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Abstract! We consider a flexible autonomous system. To realize the system, we employ H?.per-rednndant system 
(It is flexible hardware systm) and Reinforcement learning controller "QDSEGA'; (It is a flexible software system). 
In this paper we apply QDSEGA to controlling of Hyper-redundant robot. To demonstrate the effectiveness, a task 
of acquisition of lmoniotion patterns is applied to a niulti-legged format.ioii and a snakelike formation, as a result 
effective locomotion hss been obtained. 
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1 ' Introduction 
Recently. flexible autonomous system that. can accoin- 
plih xwious t.asks automatically has been much atten- 
tion. Howewr mat.  of conventional researches of au- 
tonomous system are restricted to some simple rohuts 
like a mobile robot [11[2]. 50 it cannot, arconiplish various 
tasks. On the other hand, in the field of researches of 
redundant robot[3][4][5], the mbut rw accomplish YBT- 

ious tasks using its redundancy hut it requires control 
nicthods for each tasks. So it cannot be autonomous sys- 
tem. Considering these points, we propose new approach 
to realize autonomous system. To realize the system, 
we employ a hyper-redundaut robot and a reinforcement 
learnillg controller *QDSEGA[6]". The hyper-redundant 
robot is composs of many uuiform units aiid separa- 
tion and recombination is possible. Usiiig its redundancy 
the hyper-redundant robot ran accomplish various tasks. 
On the other hand, QDSEGA (Q-learning with dynamic 
st.ruct.uring exploration space based on GA) is a one of the 
reinforcement learning approach for the robot with many 
redundant. degrees of keedom and it. can be flexible au- 
tonomous controller. Using QDSEGA, control method of 
the robot to accomplish B task is acquired automatically 
by repeating try and error. 

We can consider that the hyper-redundant robot is a 
flexibility of hardware and QDSEGA is a flexibility of 
software. By combining these adaptive hardware system 
and software system, real adaptive system can he con- 
structed. So controlling of hyper-redundant robot. using 
QDSEGA is very attractive and it might be effective. 
In this paper, we apply QDSEGA to the controlling of 
hyper-redundant robot. To demonstrate the effective- 
ness, a task of acquisition of locomotion patterns is ap- 
plied to a multi-legged robot and a sna!u=like robot. 

2 Hyper-redundant system 
Fig. 1 shows a unit of a hyper-redundant robot. The 
unit has one active joint and it can conihine other units. 
A hyper-redundant robot is composed of many uniform 
units and separation and recombination are passible. By 

changing the form of combination, the hyper-redundant 
system can adapt itself to various environment and var- 
ious even tasks. Fig. 2 - Fig. 4 show the typical forms 

Figure 2: Manipulator 

Figure 3: Snake-like robot 

Figure 4: Multi-legged robot 

of the hypfx-redundant robot. The multi-legged robot 
and the snakelike robot are one of the typiral and sim- 
ple moving forms of the hyper-redundant system. In 
this paper we consider the multi-legged forms and the 
snakelike forms as a typical example. 

3 QDSEGA 
In this section we explain our proposed reinforcement 
learning algorithm QDSEGA [6]. 

3.1 Learning architecture 
Learning architecture is designed for rediwdant robots 
based on t.luee basic ideas. The first one is the to con- 
struct a closed set of pairs of actions and states so as to 
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restrict exploration space. The second oue is to  apply re- 
inforcement learning to the restricted sniall exploration 
.spxe so as tn acqilire mme knowledge tn acmmplish a 
task. The third one is to restructure restrict& rimall ex- 
ploratiou space dynamically using acquired knowledge so 
as to explore wide area. 

3.2 Q-learning with Dynamic Structur- 
ing of Exploration Space Based on 
GA 

In consideration of the ideas in the sect.ion 3.1, QDSEGA 
is designed. Iu this method, the idea of restricting ex- 
ploratiou space is realized by hierarchal structure, rein- 
forcement learning is implemented by Q-lmming and t.he 
exploration space is restructured using genetic algorithm 
(GA) as depict in Fig. 5. 

3.2.1 

We. focus on t.he body of redundant robot and w13 classify 
state space iut.0 two categories: state of robot (interior 
state) and state of environment (exterior state). In this 
paper, we d&ie an interior stat.e and an exterior state 
as follows. The interior state is the 8et of state that the 
agent can control directly. .4nd the exterior state is t.he 
complementary set of the interior state. 

3.2.2 Hierarchal Structure  

Proposed method has a 2-class hierarchal structure. Fig. 
6 shows an example of the hierarchal StNCtUe lor a nu- 
nipulator. An upper agent plans all trajectorics of the 
interior states, and p8sses them to lower agents as de- 
sired states. A lower ngent controls & interior state so 
that it accoiuplishes the desired state. 

The lower agent can be implemeuted easily using 
conventional method for example coutml t.heoretic np- 
proaches, stepping motors and so on. In this paper. we 
mainly consider the learning algorithm of upper agent . 

Interior State and Exterior State 

U 
Figure 6 Hierarchal structure 

Figure 7: Flowchart 

from the upper agent, a set of actions is equivnlent to a set 
of the int,erior stat.e that can be transited. So rrstricting 
tlie action space can restrict the interior state space and 
BS a result the exploration space can be restricted. And 
we cui structure t.he eqloration space dynamically by 
structuriug the action space dynamically. 

If the lower agents cannot accomplish that each iute 
rior state converges to the desired state from the upper 
agent, a perdty is iuipused to upper ngent and IWUI trial 
is started fornr the initial state. So the learnirig process 
is preceded in the restricted exploration space. 

3.2.4 Outline of Learning Process of Upper 

Learning process of uper agent has two dynanucs. One 
is learning dynamics based on Q-learning and the other 
is structural dynamics h a d  on Gandir Algorithm. Fig. 
7 shows the flowchart of the proposed algorithm of the 
upper agent. 

Each act.ion is expressed as a phenome of genes and 
restrurtured by Geiietic Algorithm. At first, ail initial 
set of population is structured randomly. aud the Q- 
table that consists of phenotype of the initial population 

Agent  

.. . .  
is constructed. The &able is reinforced using leaning 
dvnamics and the fines-% of (lenes are calculated based 3.2.3 Dynamic Structuring of Exploration Space 
~r ~~~~~~ - 

A desired state from the upper agent to a lower agent can 
be regarded as an action. If the lower agents accomplish 
that each interior state converges to t.he desired state 

on the reinforced Q-table. Selection aud reproductiai are 
applied and new populatiou is structured. Repeatiug this 
cycle, effeztiw behaviors are acquired. 
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Figure 8: Construction of Q-table 

3.2.5 Encode 

In this algorithm. each individual expresses t.he selectable 
action on the learning dynamics. It means that s n k t  of 
actions is selected and learning dynamics is applied to the 
subset. The subset of act.ioii is evaluated and a new sub- 
set is r e s t r u c t d  using Genetic Algorithm. The nuniber 
of individuals means the size of the subset. If sue of sub- 
set is too small, it is impossible to acmmplidi the tnsks 
and Genetic Algorithm does not work effectively. So the 
size of t.he population should he rliosen lug? enough. 
The necessary sbe is only dependiug on the complexity 
of the given task. In our proposed algorithm, the uum- 
ber of actions (that consist of the Q-table) is reduced as 
the learning process. This is advanced feature So our 
proposed algorithm w o r b  effectively even when the size 
of population is large. 

3.2.6 Create Q-table 

To reduce the r d u n d a n q  of actions, the genes that have 
same phenotype are regarded as one actiou and t.he Q- 
table consists of all different actions (Fig. 8). And the 
size of the Q-table is decreased with the repeat.ing of 
structural dyriamics using Genetic Algorithm. 

3.2.7 Learning Dynamics 

In this paper, the conventional Q-learuing 171 is employed 
as learning dynamics. The dynamics of @learning are 
writ.teii as follows. 

Q ( s , 4 -  (l-a)p(s.a)+a(r(s,o)+-,~~Q(s',n')} (1) 

where s is the state, a is the action, r is the reward, a 
is t,he learning rate and 7 is the discount rate. 

3.2.8 Fitness of Q-table 

Then Q' of the regulated Q-table is given as follows 

if Q(s,a)  2 0; then 

else (Q(s,a) < 0) 

where p is a constant value which means t.he rat.io of 
reward to penalty. Next, we fix the action ai and sort 
Q'(s: ai) according to their value From high to low for all 
s ta te ,  mid we define them as the Q:(s.a.) and the o p  
eratiou is repeated for all act.ions. For example Q;(L ai) 
means the maximum value of Q'(s,ai) and Q"(.V,:ai) 
means the minimum value of Q"s,ni), where N, is the 
size of stat.e s ace In the secon step, we calculate the 
fit.ness. The & n e k  of the gene whose phenotype is re- 
lated to the action ai is given as follows 

,ita(,,j, = ,,,,A Q' (1 + y 2 Q : ( L 4  + Q3.%1+ 
1 2 

Qk(1.a;) +Q:(Z,oiI+ ..' +Q;(Na,%l 
N* + WN, 

where wi is a weight coefficient which decides the ratio 
of special actions to general nctions. 

The fit.nms defined hi (4) has the three important 
points. The first poiiit is the regularization of t.he state 
value of t.he Q-table. In the Q-learning. the value of the 
state that is c law to goal state is higher. So if the fit.- 
ness is calculated froin unregulated Q-table? the selected 
artions at the state that is close to the god  are waluated 
as high value. And the actions that are selected near the 
start state are e\aluated as low vnlue and they are extin- 
guished. But to accomplish the task, a series of actions 
is important, So the regularization of stat.e talue of the 
Q-table is necessav. 

Second point is the hwdliug of the penalty. At the Q- 
learning. the penalty that has negative d u e  is employed. 
Rut the fit.uejs of Genetic Algorithm should be positivee. 
so the conversion of penalty to the fitness is uecffsary. At 
t.he proposed method, the positive value of the Q-table is 
converted to the value from y to 1 and the negat.ivt? d u e  
converted to the value from 0 top. We c m  tune t.he rate 
of the reward to  the penalty by selecting the d u e  of p .  

Third point is the method of calculation of the fitness. 
The first term of t.he equat,ion (4) means the maximum 
value of the action. When w ,  is chwen as a large value. 

The fitness of genes is calculated by two steps. The first 
step is regulation of the Q-table and the m n d  step is 
dculafion of the 
At first, we calculate the nraxininm and minimum value 
.a*,." ..t..*̂ .... S",,.."." 

the action is efIective in special state is waluated 
as a high crrdit, mid the special actions are generated by 
Genetic Algorithm. The I& term of (4) implies the mean 
value of the actions. Arid when WN, is chowu as B large 
d u e ,  the action that is efTective in the various states is 

bd on the 

"1 L U r  aWlb.3 a ,".I"IU. 
eduated  as a high credit and general actions are gener- 
ated. Selecting the weight coefficients (uil,.' .,UN.). we 
can set the ratio of the special actions to general actions. 
And in the proposed method. i t  is possible to set that  
the special actions w d  t.he general act.ions me evaluated 

ILar(s) = n y ( Q ( s ,  a')) 

V";nin(s) = n$n(Q(s,a')) 
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as a high credit simultweously. so they can d d .  And 
our proposed method does not have “don’t care” sym- 
bol that is used in classifier system (Holland, 19E6). 90 
the prohlems caused by using “don’t care“ s.mibo1 do not 
exist. 

3.2.9 

We introduce the fitness of frequency of use to wve 6- 
cient seeria of actions. We define the f i t n w  of frequency 
of use as follows 

Fitness of Frequency of Use 

( 5 )  

where ,V0 is a nuniber of all actions at one generation 
and Nu(&) is the number of times which ai was used in 
the Q-learning at this generation. 

In t.he fitness of @table, the value of series of actions 
f“ start to goal is not coilsidered. But to accomplish 
the task, the Series of actions is important and prpsena- 
tion of series is nwded. 

3.2.10 Fitness 

Combining (4) and (5) we define the fitness as follows 

/it(%) =f i t* (%)  + k, . fit.(a,) (6) 

where k,(kj 2 0 )  is a const.ant value to ildermine the 
rate of fitQ and fit.. 

3.2.11 Selection and Reproduction 

Various methods of selection and reproduction that have 
been studid can be applied to OUT proposed method. 
The suitable method of the selcction and reproduction 
should he chosen for each given task. In this paper t.he 
method of the select.ion and reproduction is uot main 
subject so the couventioual method is used. 

4 Application to Redundant 
Robot 

In this &ion we apply QDSECA t.o a hyper-redundant 
robot. We impose the same locomotion task to two differ- 
ent forms: multi-legged robot and snakelike robot, and 
we consider the ability that adapts control methods to 
ditrerences of the body automatically. 

4.1 Multi-legged robot 
4.1.1 Task 

The task is how to get closer to the light source. Fig. 
9 shows the outline of the task. The light source is far 
enough from the start position of the robot. a id  the re- 
ward is calculated using the distance between the current. 
position of the robot aud the light source. 

Direction of light 

. . ..... . .. 

Rcwaid= 100 [dlt-l).d(Jcr)] 

Figure 9: Task 

4.1.2 Simulation Model 

We consider 12-legged robot. We employ Miuimal Sinm- 
lation Model (hlshl) that was proposed by h.1. Svinin et 
al., (81. This model is v e r  simple and it can be calcu- 
lated very low computational cost. 

Fig. 10 shows a multi-legged robot. Each leg has two 
joint. and has four motoiu and four s t a t e  (1: Move for- 
%sard and lift down, 2: Move back and lift down, 3: Move 
forward arid lift up, 4 Move back and lift up). The 
sition of the robot can be calculated by hlSM as follonrs: 

///\// 1 1 9 7 1 3 1  

Figure In: Multi-legged robot. 

F = F ‘ + F  

M = F‘ - F‘ 

Au = cuF 

An9 = csM 

r(t + 1) = d t )  + Aucosqt)  

g ( t + l ) =  y(t)+AusinO(t) 

O(t  + 1) = 00)  + A0 
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:.- 
Figure 11: najectry of acquired locomotion of the multi- 
legged robot 

where n:, is the number of legs on the right side changing 
their configuration from the state i at the time t to the 
state j at the time t + 1. Similarly defiur nfj for the 
left side. F is total propulsiou force and W is moment. 
And z,y,B mpan the position and orientation of the robot. 
Details are Written in [e]. 

4.1.3 Simulation 

<Formation of GA> 
The dynamics of Genetic Algorithm of the proposed 

algorithm is composed as follow. 
A t  first we descrihe the encoding. We define the ac- 

tion as the desired condit.ion of legs. Aud tlie actions axe 
eiicodrrl as the gene. One action expresses the all con- 
ditious of legs of one step. The umber of individuals is 
200. The roulette selection is Pmployed. The probability 
of the crossover is 0.2 and miform crossover is employed. 
The probability of mutation is 0.001. And 200 t.imes re- 
production is carried out. 
<Fomation of @learning> 

The action space consists of the phenotypes of the geu- 
erated genes. The state space consists of interior state 
and extexior state. The interior state is conipwed of t,he 
iuitial state and the states that can be transited by gen- 
erated actions. The exterior stat- consists of the angle to 
the goal. The angle is divided foiu states (form -45[deg] 
to 45[degl each 3O[deg]). h a r d  is calculated as follows 
and it is given by each step. 

Reward = 100(d(t - 1) - d ( t ) )  (17) 

The roulette selection using the Boltzmann distribu- 
tion is employed. The tenrperature of the Boltzniain 
distribution is given as follows. 

(18) T = 150.0 e(-o.wzxtr.inll+l 

The leaning rate is 0.5 and dwouuting rate is 0.9. The 
nuniber of trials of each learning dynamics is taken 85 
1OooO. 

Figure 12: Acquired lominotinu of the niulti-leggPd robot 

4.1.4 Simulation Results 

Fig. 11 shows the t.rajectory of t,he robot and Fig. 12 
shows the acquired locomotion at 2 0 t h  generation. The 
number of the left side of Fig. 11 indicates the geuera- 
tions. the liorimntal axis meam the x-Rds a ~ d  the verti- 
cal axis means y-axis of Fig.9. From the Fig. 11 me find 
that as the generatioil increaces, B movement distance 
is on the increaw. In the simulation, the optimal NW- 

able distaxiw is 40 so we can conclude that t,lie acquired 
behavior is almost optimal. 

4.2 Snake-like robot 

4.2.1 %k 

We consider a twk which is the same as the subsection 
4.1.1, using snakelike robot. 

4.2.2 

In this simulation we employ the d y ~ a m i r  model of the 
snake like roht with consideriiig friction b e w e n  robot 
body and environment proposed by lwasalii et at (91. All 
links touch the ground and t.lie friction of the vertical 
direction with respect to the robot body is larger than 
that of the tangential direction. Owing to this difference 
of friction the snake-like robot can move. The number of 
links is 5. We regard that all actuator is stepping motor 
and the angle and angular velocity can be controlled. 
b w e r  agents move the corresponding joint. to  the desire4 
angle with constant speed. 

Simulation model of t h e  snake-like robot 
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Figure 1 3  Acquired behavior (Acquisit.ion of lomniotion 
pattern by s n h l i k e  robot) 

4.2.3 Simulation 

<Formation of genetic algorithm> 
0ut.line of the formation of genptic. algorithm is same 

as the subsection 4.1.3. One gene has 9 characters t.hat 
express the angles from -2O[deg] to 20[deg] e w r y  5 de- 
grees. The number of individuals is 30. And roulette 
selection is employed. The probability of the crmover is 
0.5 and onepoint crossover is employed. The probability 
of mutation is 0.02. And 30 times reproduction is carried 
out. 
<Format.ion of Q-learning> 

Outline of formation of Q-learning is same as the s u b  
section 1.1.3. The eaterior st.ate consists of the angle to 
the goal. The angle is divided four states (form -45 [deg] 
to 45 [de$ each 30 [de&. Thp roulette selection ilsing 
Boltamaun distribution is eniployed. The learning rate 
is 0.5 and discounting rate is 0.9. The nuruber of tri- 
als of each learning dynamics is lOD0 times. Fkward is 
calculated as follows and it is given hy each step. 

Reuinrd = 100{d(t - 1) - d( ! ) ]  (19) 

4.2.4 Simulation Result  

Fig. 13 shows the acquired behavior. W e  can find that 
the winding motion is acquired and the task is accom- 
plished. It means that proposed algorithm is effective for 
not only the task in the static nurld but also theta& in 
the dynamic world. 

5 Conclusion 
We haw cousidered new approach that realizs flexible 
aiitonomous vstem. We regard a hyper-redundant robot 
as a flexibility of hardware and QDSEGA as flexibility of 
software. By combining t h e  flexible mechanisms. we 
have reairmi flexible autonomous system. To dernon- 
strate the effectiveness of the proposed approach, the 
locomotion tssk has been imposed to  the multi-legged 
robot aad &like robot. As a result effective locoxno 
tion patterns for each Merent  bodies have been obtained 
automatically. 

We can conclude that our proposed approach is eIlec- 
t.ive to realize flexible autonomous systems. 
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