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Nagahara: On generating elements of Galois extensions of division rings V

ON GENERATING ELEMENTS OF GALOIS
EXTENSIONS OF DIVISION RINGS V

TARKASI NAGAfIARA

1°. Let a division ring K be Galois over a division subring L. In case
L is infinite over the center of L, we have proved, in a previous paper
[8]1", that if D is an arbitrary intermediate subring of K/L which is left
finite over L then D is simple over L. In this paper, for an arbitrary L-
L-submodule X of K which is left finite over L, we shall prove that X has
a single generating element over L, that is, X = LaL for some @ (Theorem
1).

In 3°, our interest will be directed to Kurosch’s problem for algebraic
Galois extensions of division rings. And, we shall prove the following:
Every (left) algebraic Galois extension K of L is locally finite over L if
either L is infinite over the center of L or the centralizer of L in K is finite
over the center of K (Theorem 2 and Theorem 3). Moreover, if K is Galois,
left algebraic and of bounded degree over L, then K is finite over L
(Theorem 4).

Finally, as to notations and terminologies used in this paper, we follow
the previous ones [6], [7] and [8].

2°. Generating elements of L-L-submodules of K.

Throughout this paper, K will be a division ring and L a division
subring of K. C and Z will be the centers of K and L respectively, and V
will mean Vi(L). Moreover, in this section, we shall use the following
conventions: X be a L-L-submodule of K and X the L,-K,-module con-
sisting of all the (module) homomorphisms of X into K. And, we set =
faeX|al,=1laforalll.€L,}.

The following lemma contains [7, Lemma 1] and [8, Lemma 1] as
special cases. However, as the proof proceeds just as in the proof of [8,
Lemma 1], the proof may be omitted.

Lemma 1. For any subset & of 3, € is linearly independent over V.
if and only if it is linearly independent over K,.
Often the next corollary will be very convenient.

Corollary 1. Let K be Galois over L, and & a Galois group of K/L,
that is, the fixring of @ is L. If &g means the restriction of & on X then :

1) Numbers in brackets refer to the references cited at the end of this note.
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1) [GxV,: V,],=[GxK,: K,),~[X: L1,” and Gz K,N\Y =GV,

(2) If X=LaL? for some a€ X, then [a®V,: V],~[X: L].

Proof. The first part of our corollary will be proved by making use
of the same method as in the proof of [8, Corollary 2]. Thus, we shall
prove here the second part only. Noting that « =&V, annihilates ¢ when
and only when Xa = L(aaw)L = 0, we obtain [a®V,: V], =[GV, : V.].
Hence, (2) is an easy consequence of (1).

In the rest of this note, we denote by ® a Galois group of K/L when
K is Galois over L.

Remark 1. Let K be Galois and finite over L. If V C L then there
exists some « such that K =a@®L, ([3, Satz 9]). And then, we have [K:
L],=[a®L,:L], < [a®V,: V], = (LaL : L], by Corollary 1(2). It fol-
lows that K=Lal=>0,®Llal,"' =5, al/' L° with I’s and [,"'s of L.

In order to prove Theorem 1 which has been cited in 1°, one more
lemma will be required.

Lemma 2. Let K be Galois over L, M a (commutative) subfield of L
which is algebraic and infinite over Z, N a right V-submodule of K which

is (right) finite over V, and d an element of K. If d®V, = Z:1556d,V
and X d,My= 25, ®d. M, where My=M[V]=MxV(CLX;V),
then there exist an element m € M and a division subring M*of M, con-
taining V such that [M*: V], < oo, N+ X dmM*=N& T, d,mM*
=NG(Ziaide M*Ym and that dOV,.C 25, d.M*.

Proof. Wesetd;= 3.5 dum, with my's of My(i = s+1, ---, 7) and
denote by R the intersection of N and X...;d. M, Clearly, R is a right
V-submodule of K which is finite over V.

Now we shall distinguish two cases: Firstly in case R =0, we set
M*=V({mw.}]. Since M,= M XV, we can choose a finite subset F of
M such that M*'=V[F] > M* Then, noting that M is a commutative field
which is algebraic over Z, we have [M*: V], < [M*': V], <co. Further,
we obtain N +3,L,d.M*=N® I, ,d,M* since R={0}. Itis clear that
d@V.c .. d. M*,

Secondly, we consider the case Rs~{0}. As R is a right V-module
which is finite over V, we denote by {x,, -+, x,} a right V-basis of R. Then

(1) Xn = Euszlduyhu(h = 1, 2, see, ?l) .
where y,.'s are all in M,. Weset here M* =V [{muw}, {y:s}]. Noting that
My= M X ,V, we can take some finite subset F of M such that V[F]> M*
Since M is algebraic over Z, we have [ V[F]: V] < oo, which means that

2) { :Jiand [ :]- denote the left and right dimensions respectively. And in case
[X: LTt =[X: L]y, they are denoted as [X: L]. If either [@xV,: V;]-=[X: L] or
[@xVy: Vylr = 0 and [X: L); = oo, then we write [GxV,: Vi =[X: Ll

3) LaL is the two-sided L-module generated by a over L.

4) Given a collection {A:} of modules, X A¢ denote the direct sum of the Au
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[ M*: V]<< oo, Then, from [M: Z]=[M,: V] = o, we obtain M*& M,
and so M M*. Hence, there exists an element m € M\ M*. Suppose that
NN i domM* 5= {0}, Let

(2) 2 Xt = Zuixdumyu'
be a non-zero element of NN 3.5, dum M*C R, where v,'s are all in V
and y,” s are all in M*. Then, from (1) and (2), we obtain
T ®du(my — Tty Yruvn) = 0, whence my.' — ZR_ vt =0 (=1, 2, -,
5). This leads to the contradiction m € M*. Hence we have N+ X, d.m M*
=N®XZ2L,dmM* and dSV,C T, d, M*

Now we are at the position to prove the following which contains |8,
Theorem 1*].

Theorem 1. Let K be Galois over L, and let [L: Z]l=o0, If Xis
a L-L-submodule of K which is left finite over L, then X = LaL for some
acs X.

Proof. Let [X: L};=n. Then, from Corollary 1(2), we have [¢&V,:

V],=[LaL : L), <[X: L],=n for any element ¢ in X. Hence, it suffices
to prove that there exists an element ¢ € X such that [e®V,: V],=[X: L],
=n,

We set X =22, Ld® and &V, = 2:2,® oz V(Corollary 1(1)). Then,
by Corollary 1(2), we have [d("UVr : V], <<oco. We shall distinguish two
cases :

Case I. L is not algebraic over Z. Let x = L be transcendental over
Z. If weset M'=32,d°®V, then, by [8, Lemma 3], there exists some
positive integer k such that X M'y' = SO My for y =12 If ¢ =
3t aix0sr is @ non-zero element of 8, V,, then 0 5= Xa = % L(d%a), so
that, there exists an element d® such that d®a 5= 0. We set here g =
¥ 2 dPy'. Noting that d®ae M' and X2, Myt =32, M'y', we obtain
ax =22, (dPa)y' 0. Hence, {aay, -+, as,} is right V-independent.
There holds therefore [a®V,: V], =[G;V,: V,], =n.

Case II. L is algebraic over Z. Let M be a maximal subfield of L.
Then it is clear that {M: Z] = 0. As to notations used in the rest of our
proof, we shall follow Lemma 2. In case n =1, our assertion is trivial,
and so we may restrict our proof to the case n>1. We set dPGV, =

eidwW V(i=2, -, n), and 33.51di, My= >\ ®d My, Applying Lemma 2
to N=d"®V, and d =d®, we obtain an element m; € M and a division
ring M, of M) containing V such that[ M;: V], <oo dPBV, + i idowm, My =
dPSV, DY dey iy M, and that dPGV,C 32 dou M. Repeating the same
procedure to N =dP®V, &2 d:wm, M, and d =d®, and so on, we have
eventually #—1 elements m,’s of M and »—1 snbfields M, of M, contain-
ing V such that d°®V, NN St GaNasl BT M) =dP V.02 ae(m

u=1
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dipramty M) = dP SV, ® D@ (i divwM)m; and that d“P@V, C
Yot Mi(i=1, -+, n—1). Setting here a = d¥+ 3751 d%Dp,, the same
argument as in the latter part of case I will show that [¢®V,: V], ==n.

Corollary 2. Under the same assumption as in Theorem 1, for each
subring D of K which is left finite over L, D = 27.,@® Llal,” with some
acED.

3° Algebraic Galois extensions.

In [1, VII, §6], N. Jacobson gave the following definition :

Definition. An element ¢ of a division ring K is called left algebraic
over a division subring L if and only if [L[a]: L],<<oc. K is left algebraic
over L if and only if every ¢ K is left algebraic over L.

We denote by N the set of all elements of K such that [LaeL: L], <<eo.
Let a;, a. be elements of N. Then, noting that L(e,+a@)LC La,L+La,L
and La,a,L C Le,;La,L, we obtain [L(e,+a)L: L1, <[LaL: L], +
[La;L: L}, <o and [La,a.L: L), <{La;La,L: L), <([La,L: L);,[La,L:
L}, <<oo, Hence, both @, + a. and a,a. are contained in N; this shows
that N is a subring of K. Moreover, one will easily see that N contains
all the elements which are left algebraic over L. Under this convention,
there holds the next lemma.

Lemma 3. Let K be Galois over L, and let [L: Z)=oo. If{a, ++, as}
is a finite subset of N, then 2i.,La;L = LaL for some a € N, and so, L|a,,
«,a,)=Ll[a].
Proof. Since [La,L : L], is finite for each a;, 37~ La; L is left finite
over L. Hence, our assertion is a consequence of Theorem 1.
Noting that if K is left algebraic over L then K= N, Lemma 3 yields
at once the following.

Theorem 2. Let K be Galois and left algebraic over L. If [L:Z]=
oo, then K is left locally finite over L.

Corollary 3. Let K be Galois over L. If K is left algebraic over L,
then K is right algebraic over L.

Proof. Incase [L:Z]= oo, K is left locally finite over L. Hence,
by [5, Corollary 1], K is right locally finite over L, accordingly, K is
right algebraic over L. Let [L:Z]<co, and ¢ an element of K. Then,
by [1, Theorem 7.9.1], we have [L[a): L], = [Llal: Z],=[Llal: Z].
<oo,

Remark 2. We set H=V,(V). If K is Galois and left algebraic over

6) If K is Galois and left locally finite over L, then K is right locally finite too
([5, Theorem 2]).
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L, then one will easily see that K is left algebraic over H (Cf. [9, Lemma
2]). Further, we can prove that if K is Galois over L and left algebraic
over H then, for each intermediate subring D of K/L which is left finite
over L, [D: L],=[D:L],. Infact, incase [L: Z]< oo, the same argu-
ment as in the proof of Corollary 3 will give our assertion. On the other
hand, incase [L: Z) =00, L[V]=LX,VOULXVINHDLX,V,(H)
implies [ H: Vx( H)] = . Accordingly, our assertion is a consequence of
Theorem 2 and [5, Theorem 2]. :

Our next theorem will enable us to restate [4, § 3] in a similar form
asin [1, VII, § 6]%.

Theorem 3. Let K be Galois, and left algebraic over L. If [V : C]
<< oo, then K isleft locally finite over L.

Proof. By the light of Theorem 2, we may, and shall, restrict our
proof to the case [L: Z]<<eco, Since L[V]=LX.V, we have [L[V]: C]
=[L[V]: V][V: Cl<oo, whence K is inner Galois over L[ V]. Then,
noting that V(L[ V])C Vx(L)=V, we obtain H=V (V) C V(V(L[V]))
=L[V], andso [K:L[V]I<[K:H]=1[V: Cl<<co. Thus, we get | K:C]
=[K:L[V]][L{V]:C]l<<oo.

On the other hand, noting that L[ V] is left algebraic over L, we see
that V is algebraic over Z, so that, the subfield Z[C] is (&-normal” and)
locally finite over Z. And then, for any finite subset F of C, a similar
argument as in the proof of [6, Lemma 3 (3)] enables us to prove that
Z[F®)=ZXzq0(ZNC)[FB], and so we have Z[C] = Z X zn, C. Hence,
there holds that L[C]=LX,Z[Cl= LX2(Z X zncC) = L X znc C, whence
we obtain [L:(ZNC)] =[L[C]:C]. It follows therefore that for any k€ K,
ZNO[R]:(ZNOTZ LIk : (ZNC)] = [L[E]: LI[L:(ZNC)] =
[L[k]:L][L[C]: C] < [L[E]:L][K: C]. Thus, recalling that [K: C] <
oo, we see that K is algebraic over Z/\C. Then, by [1, Proposition 10.
12. 3], K is locally finite over ZMC. Consequently, from [L:(ZNC)](=
[LIC]: C] < [K: C])< oo, our assertion is immediate.

Lemma 4. Let L be a subfield of K containing the center C of K.
If K/L is left algebraic and of bounded degree then [K: L]<<oo.

Proof. Suppose that x & L is trascendental over C. Then, {1, z, %%
«*}(C Hom, (K, K)®) is linearly independent over L,(< Hom, (K, K)).
Now, let X be an arbitrary L-L-submodule of K with [X: L],<< o, and

6) See [8, Remark 2] and the remarks of [9, Theorem 2'].
7) For any subriug D of K, we say that D is ®-normal when D7 =D for all c =@,

8) Homy, (K, K) denotes the module consisting of all the left L-homomorphisms of
K into K,
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Mathematical Journal of Okayama University, Vol. 10 [1960], Iss. 1, Art. 2

16 TAkAas1 NAGAHARA

#,( ) a minimal polynomial of (x,)x (which may be considered as an element
of Hom,, (X, X)) over L(C Hom; \ X, X)) with the degree #(X). We can
find here an element k€ K such that ku (r,)5<0, and then X, =X+ LkL is
an L-L-submodule with [X): L], <<eo. Since X,u,(x,)50, we readily see
that #(X))>n(X). And, this enables us to choose an L-L-submodule
Y with [Y:L],<co such that n(Y)>m, where m is an integer such
that [L[e]: L],<m for all e K. Then, by [2, p.69, Theorem 1], there
exists some y €Y such that {y, yx,, -+, 2"} is linearly left inde-
pendent over L. But, recalling that x &L, this gives a contradiction #(Y)
<[LyL:L)},=<[L[y]:L], < m. Thus, we see that L is algebraic over C.

Secondly, we shall prove [L: Cl<<oo. If, otherwise, [L: C]= oo,
then there exists a subfield L, of L with m<<[L,: C] = s << oo, Evidently,
K is finite and Galois over V(L,) and L,C V,(L,). Hence, by [3, Satz 9],
there exists an element # € K such that K = Z.%,& V(L)) ul, wherel;’s
are suitable elements of L. Accordingly, &, Luly = 35,@ Lul; = ¥5,&
Lul;"', which gives a contradiction s<[LuL: L],<m. Hence, [L:C]<oo.
Accordingly V(Ve(L) NVe(L) = LNVx(L) =L, whence V(L) is alge-
braic and of bounded degree over its center L. [1, Theorem 7. 11. 1] proves
therefore [ Vx(L): L] < oo. And we have eventually [K : L] =[K: Vi(L)]
[Ve(L) : L)< o0,

Now, we can prove a theorem which contains {1, Theorem 7. 11. 1]
as a special case.

Theorem 4. [f K is Galois, left algebraic and of bounded degree
over L, then [K: L]<<oo.

Proof. Incase [L :Z]= oo, our assertion is contained in Lemma 3.
Thus, in what follows, we shall restrict our proof to the case{L:Z] =g<oo.
Since L[V] =L XV, V is algebraic and of bounded. degree over Z,
accordingly so is the center C, of V. Moreover, C,is &-normal and (5500 is
the Galois group of C,/Z. Hence, C,being normal and separable over Z,
we readily obtain[C,: Z] =order of @%< oo, Then, noting that the center
Cof K is a (Y-normal subfield of C,, we obtain s =[C: L M\C]= order of
¥¢ < order of B, << oo. Now, let k be an arbitrary element of K. Then,
one will easily see that L[k][C] =3¢ ,L{k)c, for a (LM C)-basis {c;, **-, ¢s}
of C, whence we obtain [Z[C] [k]:Z[C]1. E[L[C][k]:Z[C]]i=
[LICI([R): Z),=[L[R)[C]: LIE]].[L{k]: L1:|L: Z]=smgq, where m is an
integer such that [L[a): L], < m for all a€ K. We have proved therefore
that K is left algebraic and of bounded degree over the field Z[C](DC).
Consequently, by Lemma 4, we obtain [K: Z[C]], << cc. And so, we

9) I means the inner automorphism determined by 1:0 = I l;'.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 10/issl/2
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obtain our assertion [K: L], Z[K:Z1,Z[K:Z[C]11.[Z[C]: Z]<< oo since
[Z[Cl: Z]IZS[C:ZNCl=[C: LNC]l=s<oo,

(1]
[2]
(3]
[4]
[5]
[61]
{71
(8]

(9]
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