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Nasu: On Hilbert geometry

ON HILBERT GEOMETRY

Yasuo NASU

Introduction. A geometry discovered by Hilbert arises from Klein’s
model of hyperbolic geometry through replacing the ellipse as absolute
locus by a convex curve. Following H. Busemann [1]", in Hilbert geometry
a space R is a G-space® which is Desarguesian in his sense. In the paper
we deal with some conditions for the space R to be non-Euclidean, i e,
hyperbolic.

In [1] we explain some preliminary concepts and show that the space
is a Finsler space with convex indicatrices, if the underlying space is
Euclidean. Further we show a relation between Hilbert geometry and non-
Euclidean geometry. The main purpose of the paper is to prove Theorem
(2.1). Let & be the system of all straight lines through a point p. In the
theorem we show that, if the space admits a transitive group of motions
I' such that under an element ¢ of I' a straight line of  is carried into
a straight line of ¥, the space is then hyperbolic. We show this in § 2.

H. Busemann [2] proved that, if a compact G-space admits a transi-
tive group of motions such that a geodesic is carried into a geodesic under
a motion of the group, the space is spherical, elliptic, hermitian elliptic,

" quaternion elliptic or the cayley elliptic plane. But it seems difficult to
guarantee the above even in Hilbert geometry. Hence our research is
limited to the case of Theorem (2. 1). The G-space said in the above admits
a pairwise transitive group of motions. H. C. Wang [7] and H. Busemann
[1] proved that, if a compact G-space admits a pairwise transitive group
of motions, the space has also the above property. A further extension
was given by H. Busemann [1], i.e., if a G-space whose dimension is finite
and odd (of two) and which possess a pairwise transitive group of motions
is Euclidean, hyperbolic, spherical or elliptic. If in Hilbert geometry a
sbace admits a pairwise transitive group of motions, the space is hyperbolic
independently on dimension. This is a direct result of Theorem (2. 1).

In §3 we define an L-space which arises from the Klein’s model in
hyperbolic geometry and prove that, if an L-space satisfies “Vaxiom du
libre mobilité” of E. Cartan [4], the space is locally Euclidean, hyperbolic
or elliptic.

§1. Let A*(n>2) be an n-dimensional affine space. A point with
coordinates (x', .-+, x") is denoted by x. Let K be a convex body with

1) Numbers in brackets refer to the references at the end of the paper.
2) See [1], p.37.
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interior points and an affine line 1 intersect K at two distinct points p and
g. Further let @ and & be two points on the affine segment pg and repre-
sented as :
at=(1—2)p' + zq" and b = (1 —)p* + /¢
= 0< I<l, i=1, -, 0
Then the distancs p(a, &) between these points is defined as

—
11—z |

(1. 1), ola, b) = k'log

where k is a positive number. Under such a metrization the segment which
is cut off from an affine line by K is a geodesic. Such a geodesic is called
a straight line. If K does not contain the pair of coplaner segments, for
any two points x and y the segment from x to y (or from y to x) is a
unique geodesic which connects these points. In the paper we assume con-
veniently the surface K is strictly convex, and the segment from p to ¢
is simply denoted by pg. When we need the orientation of pg, we denote

it by pg (or by Zj). Under the above assumption with respect to K a
sphere S(e, ) (= {x|p(a, x) <<}, ©>0) is strictly convex. The space
defined above is called an #»-dimensional H-space and will be denoted by
R". The affine space A" is considered as a Euclidean metrization. We
assume that (x', -+, 2”) are rectangular coordinates. Let x be a point of
R" and {e,} and {b,} be two sequences of points which con verges to the
point # and such that the sequence of Euclidean unit vectors {i,} con-
verges to a Euclidean unit vector 2 where 2, is the Euclidean unit vector

of each segment @,b,. Then lim,... e(a,, b,)/p(a, b,) exists and is given
as follows :

elay, b) _ ke(p, x)elx, q)

pl(a., by) e(p, x) +elx, q) >

where p and ¢ are the points of the intersection of K with a straight line
through x with the direction /7, e(a,, b,) are the Euclidean distances between
the points &, and b, and so on. We put

lim,..

e(x, g) =r1(x, 2), elx, p) =r(x, —2)
and if further we put

kr(x, Drlx, —i)
r(x, 2) +rlx, —2),

(1. 2). Gx, 2) =

the equation r = G(x, 1) is considered as a representation of the indicatrix
7. at the point x by polar coordinates.

Let C be a curve of class D' and z* = x'(t), o Lt <L 3, (=1, -+, n) its
parametrization. Then, by putting
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. 1 { 1 1 } .
1. 3). Flx, x) = — 7oy T+ YA RS
1. 3) (%, %) klr(x, 2/]2])  r(x, —x/|x]) %]

the length /(C) of C is defined by integral as usual, where x=(dx'/dt, ---,
dx*/dt) and |%] = D)} (x')%. The following is clear from the above.

(1. 4). If the underlying spase A" is Euclidean and the convex
surface K is of class C'(r=0), the space R" is a Finsler space of class
C" with convex indicatrices.

If =2 and K is an ellipse, K is transformed to the unit circle under
a suitable affine transformation. Hence we assume K is the unit circle.
Then by simple calculation the fundamental tensor g;; is given as

= A40-y) e = 8%y
Bu = kA -y, BT BT (A
and g = 4(1 ——x')

k(l—xz — y2)~z .

Such a space is hyperbolic with constant curvature —1/4k® The angle
between two directions evaluated by use of the above tensor is identical
with the pseudo-angle between these directions.

§ 2. In this paragraph we prove the following

Theorem (2.1). Let R" be an n-dimensional H-space (n>2), p a point
of R* and 3 the system of all straight lines through p. If R" admits a
transitive group of motions I' such that a straight line of X is carried
into a straight line of X under an element & of I', then the space is
hyperbolic.

To prove the theorem let A" be the underlying affine space of R" and
the space R” defined by use of a strictly convex hypersurface K as absolute
figure. We show some propositions and lemma firstly. The proof of the
theorem will be given lastly.

(2.2). Anr-flat B, 0<r<Ln —1) is carried into an r-flat B', under
a motion of the group I.

Since the proposition is clear, the proof is omitted.

In the affine space A" every point x has neighborhood

V: lx‘_yil<€ (i =1,--, ”)’

where ¢ is a positive number. The topology of the space R" coincides with
that of the original affine space. Let @b be a straight line of R" where a
and b are the points of the intersection of K with the affine line «b and
¢ an element of I'. If «b is carried into a straight line ¢d under @, by
extending the definite range of ¢ to the convex hypersurface K, we can
put a¥=c (ord) and b#=d (or ¢) in such a way that for two distinct points

Produced by The Berkeley Electronic Press, 1960



Mathematical Journal of Okayama University, Vol. 10 [1960], Iss. 2, Art. 2
104 Yasuo NASU

x and y on @b the order of the four points @, b, x, ¥ coincides with that of
¢, d, x,y(ord,c, x, »). Under the motion @ the double ratio of these points
is of course invariant. Hence every element of I' is represented as a
projective transformation by use of plane at infinity x,,, =0.

—_
It is also easy to show that, if ab is a straight line of R” where ¢, bE K,
then there exists a motion @ of I' under which the straight line ab is

. . —_—
carried into ba.

(2. 3). The convex hypersurface K is differentiable.

Proof. Since K is convex, K is almost everywhere differentiable,
If K is not differentiable at a point ¢, then the tangent cone at « is
not a hyperplane. Every element of I carries a supporting plane into a
supporting plane and a tangent line also into a tangent line. Since the
group is transitive, K has the tangent cone at every point of K which is
not a hyperplane. But this contradicts the above, from which the
proposition follows.

Next we prove the following

Lemma (2. 4). Let the space be a 2-dimensional H-space and aa' the
straight line of X where a, a' = K. Further let A and A’ be the tangent
lines of K at the points a and o' respectively and p' the point which lies on
the affine line through a and a' and such that (aa!, pp') = —1. Then, by
choosing a coordinate system such that the affine line through the points
ANA' and p' coincides with line at infinity, every element of I' is
represented as an affine transformation.

Proof. Let P be an affine line which passes through AN A’ and the
point p and P’ the line at infinity. Since (ad’, pp') = —1, the point p is the
affine center of ¢ and «'. Since the group I” is tranmsitive, there exists a

motion @ of I under which the straight line c;a)’_ is carried into @'a. In the
case we can put ¢® = ¢’ and a'® = a. Then the straight lines 4 and A’ are
carried into A’ and A respectively. A and A’ are parallel to each other and
the point p is fixed under #. Hence the motion ¢ is represented as an
affine transformation. Since a point of P is not necessarily invariant under
@, we can consider the following two cases.

i) @ = E (identity) on P.

Let ¢ be an affine line through the points ¢ and &’ and let x and x' be
two points on £ with p as their affine center. Then it is easy to see x¥ = x'
and x'#=x. Let P, and P, be the affine lines through x, AN A’ and =/,
AN A’ respectively. The affine lines P, and P, are carried into P, and
P. under & respectively. Let y be a point of P, and y’ the point of the
intersection of P,. with the affine line parallel to ¢ through the point y.
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Y@=y and y» = y'. It follows from this that the motion ¢ is an involu-
tion.

ii) A point on P is not necessarily invariant under .

Let & and &' be the points of P/ K. If the points & and &’ are fixed
under ¢, then every point on P is also fixed under ¢ and hence the case
i) holds. We see from this 6% = b’ and b'® = b. Let z and z’ be two points
on P with p as their affine center, then 24 =2 and 2’¢ =2 Let y bea
point on P. and z the point at which the affine line parallel to ¥ through
y intersects P. Then the point y# coincides with the point y' at which the
affine line parallel to x through the point 2z’ intersects P,. Further it is
also easy to see y'@ = y. Thus we see that # is also an involution.

From the above we see that, if the case ii) holde, K has p as its
affine center. Therefore the tangent lines of K at points which are anti-
podal with respect to p are parallel to each other. Thus every element of
I is represented as an affine transformation under which the point p is
fixed. Hence the convex curve K is an ellipse [1], [5]. It remains to show
that, if the case 1) holds, the convex curve K has p as its affine center.
Next we show this.

Under the assumption let # and «' be the points of P,MN\ K. Then u®
and #'® coincide with the points of >,/ K. We denote these points by »
and o’ respectively, Then we have u¢ =v, v@ =u, '@ =1v' and v'¢¥ = '
The points #, #/, v/ and » are the vertices of a parallel quadrangle. Let w
and w' be the points at which the affine lines #v and #’v’ intersect P re-
spectively. It is easy to show that the tangent lines of K at o and &' are
parallel to each other and also to the affine lines #» and #'»’. Let # be a
motion of I' under which the straight line aa’ is carried into bb'. In the
case we put ¢ =b and ¢’ =0’ as before. Then the tangent lines 4 and
A’ are carried into the tangent lines B and B’ of K at the points & and &’
and the affine line P into t. We see from this that the motion 7 is also
represented as an affine transformation.

From the above there exists a motion @' under which the straight line

b_b)' is carried into b_';) and such that 6%’ = b' and b'¢%' = b. Obviously the
motion ¢ can clearly be chosen so as to be the reflexion of the space with
respect to the affine line 1 by use of the direction parallel to /. Then the
affine lines #v and u'v’ are carried into #’»" and uv respectively. Hence p
is the affine center of the points w and «' and further the points # and o'
has also p as their affine center. The same holds for the points #' and 2.
From this we see again that, if the case i) holds, p is the affine center of
K. Thus the proposition is proved.

Let X be a G-space in H. Busemann's sense. In R “I'axiom du libre
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mobilité” of E. Cartan [4] is stated as follows :

Every point p has a neighborhood S{p, p,) (¢»,=>0) such that, if for
four points x, v, x" and y" of S(p, p,), p(p, x) = p(p, 5, p(p, ») = p(p, ¥
and p(x, y) = p(«', y') hold good, then there exists a motion of S(p, p,)
under which the points x, » ahd y are carried into &/, p and y’ respectively.

If the space satisfies the above axiom, then the space is a Riemann
space of constant curvature. Since a Riemann space or a Finsler space is a
G-space under a suitable assumption of differentiabity, the same holds for
a Rinmann space or a Finsler space. But in Hilbert geometry the space K"
is hyperbolic under more weak condition than the above, i.e.,

Theorem (2. 5). Let R" be an n-dimensional H-space and p a point of
R, If the space R" permits rotation about p, i.e., if for four points x, y, x'
and y', o(p, x) = p(p, x1), p(p, y)=p(p, ¥") and p(x, y) = p(', y') hold, then
there exists a motion under which the points x, p and y are carried into
the points x', p and y' respectively, the space is hyperbolic.

Proof. We use the same notation as before. Let H be a 2-flat through
p. Then it is easy to see that there exists a group of motions with p as
fixed point under which H/M KX is carried into itself and which is transitive
on HNK. In virtue of Lemma (2. 4) HNK has p as its center. As we said
in the proof of Lemma (2. 4) HN K is an ellipse from which the theorem
follows.

To prove Theorem (2. 1) in the n-dimensional case we use again the
same notations as in the proof cf Lemma (2. 4). In the case, A and A’ are
hyperplanes tangent to K at the points ¢ and &' respectively and P is
hyperplane through p parallel to A and A’. The hyperplane P’ coincides
with the plane at infinity. The motion @ which carries the straight line

;c)z' into ;’71 keeps the hyperplane P’ fixed. We can consider the following
three cases, since the motion ¢ carries the hyperplane P into itself.
i) On P the motion ¢ is identity.

ii) {@*} (=0, =1, =2, ---)is an infinite group on P.

iii) {¢*} (=0, £1, =2, :--)is a cyclic group of finite order on P.

Next we show that the case ii) is reduced to the case i) and the case
iii) to the case i) or the case where ¢ is an involution, i.e., #*=E
(identity).

Let y be a point of K/ P, and [ the affine line through y parallel to
the affine line 1. Let z be the point of the intersection of [ with P, y’ the
point on [ such that z is the affine center of y and y’ and y" the point of
the intersection of P.. with the affine line I’ through the point z# (€ P)
parallel to the affine line . Then y¢= y" and vy KM P... To prove the
above we prove firstly the following
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(2.6). If{@*} (=0, =1, =2 --)is an infinite cyclic group, there
exists an element W of the group I’ such thal ep=d', a'f=aand FF=E
on P.

Proof. LetV be a relatively open set of ¥y on KM\ P,. Then the set
V is carried into a subset V’ of P, under the reflexion with respect to P
and of the direction parallel to © and V& also a relatively open set of y' on
KNP,. If the set V' is also such an open set on KM\ P,., the proposition
is proved. Suppose that this doss not hold and V is such a maximal open
set. Then the open set V does not coincide with X/ P,. Since each of the
motions ¢*(k =0, 1, 2, --+) carries KN P, into itself, the sets V¢*(k =0,
1, 2, --:) are open sets on KM\ P,. The set KM P, is compact and hence
there exist two open sets Vé*1 and V¢*: (b, <k,) which have a common
point. Then the sets V and V#**:~*1 have also a common point which con-
tradicts that V is maximal, since V&V NV&**~%), Let # be the reflexion
with respect to the hyperplane P and of the direction parallel fo g It
follows from the above that the set V is carried into a set of K/ P/, under
#'. Obviously the reflexion 7 is a motion and may be supposed to be an
element of I'. If we replace the motion @ by #, then # is a desired motion
in the proposition.

The case iii) is divided into the following three cases.

a) m=1lor —1mod4, b) m=2mod 4, ¢) m=0 mod 4,
where m is the order of the group {#¢*} (k=0, +1, +2, ---). As can easily
be seen from the fact mentioned above, the case a) is reduced to the case i).
If the case c) holds, we put #=¢* (n=2Fk). Then # is also an involution
which leaves the points @ and @’ fixed. But, as shown in the latter, the
theorem is proved in the same way as in the case b). Thus we see that, if
the theorem is proved in the two cases: @=F on P and ¢*=F on P, the
proof is complete. Next we prove the following

(2.7). Let Z be the (n—1)-dimensional tangential cylinder of K whose
generating lines are parallel to x. Then KNZ is identical with KM P.

Proof. If #=FE on P, the tangent line at each point of KN P is
clearly parallel to §. Since the convex surface K is strictly convex, the set
KN Z is identical with KM P. Next we consider the case where ¢* =FE
on P.

Since # is an involution, it is easy to see that there exist on P linearly
independent (#—1) affine lines such that any of these lines is carried into

itself under @, We denote these by L, Ly, ***, L} Less, ***, L..1 Where @
coincides on each &, (=1, -+, 7) with the reflexion with respect to the
point p and on each t; ({=r-+1, ---, n—1) with the identity. Now we con-

sider the case where a¢#=a’ and ¢'®=a.
If » =n—1, the motion @ coincides with the reflexion with respect to

Produced by The Berkeley Electronic Press, 1960



Mathematical Journal of Okayama University, Vol. 10 [1960], Iss. 2, Art. 2

108 Yasuo NASU

the point p. Hence the surface K has p as its affine center, The supporting
plane of K at the end points of a chord through p are parallel to each
other. It follows from this that each motion of the group I' is an affine
transformation. Under the assumption the group I' is transitive and hence
the surface K is an ellipsoid [1]. The proposition holds in the case and
the theorem is also proved.

Suppose now »=#n—2. Let b and b’ be the points at which the affine
line 1., intersects K. Then the supporting planes B and B’ of K at b and
b" are parallel to each other and each of these supporting planes is carried
into itself under #., Hence the hyperplane @ through p parallel to these
supporting planes is also carried into itself. Obviously the hyperplane @
contains the affine lines §, X, *- and §,... If a point 2z is on Q N\ K, then
the points 2z and 2% have p as their affine center.

Let C and C’ be the supporting planes of K at z and z' (=z#) respec-
tively and @’ and @’ the hyperplanes through z and 2z’ parallel to P re-
spectively. Further let x and x' be the points at which the affine line g
intersects @' and @'’ respectively. Then p coincides with the affine center
of the points x and x’. Hence we can put Q'= P, and Q"= P,.. It is easy
to see that under @ the set KM\ P, is carried into KNP,.. Since KM@
has p as its affine center, the hyperplanes C and C' are parallel to each
other.

If the affine line 1 through the points b and &’ intersects the hyperplane
C at a point ¢, then the hyperplane C' also intersects 1 at ¢, since one of
the hyperplanes C and C' is carried into the other and each point of Y is
fixed under . It follows from this that the affine line v is parallel to C
and C. Thus we see that the intersection of the surface K with the
tangential (n—1)-cylinder whose generating lines are parallel to y coincides
with KM Q. Since there exists a motion ¢ of I" under which b and b’ are
carried into ¢ and &' respectively and which is an affine transformation,
the points b and b’ have p as their affine center and KNP coincides with
the intersection of K with the cylinder Z. For the hyperplane @ is carried
into P and the affine line Y into £ under &.

Suppose finally »<#n — 3. To prove the proposition suppose further
that XN P does not coincide with KM\ Z. Let x be a point of KMNZ but
x& KNP. The system of half affine lines joining p to the points of KMZ
forms a cone which is not a hyperplane. Let z be the point at which the
2-flat determined by x and 1 intersects PN\ K. Then the point z has a
neighhorhood

Vilzt =yl <=1, -, n)

which is disjoint from the cone.
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The neighborhood V is divided into two open sets by a hyperplane D
through x which contains the affine line 1. Let H be the 2-flat spanned by
the affine lines L._, and I,_.. Further let y be the point of V such that y&
KNHND. Since each point of H is fixed under @, each point of the affine
line through p and y is fixed under @. The surface K has the tangent line
at y parallel to 3. But the point y does not belong to K/M\Z which is a con-
tradiction.

If ##=FE on P, a® =a and ¢'?=a', then there exists on P an affine
line ¢’ which is carried into itself and such that the affine lines ¢’ and y'@
have opposite orientations. Let b and &' be the points at which the affine
line ' intersects K. Then b7 =0' and b'®» =b. If we replace the points a
and «¢' by b and b’ respectively, the same arguments as in the above are
applicable to this case, i.e., the proposition also holds in this case. Thus
we end the proof.

Under the above preparation Theorem (2. 1) is proved as follows :

KNP has p as its affine center. Hence on P KM P has the parallel
(22— 2)-flats tangent at the end points x and x’ of a chord of KM\ P through
p. It follows from Proposition (2. 7) that the supporting planes at x and x’
are parallel to each other. It is easy to show that there exists a motion of
I" such that the points ¢ and «’ are carried into x and x’ respectively and
which is an affine transformation. Hence KNP is an (n—2)-dimensienal
ellipsoid. We see from this that the intersection of a hyperplane through
p with the surface K is an (#—2)-dimensional ellipsoid. The theorem
follows from this.

Following H. Busemann [1] and W.C. Wang [7], we say that an »-
dimensional H-space K" admits a pairwise transitive group of motions, if
the space has the following properties :

Let @, b, @’ and b' be points such that p(e, b)=p(a’, b'). Then there
exists a motion under which the points ¢ and & are carried into &' and b’
respectively.

The following theorem is clear from the above proof.

Theorem (2. 8). If an n-dimensional H-space R™ admits a pairwise
transitive group of motions, the space is hyperbolic.

It follows from Proposition (2.7) that the relation between perpen-
dicularity and transversality is symmetric at the point p. Under the
assumption of the theorem this relation holds at every point. The theorem
is also clear from the result of P. J. Kelly and L. J. Paige [6].

§3. As we mentioned in the preceding paragraph, if the surface
K is not strictly convex but convex, a geodesic arc from p to g is not
necessarily unique but there exists a system of geodesics which covers
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simply the space except the point p. An L-space arises from suich a metric
space, i.e., we define an L-space R as follows :

A. R is a metric space with distance p(x, ») (=p(y, 2).

B. R is finitely compact, i. e., a bounded infinite set has an accumu-
lation point in R.

C. Ris of convex metric, i. e., for any two distinct points ¢ and b
there exists a point ¢ different from ¢ and b such that p(e, ¢)+ple, b)=
pla, b).

Under the above axioms A, B and C for any two points p and ¢ there
exists a shortest connection from p to q (or from g to p). Such an arc is
said a geodesic arc.

D. Every point p has a neighborhood S{p, #,) (#,>>0) such that
there exists a system of geodesic arcs which covers simply S(p, £5) —p.

If the space R satisfies the above axioms A, B, C and D, then the
space is said an L-space.

Theorem (3. 1). Let R be an L-space. If R satisfies “I'axiom du
libre mobilité”, the spase is locally elliptic, hyperbolic, or Euclidean. The
universal covering space of R is spherical, hyperbolic or Euclidean.

To prove the theorem it is sufficient to prove the first part, since the
latter part is a direct result of the first part. To do this we define a posi-
tive number <, as follows :

Tp = il'lfxescp,p,,lz) @/2»

Then the number z, is positive. We show that for a point ¢ of S(p, =»/2)
there exists a unique geodesic arc from p to ¢ and the prolongation of such
a geodesic arc is locally possible and unique. Then the space R is a G-
space [1] and hence the theorem follows.

We put p(p, q) =< Lety, and 7, be positive numbers such that ;+
7:>>¢ and 0<p,, 72<Le. We further put K(x, 7)={y|p(x, ») =7} 7=>0).
Then K(p, 7»)NK(g, r.)5=¢. To simply the notations we put K(p, 1) =
K, and K(g, y:)= K,. Then S(p, ;7)NK: is an open set on K, with KiNK,
as its boundary. Let z be a point of K, which does not belong to S(p, 1)
and x a point of S(p, ¥/ K, Then an arc on K, from z to x¥ has a
common point with K,/ K. Let &, be a system of geodesic arcs which
covers simply S(p, 0,) — p. Then the system of geodesic arcs of I, which
connect p to the points of K;/MN\ K, divides the interior into domains more
than two. Let y be a point of the intersection of K, with a geodesic arc
from p to q. Then y is an interior point of Ky K, on K,. We prove the
theorem by proving some propositions.

(8. 2). The set KyM\ K, is a connected closed set on K,.

Proof. Let O be an open set on K, enclosed by the set Ky K; and L
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its boundary, Obviously L C K;N\ K. and we can suppose that the set O
does not contain a point of K,MN\ K.. We further assume that O is the
maximal connected open set. Then the set O is clearly contained in S(p, 71).
The boundary L of O is connected. For if L has components L, and L.,
the open set enclosed by one of these contains the other. Suppose that L,
is such a component, i.e., the open set O' enclosed by L, contains L,. Let
x and y be points of L, and L. respectively. The p(p, x) = p(p, ¥) =7 and
plg, x)=plq, y) =7. Hence there exists a motion # under which the points
p, x and ¢ are carried into p, v and ¢ respectively. The sets K,, K. and
K.N\ K. are carried onto themselves under «#. But L, cannot be carried
onto L. nnder ¢ which is a contradiction.

We prove that K;/M\ K. consists of only one component. Suppose this
is not true. Let M, and M, be two different components of KM K.
Then M; and M; enclose open sets O, and O, respectively. These open sets
are both simply connected. Let ;/;, be a positive number such that 7, <<y,
<Cj; + ¢. Then there exist on K, open sets O’, and O’; whose boundaries
M', and M', are contained in K(p, y,) M K, and such that O, 0'; and
0,C 0',. If the number 7/, is sufficiently near y,. then M’/ M= ¢.
Hence there exists a positive number 7', such that 0,0’ = ¢ but M. N
M';5=¢. Let x' and »' be two distinct points of M’,. Then p(p, x') =p(p, ¥")
=v¢/, aud plg, z') = p(q, »') =7.. Hence there exists a motion ¥ under
which the points p, x' and ¢ are carried into p, y' and ¢ respectively.
From the fact mentioned above there exists on K, an open set O, such
that O, C S(p, 7)) and 0", DO/, and which does not contain a point of
K(p, ") K, But this is impossible. Thus the proposition is proved.

From the above proposition we see that K,/ K. encloses on K, an open
set which is contained in S(p, ;).

(8.3). The set KN\ K. coincides with the intersection of K, with a
sphere S whose center lies on K.

Proof. Let S(x, ) be a sphere whose center x is on K, and which
contains K,/ K.. We denote by o the lower bound of such number’s 7.
The number # is clearly positive. Since the sphere K. is compact, there
exists a point x, such that S(x,, ) contains the interior O of K;MN\ K., We
show that K(x,, ¢)/M\ K. coincides with K, K.

Suppose that this is not the case. There exists a sphere S(y,, #) distinct
from S(x,, #) whose center ¥, lies on K; and such that S(y,, 4)/N\ K. contains
the open set O. In this case K(x, 4)MK(y, 4)/M\ K, does not contain a
point of Ky K.. For if so, K,MN K, is contained in the intersection of two
such spheres whose centers lie on K, and with radii 4. It is easy to show
that there exist a positive number 4’ smaller than ¢ and a point x of K,
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such that S(x, )M\ K, D O. But this contradicts the definition of the
number 4. On the other hand, if K(x,, 6)MNK(, )M K, does not contain
a point of K,M K,, there exist a positive number ¢’ and a point x such as
in the above, which is also a contradiction., The proposition follows from
this.

We see from the above proposition that, if ;4 is a positive number
such that y;+7,=¢, then K,MN K, coincides with a point. Thus it follows
hat there exists a unique geodesic arc from p to ¢.

(8. 4). The prolongation of a geodesic arc issuing from the point p is
locally possible and unique.

The proposition is obvious. Thus we see that the space is a G-space
from which the theorem follows.
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