollary 1. If K/L is quasi-Galois, then the condition (1') is satis-
fied.

Proof. Let L' be an arbitrary subring of H containing L such that
[ L], <eo, Smce [B(L'/L)K,: K,],<<oo, we obtain &(L'/L)K, =

1._.. . B a:K, with some /s in &'(L'/L). (One may remark here that each

o K, is L'.— K,—irreducible. ) Now, for any ~& &'(L'/L), there exists
some g, such that +K, is L'.— K,—isomorphic to «K,. And then, we see
that o=¢,7 with some v& V(L). Since L's; C H by Lemma 1 (i), it follows
a=a,. Thus we have proved &'(L//L) is finite (and so is compact). Now let
&'( > 1) be the inverse limit of the system {®'(L./L); L, run over all the
intermediate subrings of H/L such that [L,: L];<<oo}, which may be
regarded as a set of L-(ring) isomorphisms of H into H. Then, since each
&'(La/ L) is finite and, by (II), &'(L./L)|Ls =G'(Lg/L) for L, 2 Lg, there
holds &'|L, = &'(L./L) by (1, Corollary 3.9]. In virtue of this fact, we
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readily see that, for arbitrary s @' and x € H, there exists some positive
integer »# such that xs"=2x, whence it follows that # maps H onto H, that
is, # is an automorphism of H. Finally, if H contains an element « not
contained in L such that - =« for all r€ ¢/, then &'(L{«|/L)=&"|L{al
=1, which contradicts (I). Thus we have proved that H is Galois over
L.

Corollary 2. If K/L islocally Galois, then H|L is Galois.

Proof. Since K/L is quasi-Galois as is noted in the introduction,
our assertion is a direct consequence of Corollary 1.

Lemma 2. Let L' be an intermediate subring of K|/L such that [L':
L] << oo,

(i) If (1) and (1) are satisfied, then Hom,(L', K) =& (L'/L)K..

(i) If (I') and (I') are satisfied, then also Hom, (L', K)=&'(L'/ L)K.

Proof. Let U= {u,, ---, u,}] be a maximal subset of L' which is
linearly left-independent over H. Then we can find an intermediate
subring N of H/L such that [ N: L], <<oo, N/L is Galois, and M = E;
Nuy; 2 L'. Since K/ H is Galois, by Jacobson’s theorem, there exist some
E.€®(K/H)K k=1, -, n) such that u; £, = 6(Kronecker’s 4). Here,
we set £, = Zoiy(ary) where g, € &K/ H) and a;, € K. On the other

P
hand, if {x, ---, x..} is a linearly left-independent L-basis of N, then there
exist some p, € &'(N/L)K,(h =1, -, m) such that xp, = du. We set
T=N[U] and T'=T[(\J Ta:,) U {&,'s}], which are evidently left finite
- kP

over L. Further, we set Ty=H[T] and T"= H[T'], which are left
finite over H by [4, Theorem 1].

() By (D), p»= p"u| N for some p'y = X p(bsr). € &(T'/ L) K, where

q
e EQ'(T'/L) and b,,E K. Setting here 7, = (5| T)p's, one will readily
see that 7;“1 = Z (ﬂA1p| T)rhq(ak,,rhq)r(b,,q)r iS COntained in @'(T/L)Kr and
P.q

1if j=Fk and 7 =1,
XiUyzen = {

0 otherwise.

We obtain therefore Hom, (M, K) = @(T/L)K,| M, whence Hom,(L', K)
= Hom,(M, K)| L' = (&(T/L)K,)| L' € ®'(L'/L)K,. Since the converse
inclusion Hom, (L', K) 2 G/(L'/L)K. is clear, we obtain our assertion.

(i) By (IIY’) and Lemma 1 (ii), we can easily see that &(N/L) =
&'(T*/L)| N. Consequently, o, = p's| N for some p% & &(T"/L). Then,
as in the proof of (i), we can see that 7%, = (£]7,)p"» is contained in
&(To/L)K, and
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. {1ifj=kandz'=h,
XiUs7 k=
I 0 otherwilse.

Therefore we have eventually Hom, (L', K) = G'(L'/L)K..

2. Quasi-Galois extensions.

In this section, too, we shall assume that K/L is a locally finite divi-
sion ring extension. To prove our first theorem, further several lemmas
will be needed.

Lemma 3. Let the condition (1) be satisfied, and L, and L. division
subrings of K such that L, 2 L,2L and [L,: L], << o,

(1) IF () is satisfied, then &' (L,/L,) 5~ 1.

(ii) If (IU') is satisfied, then also ®'(L,/L,) 5 1.

Proof. (i) Since Hom, (L, K) = @(L,/L)K, by Lemma 2 (i), a
similar argument as in the proof of [4, Theorem 2] will apply to see that
Hom,, (L, K) = @(L,/L) N Hom,,(L,, K))K. = &'(L,/L:)K,. Recalling
that [Hom,,(L,, K): K], = [L,: L,],>1, we obtain &'(L,/L,) % 1.

(ii) Since Hom,(L,, K) = ®(L;/L)K, by Lemma 2 (ii), the proof will
proceed just as in (i).

As a direct consequence of Corollary 1 and Lemma 3 (i), it will be
easily seen that K/L is quasi-Galois if and only if K/L is locally finite
and the conditions (I') and (II) are satisfied. Moreover, Corollary 1 and
Lemma 3 (i) yield at once the first and second assertion of the next

Corollary 3. If K/L is quasi-Galois and L' a subring of K contain-
ing L with [L': L], <<oo, then K/L' is quasi-Galois, H' =V(Vi(L") is
Galois over L', and S(H'[/L') is (topologically) isomorphic to S(H/HMNL")
by the restriction map.

Proof. Recalling that &(H'/L’) is compact and &'(H/L) = &(H/L),
our last assertion will be easily obtained. (Cf. the proof of {2, Lemm 9
(iii)].)

Lemma 4. Let K/L be quasi-Galois, and L' a division subring con-
taining L with [L': L], <oo. If H'= Vi(Vx(L")), then &'(L'/L)=
®'(H'/L)IL'.

Proof. Since H'/L' is outer Galois by Corollary 3, H' =\U L/, where
L', run over all the G(H'/L')-normal intermediate subrings of H'/L' such
that [L’,: L], <<oo (Cf. [2]). Now let p be an arbitrary element of
G'(L'/L), and denote by G, the set of all the extensions of p to L-isomor-
phisms of L’,, which is evidently non-empty by (II). And then, we denote
by & the inverse limit of the system {&,}. If ¢ and r are in &,, then ¢ =
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ve with some e € &'(L'sz/L'p). But &(L'sr/L'p)(=G'(L's/L)=G(L"./L")
is finite, that is, @&, is finite. Consequently, the inverse limit & is non-
empty by [1, Theorem 3. 6], and is a subset of &'( H'/L).

Now we are at the position to present the following theor¢m.

Theorem 1. For a locally finite division ring extension K/L, the
Sfollowing three conditions are equivalent :

(1) K/L is quasi-Galois.

2) () and (11) are satisfied.

3) (I") and (I1') are satisfied.

Proof. The equivalence of (1) and (2) was already remarked imme-
diately afer the proof of Lemma 3.

(3) implies (2). If L, and L, are division subrings such that L,2 L.
2L and [L;: L],< e, then 8(L,/L)K,=Hom; (L., K) = Hom,(L;, K)|L.
= (®'(L,/L)|L,)K, by Lemma 2 (ii). In virtue of this fact, it will be easy
to see that &(L./L) = @(L,/L)| L, (Cf. the proof of Lemma 1 (ii). )

(2) implies (3). If T is a division subring containing H such that [T
H],< oo, then by [4, Lemma'2], T =H[L']=Vx(Vg(L")) with some in-
termediate subring L’ of T/L such that {L’: L],<< co. Hence, by Lemma
1 (ii) and Corollary 8, we obtain @ (T/L")|H =&(T/L")|H = S(H/HNL')
=®&'(H/HNL'). On the other hand, since &'(T/L)|L'=&'(L'/L) by
Lemma 4, (II) yields &'(T/L)|HNL' =& (HNL'/L). Now, combining
these with Lemma 1(ii), one can easily obtain &/(T/L)|H = ®&'(H/L)( =
&(H/L)).

From (3) of this theorem, we can conclude that, if K/L is quasi-Galois
such that { K: H],<<oo, then K/L is Galois as was declared in the intro-
duction.

In virtue of the validity of Corollary 3, a similar argument as in the

proof of [5, Proposition 2] will apply to obtain the following lemma, whose
proof may be left to readers.

Lemma 5. If K/L is quasi-Galois and T an intermediate subring of
H/L, then K/T is locally finite.
We shall conclude this section with the principal theorem.

Theorem 2. If K/L is quasi-Galois, then so is K|/ T for any division
subring T containing L such that [Ve(L): Vi(T)],<< co.

Proof. Let L' be an intermediate division subring of 7/L such that
[L': L], << o and Vg(T) = Vx(L"). Then K/L'is quasi-Galois by Corollary
3. Since H' =V (V(LN)) 2 T2 L', K/T is locally finite by Lemma 5.
Moreover, noting that Vo(V(T)) =H', K/T satisfies (II') by Theorem 1,
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and H'/T is Galois by [2, Theorem 9]. It follows, again by Theorem 1,
K/ T is quasi-Galois. ‘

3. Locally Galois exiensions.

In this section, we shall consider a locally Galois division ring ex-
tension K/L. Our first theorem of this section is the next one, which
asserts [3, Theorem 2] is still valid without assuming that K/L is Galois.

Theorem 3. If K/L is locally Galois, and T a division subring con-
taining L such that [V(L): Vi(T)], < oo, then K|T is locally Galois.

Proof. Let L' be an intermediate subring of 7/L such that V(L) =
Ve(T)and [L': L}, <oo. Then, for an arbitrary finite subset F of K,
there exists a division subring L* containing L'[F] such that L'/L is
Galois and [L*: L], <<oo. And then, by [4, Lemma 2], H" = Vx(Vi(L")
coincides with H[L'](which is left finite over H by [4, Theorem 1]) and
contains T[F]. SinceK/L is evidently quasi-Galois, there holds &'(L"/L)
=@(H'/L)|L' by Lemma 4. Hence each L-automorphism of L* can be
extended to an isomorphism of H*. Further, recalling that &'(H/L) =
&(H/L) (Lemma 1 (ii)), one will easily see that the extended isomorphism
is in fact an automorphism of H' = H(L']. Combining this with the fact
that H"/L" is Galois by Corollary 3, it will be easily seen that H*/L is
Galois. Moreover, by [3, Lemma 1 (i)], there holds [Vas(L): Vaus) H)1,<
oo, whence it follows that H"/T is locally Galois by [3, Theorem 1].
Since H*D T'[F], we have proved our assertion,

Now from the proof of Theorem 3, one will penetrate the necessary
part of the following

Corollary 4. K/L is locally Galois, if and only if K/L is locally
finite and, for each finite subset F of K, there exists a division subring
T containing H[F) such that (T : H], < oo and T/L is Galois.

Proof. We shall prove here the sufficiency only. Since co>[T: H],

= [Vi(H): Vi(T)], = [Va(L): Vo(T)], by [3, Lemma 1], T/L is locally
Galois again by [3, Theorem 1].

In [3], Galois theory of division rings was undertaken under the as-
sampion that the division ring extension K/L considered is Galois and
locally Galois and [K: H], < ®.. Our next theorem contains Corollary
1, and enables us to exclude the assumtion cited just now that K/L is
Galois.

Theorem 4. If K/L is locally Galois and [K: H1,< X, then K/L

is Galois.
Proof. By the validity of Corollary 4, the same argument as in the
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proof of [3, Lemma 4] will apply to see that G(H/L) = &' | H, where &'

is the group of all L-automorphisms of K. Since & 2 V.(I.), we obtain
eventually J(&, K) = L.
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