Mathematical Journal of Okayama University

Volume 10, Issue 1

1960 October 1960

Article 2

On generating elements of Galois extensions of division rings V

Takasi Nagahara*

*Okayama University

Copyright ©1960 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

ON GENERATING ELEMENTS OF GALOIS EXTENSIONS OF DIVISION RINGS V

TAKASI NAGAHARA

1°. Let a division ring K be Galois over a division subring L. In case L is infinite over the center of L, we have proved, in a previous paper [8]¹⁾, that if D is an arbitrary intermediate subring of K/L which is left finite over L then D is simple over L. In this paper, for an arbitrary L-L-submodule X of K which is left finite over L, we shall prove that X has a single generating element over L, that is, X = LaL for some a (Theorem 1).

In 3° , our interest will be directed to Kurosch's problem for algebraic Galois extensions of division rings. And, we shall prove the following: Every (left) algebraic Galois extension K of L is locally finite over L if either L is infinite over the center of L or the centralizer of L in K is finite over the center of K (Theorem 2 and Theorem 3). Moreover, if K is Galois, left algebraic and of bounded degree over L, then K is finite over L (Theorem 4).

Finally, as to notations and terminologies used in this paper, we follow the previous ones [6], [7] and [8].

2° . Generating elements of L-L-submodules of K.

Throughout this paper, K will be a division ring and L a division subring of K. C and Z will be the centers of K and L respectively, and V will mean $V_{\kappa}(L)$. Moreover, in this section, we shall use the following conventions: X be a L-L-submodule of K and \mathfrak{X} the L_{r} - K_{r} -module consisting of all the (module) homomorphisms of X into K. And, we set $\mathfrak{Y} = \{\alpha \in \mathfrak{X} \mid \alpha l_{r} = l_{r}\alpha \text{ for all } l_{r} \in L_{r}\}.$

The following lemma contains [7, Lemma 1] and [8, Lemma 1] as special cases. However, as the proof proceeds just as in the proof of [8, Lemma 1], the proof may be omitted.

Lemma 1. For any subset \mathfrak{S} of \mathfrak{Y} , \mathfrak{S} is linearly independent over V_r if and only if it is linearly independent over K_r .

Often the next corollary will be very convenient.

Corollary 1. Let K be Galois over L, and \mathfrak{G} a Galois group of K/L, that is, the fixring of \mathfrak{G} is L. If \mathfrak{G}_x means the restriction of \mathfrak{G} on X then:

¹⁾ Numbers in brackets refer to the references cited at the end of this note.

TAKASI NAGAHARA

(1) $[\mathfrak{G}_X V_r : V_r]_r = [\mathfrak{G}_X K_r : K_r]_r \approx [X : L]_l^2$ and $\mathfrak{G}_X K_r \cap \mathfrak{Y} = \mathfrak{G}_X V_r$.

(2) If $X = LaL^{(2)}$ for some $a \in X$, then $[a \otimes V_r : V]_r \approx [X : L]_{l}$.

Proof. The first part of our corollary will be proved by making use of the same method as in the proof of [8, Corollary 2]. Thus, we shall prove here the second part only. Noting that $\alpha \in \mathfrak{G}V_r$ annihilates a when and only when $X\alpha = L(a\alpha)L = 0$, we obtain $[a\mathfrak{G}V_r : V]_r = [\mathfrak{G}_x V_r : V_r]_r$. Hence, (2) is an easy consequence of (1).

In the rest of this note, we denote by \Im a Galois group of K/L when K is Galois over L.

Remark 1. Let K be Galois and finite over L. If $V \subset L$ then there exists some a such that $K = a \otimes L_r$ ([3, Satz 9]). And then, we have $[K: L]_r = [a \otimes L_r: L]_r \leq [a \otimes V_r: V]_r = [LaL: L]_i$ by Corollary 1(2). It follows that $K = LaL = \sum_{i=1}^n \oplus L_i a l_i^{-1} = \sum_{i=1}^n \oplus l_i' a l_i'^{-1} L^{i_0}$ with $l_i's$ and $l_i''s$ of L.

In order to prove Theorem 1 which has been cited in 1° , one more lemma will be required.

Lemma 2. Let K be Galois over L, M a (commutative) subfield of L which is algebraic and infinite over Z, N a right V-submodule of K which is (right) finite over V, and d an element of K. If $d \otimes V_r = \sum_{u=1}^{r \leq \infty} \oplus d_u V$ and $\sum_{u=1}^{r} d_u M_0 = \sum_{u=1}^{s} \oplus d_u M_0$, where $M_0 = M[V] = M \times_z V(\subset L \times_z V)$, then there exist an element $m \in M$ and a division subring M^* of M_0 containing V such that $[M^*: V]_r < \infty$, $N + \sum_{u=1}^{s} d_u m M^* = N \oplus \sum_{u=1}^{s} d_u m M^*$ $= N \oplus (\sum_{u=1}^{s} d_u M^*) m$ and that $d \otimes V_r \subset \sum_{u=1}^{s} d_u M^*$.

Proof. We set $d_i = \sum_{u=1}^{s} d_u m_{iu}$ with m_{iu} 's of $M_0(i = s+1, \dots, r)$ and denote by R the intersection of N and $\sum_{u=1}^{s} d_u M_0$. Clearly, R is a right V-submodule of K which is finite over V.

Now we shall distinguish two cases: Firstly in case R = 0, we set $M^* = V[\{m_{iu}\}]$. Since $M_0 = M \times_z V$, we can choose a finite subset F of M such that $M^* = V[F] \supset M^*$. Then, noting that M is a commutative field which is algebraic over Z, we have $[M^*:V]_r \leq [M^*':V]_r < \infty$. Further, we obtain $N + \sum_{u=1}^{s} d_u M^* = N \oplus \sum_{u=1}^{s} d_u M^*$ since $R = \{0\}$. It is clear that $d \bigotimes V_r \subset \sum_{u=1}^{s} d_u M^*$.

Secondly, we consider the case $R \neq \{0\}$. As R is a right V-module which is finite over V, we denote by $\{x_1, \dots, x_n\}$ a right V-basis of R. Then

(1) $x_h = \sum_{u=1}^{s} d_u y_{hu}(h = 1, 2, \dots, n)$ where y_{hu} 's are all in M_0 . We set here $M^* = V[\{m_{iu}\}, \{y_{hu}\}]$. Noting that $M_0 = M \times_z V$, we can take some finite subset F of M such that $V[F] \supset M^*$. Since M is algebraic over Z, we have $[V[F]: V] < \infty$, which means that

12

²⁾ $[:]_l$ and $[:]_r$ denote the left and right dimensions respectively. And in case $[X:L]_l = [X:L]_r$, they are denoted as [X:L]. If either $[\oslash_X V_r: V_r]_r = [X:L]_l$ or $[\oslash_X V_r: V_r]_r = \infty$ and $[X:L]_l = \infty$, then we write $[\oslash_X V_r: V_r]_r \approx [X:L]_l$.

³⁾ LaL is the two-sided L-module generated by a over L.

⁴⁾ Given a collection $\{A_i\}$ of modules, $\Sigma \bigoplus A_i$ denote the direct sum of the A_i .

ON GENERATING ELEMENTS OF GALOIS EXTENSIONS

13

 $[M^*: V] < \infty$. Then, from $[M: Z] = [M_0: V] = \infty$, we obtain $M^* \subsetneq M_0$, and so $M \not\subset M^*$. Hence, there exists an element $m \in M \setminus M^*$. Suppose that $N \cap \sum_{u=1}^{s} d_u m M^* \neq \{0\}$. Let

(2) $\sum_{h=1}^{n} x_h v_h = \sum_{u=1}^{s} d_u m y_u'$

be a non-zero element of $N \cap \sum_{u=1}^{s} d_u m M^* \subset R$, where v_h 's are all in Vand y_u ''s are all in M^* . Then, from (1) and (2), we obtain $\sum_{u=1}^{s} \oplus d_u(my_u' - \sum_{h=1}^{n} y_{hu}v_h) = 0$, whence $my_u' - \sum_{h=1}^{n} y_{hu}v_h = 0$ ($u = 1, 2, \dots, s$). This leads to the contradiction $m \in M^*$. Hence we have $N + \sum_{u=1}^{s} d_u m M^*$

 $= N \oplus \sum_{u=1}^{s} d_{u}m M^*$ and $d \otimes V_r \subset \sum_{u=1}^{s} d_u M^*$.

Now we are at the position to prove the following which contains [8, Theorem 1^*].

Theorem 1. Let K be Galois over L, and let $[L:Z] = \infty$. If X is a L-L-submodule of K which is left finite over L, then X = LaL for some $a \in X$.

Proof. Let $[X: L]_i = n$. Then, from Corollary 1(2), we have $[a \otimes V_r: V]_r = [LaL: L]_i \leq [X: L]_i = n$ for any element *a* in *X*. Hence, it suffices to prove that there exists an element $a \in X$ such that $[a \otimes V_r: V]_r = [X: L]_i = n$.

We set $X = \sum_{i=1}^{n} Ld^{(i)}$ and $\bigotimes_{x} V_{r} = \sum_{i=1}^{n} \oplus \sigma_{ix} V_{r}$ (Corollary 1(1)). Then, by Corollary 1(2), we have $[d^{(i)} \bigotimes V_{r} : V]_{r} < \infty$. We shall distinguish two cases :

Case I. L is not algebraic over Z. Let $x \in L$ be transcendental over Z. If we set $M' = \sum_{i=1}^{n} d^{(i)} \bigotimes V_r$ then, by [8, Lemma 3], there exists some positive integer k such that $\sum_{i=0}^{\infty} M' y^i = \sum_{i=0}^{\infty} \bigoplus M' y^i$ for $y = x^k$. If $\alpha = \sum_{i=1}^{n} \sigma_{ix} v_{ir}$ is a non-zero element of $\bigotimes_x V_r$, then $0 \neq X\alpha = \sum_{i=1}^{n} L(d^{(i)}\alpha)$, so that, there exists an element $d^{(i)}$ such that $d^{(i)}\alpha \neq 0$. We set here $a = \sum_{i=1}^{n} d^{(i)} y^i$. Noting that $d^{(i)}\alpha \in M'$ and $\sum_{i=1}^{\infty} M' y^i = \sum_{i=1}^{\infty} \bigoplus M' y^i$, we obtain $a\alpha = \sum_{i=1}^{n} (d^{(i)}\alpha) y^i \neq 0$. Hence, $\{a\sigma_1, \cdots, a\sigma_n\}$ is right V-independent. There holds therefore $[a \bigotimes V_r : V]_r = [\bigotimes_x V_r : V_r]_r = n$.

Case II. *L* is algebraic over *Z*. Let *M* be a maximal subfield of *L*. Then it is clear that $[M: Z] = \infty$. As to notations used in the rest of our proof, we shall follow Lemma 2. In case n = 1, our assertion is trivial, and so we may restrict our proof to the case n > 1. We set $d^{(1)} \bigotimes V_r =$ $\sum_{u=1}^{r_4} d_{1u} V(i=2, \dots, n)$, and $\sum_{u=1}^{r_4} d_{iu} M_0 = \sum_{u=1}^{s_4} \oplus d_{iu} M_0$. Applying Lemma 2 to $N = d^{(1)} \bigotimes V_r$ and $d = d^{(2)}$, we obtain an element $m_1 \in M$ and a division ring M_1 of M_0 containing *V* such that $[M_1: V]_r < \infty$, $d^{(1)} \bigotimes V_r + \sum_{u=1}^{s_2} d_{2u} m_1 M_1 =$ $d^{(1)} \bigotimes V_r \oplus \sum_{u=1}^{s_2} d_{2u} m_1 M_1$ and that $d^{(2)} \bigotimes V_r \subset \sum_{u=1}^{s_2} d_{2u} M_1$. Repeating the same procedure to $N = d^{(1)} \bigotimes V_r \oplus \sum_{u=1}^{s_2} d_{2u} m_1 M_1$ and $d = d^{(3)}$, and so on, we have eventually n-1 elements m_i 's of *M* and n-1 subfields M_i of M_0 containing *V* such that $d^{(1)} \bigotimes V_r + \sum_{u=1}^{i-1} (\sum_{u=1}^{s_{i+1}} d_{i+1u} m_i M_i) = d^{(1)} \bigotimes V_r \oplus \sum_{u=1}^{s_{i-1}} \oplus (\sum_{u=1}^{s_{i+1}} d_{i+1u} m_i M_i) = d^{(1)} \bigotimes V_r \oplus \sum_{u=1}^{s_{i-1}} \oplus (\sum_{u=1}^{s_{i+1}} d_{i+1u} m_i M_i) = d^{(1)} \bigotimes V_r \oplus \sum_{u=1}^{s_{i-1}} \oplus (\sum_{u=1}^{s_{i+1}} d_{i+1u} m_i M_i) = d^{(1)} \bigotimes V_r \oplus \sum_{u=1}^{s_{i+1}} \oplus (\sum_{u=1}^{s_{i+1}} d_{i+1u} m_i M_i) = d^{(1)} \bigotimes V_r \oplus \sum_{u=1}^{s_{i+1}} \oplus (\sum_{u=1}^{s_{i+1}} d_{i+1u} m_i M_i) = d^{(1)} \bigotimes V_r \oplus \sum_{u=1}^{s_{i+1}} \oplus (\sum_{u=1}^{s_{i+1}} d_{i+1u} m_i M_i) = d^{(1)} \bigotimes V_r \oplus \sum_{u=1}^{s_{i+1}} \oplus (\sum_{u=1}^{s_{i+1}} d_{i+1u} m_i M_i) = d^{(1)} \bigotimes V_r \oplus \sum_{u=1}^{s_{i+1}} \oplus (\sum_{u=1}^{s_{i+1}} d_{i+1u} m_i M_i) = d^{(1)} \bigotimes V_r \oplus \sum_{u=1}^{s_{i+1}} \oplus (\sum_{u=1}^{s_{i+1}} d_{i+1u} m_i M_i) = d^{(1)} \bigotimes V_r \oplus \sum_{u=1}^{s_{i+1}} \oplus (\sum_{u=1}^{s_{i+1}} d_{i+1u} m_i M_i) = d^{(1)} \bigotimes V_r \oplus \sum_{u=1}^{s_{i+1}} \oplus (\sum_{u=1}^{s_{i+1}} d_{i+1u} m_i M_i) = d^{(1)} \bigotimes V_r \oplus \sum_{u=1}^{s_{i+1}} \oplus (\sum_{u=1}^{s_{i+1}} \oplus (\sum_$

Produced by The Berkeley Electronic Press, 1960

TAKASI NAGAHARA

 $d_{i+1u}m_i M_i) = d^{(1)} \bigotimes V_r \oplus \sum_{i=1}^{n-1} \oplus (\sum_{u=1}^{i_{i+1}} d_{i+1u} M_i) m_i \text{ and that } d^{(i+1)} \bigotimes V_r \subset \sum_{u=1}^{i_{i+1}} d_{i+1u} M_i (i=1, \dots, n-1).$ Setting here $a = d^{(1)} + \sum_{i=1}^{n-1} d^{(i+1)} m_i$, the same argument as in the latter part of case I will show that $[a \bigotimes V_r : V]_r = n$.

Corollary 2. Under the same assumption as in Theorem 1, for each subring D of K which is left finite over L, $D = \sum_{i=1}^{n} \bigoplus Ll_{i}al_{i}^{-1}$ with some $a \in D$.

3°. Algebraic Galois extensions.

14

In [1, VII, §6], N. Jacobson gave the following definition :

Definition. An element a of a division ring K is called left algebraic over a division subring L if and only if $[L[a]: L]_{l} < \infty$. K is left algebraic over L if and only if every $a \in K$ is left algebraic over L.

We denote by N the set of all elements of K such that $[LaL: L]_l < \infty$. Let a_1, a_2 be elements of N. Then, noting that $L(a_1+a_2)L \subset La_1L+La_2L$ and $La_1a_2L \subset La_1La_2L$, we obtain $[L(a_1+a_2)L: L]_1 \leq [La_1L: L]_l + [La_2L: L]_l < \infty$ and $[La_1a_2L: L]_l \leq [La_1La_2L: L]_l \leq [La_1L : L]_l [La_2L: L]_l < \infty$. Hence, both $a_1 + a_2$ and a_1a_2 are contained in N; this shows that N is a subring of K. Moreover, one will easily see that N contains all the elements which are left algebraic over L. Under this convention, there holds the next lemma.

Lemma 3. Let K be Galois over L, and let $[L: Z] = \infty$. If $\{a_1, \dots, a_n\}$ is a finite subset of N, then $\sum_{i=1}^{n} La_i L = LaL$ for some $a \in N$, and so, $L[a_1, \dots, a_n] = L[a]$.

Proof. Since $[La_i L : L]_i$ is finite for each a_i , $\sum_{i=1}^{n} La_i L$ is left finite over L. Hence, our assertion is a consequence of Theorem 1.

Noting that if K is left algebraic over L then K = N, Lemma 3 yields at once the following.

Theorem 2. Let K be Galois and left algebraic over L. If $[L:Z] = \infty$, then K is left locally finite over L^{5} .

Corollary 3. Let K be Galois over L. If K is left algebraic over L, then K is right algebraic over L.

Proof. In case $[L:Z] = \infty$, K is left locally finite over L. Hence, by [5, Corollary 1], K is right locally finite over L, accordingly, K is right algebraic over L. Let $[L:Z] < \infty$, and a an element of K. Then, by [1, Theorem 7.9.1], we have $[L[a]:L]_r \leq [L[a]:Z]_r = [L[a]:Z]_l < \infty$.

Remark 2. We set $H = V_{\kappa}(V)$. If K is Galois and left algebraic over

⁵⁾ If K is Galois and left locally finite over L, then K is right locally finite too ([5, Theorem 2]).

ON GENERATING ELEMENTS OF GALOIS EXTENSIONS

L, then one will easily see that K is left algebraic over H(Cf. [9, Lemma 2]). Further, we can prove that if K is Galois over L and left algebraic over H then, for each intermediate subring D of K/L which is left finite over L, $[D:L]_i = [D:L]_r$. In fact, in case $[L:Z] < \infty$, the same argument as in the proof of Corollary 3 will give our assertion. On the other hand, in case $[L:Z] = \infty$, $L[V] = L \times_z V \supset (L \times_z V) \cap H \supset L \times_z V_H(H)$ implies $[H:V_H(H)] = \infty$. Accordingly, our assertion is a consequence of Theorem 2 and [5, Theorem 2].

Our next theorem will enable us to restate [4, § 3] in a similar form as in [1, VII, § 6]⁶⁾.

Theorem 3. Let K be Galois, and left algebraic over L. If $[V:C] < \infty$, then K is left locally finite over L.

Proof. By the light of Theorem 2, we may, and shall, restrict our proof to the case $[L:Z] < \infty$. Since $L[V] = L \times_z V$, we have $[L[V]:C] = [L[V]:V][V:C] < \infty$, whence K is inner Galois over L[V]. Then, noting that $V_{\kappa}(L[V]) \subset V_{\kappa}(L) = V$, we obtain $H = V_{\kappa}(V) \subset V_{\kappa}(V_{\kappa}(L[V])) = L[V]$, and so $[K:L[V]] \leq [K:H] = [V:C] < \infty$. Thus, we get $[K:C] = [K:L[V]] [L[V]:C] < \infty$.

On the other hand, noting that L[V] is left algebraic over L, we see that V is algebraic over Z, so that, the subfield Z[C] is (\mathfrak{G} -normal⁷⁾ and) locally finite over Z. And then, for any finite subset F of C, a similar argument as in the proof of [6, Lemma 3 (3)] enables us to prove that $Z[F\mathfrak{G}] = Z \times_{Z \cap C} (Z \cap C) [F\mathfrak{G}]$, and so we have $Z[C] = Z \times_{Z \cap C} C$. Hence, there holds that $L[C] = L \times_Z Z[C] = L \times_Z (Z \times_{Z \cap C} C) = L \times_{Z \cap C} C$, whence we obtain $[L:(Z \cap C)] = [L[C]:C]$. It follows therefore that for any $k \in K$, $[(Z \cap C)[k]: (Z \cap C)] \leq [L[k]: (Z \cap C)] = [L[k]:L] [L:(Z \cap C)] =$ $[L[k]:L] [L[C]:C] \leq [L[k]:L] [K:C]$. Thus, recalling that $[K:C] < \infty$, we see that K is algebraic over $Z \cap C$. Then, by [1, Proposition 10. 12. 3], K is locally finite over $Z \cap C$. Consequently, from $[L:(Z \cap C)](=$ $[L[C]:C] \leq [K:C]) < \infty$, our assertion is immediate.

Lemma 4. Let L be a subfield of K containing the center C of K. If K/L is left algebraic and of bounded degree then $[K:L] < \infty$.

Proof. Suppose that $x \in L$ is trascendental over C. Then, $\{1, x_r, x_r^2, \dots\}$ ($\subset \operatorname{Hom}_{L_l}(K, K)^{s_i}$) is linearly independent over $L_l(\subset \operatorname{Hom}_{L_l}(K, K))$. Now, let X be an arbitrary L-L-submodule of K with $[X:L]_l < \infty$, and

15

⁶⁾ See [8, Remark 2] and the remarks of [9, Theorem 2'].

⁷⁾ For any subring D of K, we say that D is \mathfrak{G} -normal when $D^{\sigma} = D$ for all $\sigma \in \mathfrak{G}$. 8) Hom_{L_l}(K, K) denotes the module consisting of all the left L-homomorphisms of K into K.

TAKASI NAGAHARA

16

 $\mu_x(\cdot)$ a minimal polynomial of $(x_r)_x$ (which may be considered as an element of $\operatorname{Hom}_{I_l}(X, X)$) over $L_l(\subset \operatorname{Hom}_L(X, X))$ with the degree n(X). We can find here an element $k \in K$ such that $ku_x(x_r) \neq 0$, and then $X_1 = X + LkL$ is an L-L-submodule with $[X_1:L]_1 < \infty$. Since $X_1\mu_x(x_r) \neq 0$, we readily see that $n(X_1) > n(X)$. And, this enables us to choose an L-L-submodule Y with $[Y:L]_l < \infty$ such that n(Y) > m, where m is an integer such that $[L[a]:L]_l \leq m$ for all $a \in K$. Then, by [2, p. 69, Theorem 1], there exists some $y \in Y$ such that $\{y, yx_r, \cdots, yx_r^{n(Y)}\}$ is linearly left independent over L. But, recalling that $x \in L$, this gives a contradiction n(Y) $\leq [LyL:L]_l \leq [L[y]:L]_l \leq m$. Thus, we see that L is algebraic over C.

Secondly, we shall prove $[L:C] < \infty$. If, otherwise, $[L:C] = \infty$, then there exists a subfield L_1 of L with $m < [L_1:C] = s < \infty$. Evidently, K is finite and Galois over $V_K(L_1)$ and $L_1 \subset V_K(L_1)$. Hence, by [3, Satz 9], there exists an element $u \in K$ such that $K = \sum_{i=1}^{s} \bigoplus V_K(L_1)u\tilde{l}_i$, where l_i 's are suitable elements of $L_1^{(i)}$. Accordingly, $\sum_{i=1}^{s} Lu\tilde{l}_i = \sum_{i=1}^{s} \bigoplus Lu\tilde{l}_i = \sum_{i=1}^{s} \bigoplus$ Lul_i^{-1} , which gives a contradiction $s \leq [LuL:L]_i \leq m$. Hence, $[L:C] < \infty$. Accordingly $V_K(V_K(L)) \cap V_K(L) = L \cap V_K(L) = L$, whence $V_K(L)$ is algebraic and of bounded degree over its center L. [1, Theorem 7. 11. 1] proves therefore $[V_K(L):L] < \infty$. And we have eventually $[K:L] = [K:V_K(L)]$ $[V_K(L):L] < \infty$.

Now, we can prove a theorem which contains [1, Theorem 7.11.1] as a special case.

Theorem 4. If K is Galois, left algebraic and of bounded degree over L, then $[K:L] < \infty$.

Proof. In case $[L:Z] = \infty$, our assertion is contained in Lemma 3. Thus, in what follows, we shall restrict our proof to the case $[L:Z] = q < \infty$. Since $L[V] = L \times_Z V$, V is algebraic and of bounded degree over Z, accordingly so is the center C_0 of V. Moreover, C_0 is \mathfrak{G} -normal and \mathfrak{G}_{C_0} is the Galois group of C_0/Z . Hence, C_0 being normal and separable over Z, we readily obtain $[C_0:Z] = \text{order of } \mathfrak{G}_{C_0} < \infty$. Then, noting that the center C of K is a \mathfrak{G} -normal subfield of C_0 , we obtain $s = [C:L \cap C] = \text{order of } \mathfrak{G}_c \leq \infty$. Now, let k be an arbitrary element of K. Then, one will easily see that $L[k][C] = \sum_{i=1}^{s} L[k]c_i$ for a $(L \cap C)$ -basis $\{c_1, \dots, c_s\}$ of C, whence we obtain $[Z[C][k]:Z[C]]_i \leq [L[C][k]:Z[C]]_i \leq [L[C][k]:Z[C]]_i \leq [L[C][k]:Z[C]]_i \leq m$ for all $a \in K$. We have proved therefore that K is left algebraic and of bounded degree over the field $Z[C](\supset C)$. Consequently, by Lemma 4, we obtain $[K:Z[C]]_i < \infty$. And so, we

⁹⁾ \tilde{l} means the inner automorphism determined by $l: \tilde{l} = l_l l_r^{-1}$.

obtain our assertion $[K:L]_i \leq [K:Z]_i \leq [K:Z[C]]_i [Z[C]:Z] < \infty$ since $[Z[C]:Z] \leq [C:Z \cap C] = [C:L \cap C] = s < \infty$.

References

- [1] N. JACOBSON : Structure of rings, Amer. Math. Soc. Colloq. Publ., 37 (1956).
- [2] _____: Lecture in abstract algebra II. (1951).
- [3] F. KASCH: Über den endomorphismenring eines Vektorraumes und den Satz von der Normalbasis, Math. Ann., 129 (1953), 447-463.
- [4] T. NAGAHARA and H. TOMINAGA: On Galois theory of division rings, Math. J. Okayama Univ., 6 (1956), 1-21.
- [5] _____: Some remarks on Galois extensions of division rings, Math. J.
 Okayama Univ., 9 (1959), 5-8.
- [6] T. NAGAHARA: On generating elements of Galois extensions of division rings, Math. J. Okayama Univ., 6 (1957), 181-190.
- [7] _____: On generating elements of Galois extensions of division rings III, Math. J. Okayama Univ., 7 (1957), 173-178.
- [8] _____: On generating elements of Galois extensions of division rings IV, Math. J. Okayama Univ., 8 (1958), 181-188.
- [9] N. NOBUSAWA: A note on Galois extensions of division rings, Math. J. Okayama Univ., 7 (1957), 179-183.

DEPARTMENT OF MATHEMATICS,

OKAYAMA UNIVERSITY

(Received June 20, 1960)