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Abstract: We consider a flexible autonomous system. To realize the system, we employ Hyper-redundant system
{It is flexible hardware system) and Reinforcement learning controller "QDSEGA* (It is a flexible software system).
In this paper we apply QDSEGA to controlling of Hyper-redundant robot. To demonstrate the effectiveness, a task
of acquisition of locomotion patterns is applied to s nlti-legged formation and a snake-like formation, as a result

effective locomotion has been obtained.
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1 Introduction

Recently, flexible antonomous system that can accom-
plish various tasks automatically has been much atten-
tion. However wmost of conveutional researches of au-
tonoinous system are restricted to some simple robots
like a mobile robot [1}[2], so it cannot accomplish various
tasks. On the other hand, in the field of researches of
redundant robot{3]{4][5], the robot can accomplish var-
jous fasks using its redundancy but it requires control
methods for each tasks. So it cannot be autonomous sys-
tem. Considering these points, we propoese new approach
to realize autonomous system. To realize the system,
we employ a hyper-redundant robot and a reinforcement
learning controller "QDSEGA(6]”. The hyper-redundant
robot is composed of many uniform units and separa-
tion and recombination is possible. Using its redundancy
the hyper-redundant robot can accomplish various tasks.
On the other hand, QDSEGA (Q-learning with dynamic
structuring exploration space based on GA) is a one of the
reinforcement learning approach for the robot with many
redundant degrees of freedom and it can be flexible au-
tonomous controller. Using QDSEGA, contrel method of
the robot to accomplish a task is acquired autornatically
by repeating try and error.

We can consider that the hyper-redundant robot is a
flexibility of hardware and QDSEGA is a flexibility of
software, By combining these adaptive hardware system
and software system, real adaptive system can be con-
structed. So controlling of hyper-redundant robot using
QDSEGA is very attractive and it might be effective.
In this paper, we apply QDSEGA to the controlling of
hyper-redundant robot. To demonstrate the effective-
ness, a task of acguisition of locomotion patterns is ap-
plied to a multi-legged robot and a snake-like robot.

2 Hpyper-redundant system
Fig. 1 shows a unit of a byper-redundant robot. The
unit has one active joint and it can combine other units.

A hyper-redundant rebot is composed of many uniform
units and separation and recombination are possible. By
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changing the form of combination, the hyper-redundant
system can adapt itself to various environment and var-
ious given tasks. Fig. 2 - Fig. 4 show the typical forms

L

Figure 1: Basic unit

Figure 2: Manipulator

Tegpete

Figure 3: Snake-like robot

Figure 4: Multi-legged robot

of the hyper-redundant rebot. The multi-legged robot
and the snake-like robot are one of the typical and sim-
ple moving forms of the hyper-redundant systems. In
this paper we consider the multi-legged forms and the
snalee-like forms as a typical example.

3 QDSEGA

In this section we explain our proposed reinforcement
learning algorithm QDSEGA [6].
3.1 Learning architecture

Learning architecture is desighed for redundant robots
based on three basic ideas. The first one is the to con-
struct a closed set of pairs of actions and states so as to
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Figure 5: Qutline of Learning architecture

restrict exploration space. The second one is to apply re-
inforcement learning to the restricted small exploration
space 50 as to acquire some knowledge to accomplish a
task. The third one is to restructure restricted small ex-
ploration space dynamically using acquired knowledge so
as to explore wide area.

3.2 Q-learning with Dynamic Structur-
ing of Exploration Space Based on
GA

In consideration of the ideas in the section 3.1, QDSEGA
is designed. In this method, the idea of restricting ex-
ploration space is realized by hierarchal structure, rein-
forcement learning is implemented by Q-learning and the
exploration space is restructured using genetic algorithm
{GA) as depict in Fig. 5.

3.2.1 Interior State and Exterior State

We focus on the body of redundant robot and w classify
state space into two categories: state of robot (interior
state) and state of environment (exterior state). In this
paper, we define an interior state and an exterior state
as follows. The interior state iz the set of states that the
agent can control directly. And the exterior state is the
comuplementary set of the interior state.

3.2.2 Hierarchal Structure

Proposed method has a 2-class hierarchal structure. Fig.
6 shows an example of the hierarchal structure for a ma-
nipulator. An upper agent plans all trajectories of the
interfor states, and passes them to lower agents as de-
sired states. A lower agent controls each interior state so
that it accomplishes the desired state.

The lower agent can be implemented easily using
conventional method for example coutrol theoretic ap-
proaches, stepping motors and so on. In this paper, we
mainly consider the learning algorithm of upper agent .

3.2.3 Dynamic Structuring of Exploration Space

A desired state from the upper agent to a lower agent can
be regarded as an action. If the lower agents accomplish
that esch interior state converges to the desired state

Desired joint ang]

Figure 6: Hierarchal structure

[ Create Initial Rendom Population |

Selection

[ Reproduction {Crossover, Mutation) ]

Figure 7: Flowchart

from the upper agent, a set of actions is equivalent to a set
of the interior state that can be transited. So restricting
the action space can restrict the interior state space and
as a result the exploration space can be restricted. And
we can structure the exploration space dyvnamically by
structuring the action space dynargically.

If the lower agents cannot accomplish that each inte-
rior state converges to the desired state from the upper
agent, a penalty is imposed to upper agent and new trial
is started form the initial state. So the learning process
is preceded in the restricted exploration space.

3.2.4 Outline of Learning Process of Upper
Agent

Learning process of uper agent has two dynamics. One
is learning dymamics based on (-learning and the other
is structural dynamics hased on Genetic Algorithm. Fig.
7 shows the flowchart of the proposed algorithm of the
upper agent.

Each action is expressed as a phenotype of genes and
restructured by Genetic Algorithm. At first, an initial
set of population is structured randomly, and the Q-
table that consists of phenotype of the initial population
is constructed. The Q-table is reinforced using learning
dynamics and the finesses of genes are calculated based
on the reinforced Q-table. Selection and reproduction are
applied and new population is structured. Repeating this
cycle, effective behaviers are acquired.
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Figure 8: Construction of Q-table

3.2.5 Encode

In this algorithm, each individual expresses the selectable
action on the Jearning dynamics. Jt means that subset of
actions is selected and learning dynamics is applied to the
subset. The subset of action is evaluated and a new sub-
set is restructured using Genetic Algorithm. The number
of individuals means the size of the subset. If size of sub-
set is too small, it is impossible to accomplish the tasks
and Genpetic Algorithm does not work effectively. So the
size of the population should be chosen large enough.
The necessary size is only depending on the complexity
of the given task. In our proposed algorithm, the num-
ber of actions (that consist of the Q-table) is reduced as
the learning precess. This is advanced feature. So our
proposed algorithm works effectively even when the size
of population is large.

3.2.6 Create Q-table

Fo reduce the redundancy of actions, the genes that have
same phenotype are regarded as one action and the Q-
table consists of all different actions (Fig. 8). And the
size of the Q-table is decreased with the repeating of
structural dynamics using Genetic Algorithm,

3.2.7 Learning Dynamics
In this paper. the conventional Q-learning [7) is employed

as learning dynamics. The dynamics of Q-learning are
written as follows.

Qls,a) — (1-a)Q(s,0) +a{r(s,a) + ymaxQfs’,a"}} (1)

where s is the state, a is the action, r is the reward. o
is the learning rate and - is the discount rate.

3.2.8 Fitness of Q-table

The fitness of genes is calculated by two steps. The first
step is regulation of the Q-table and the second step is
calculation of the fitness based on the regulated Q-table.
At first, we calculate the maximum and minimum value
of the state as follows.

Vinaz(8) = max(Q(s, 4"))

Vinin (3) = min{Q(s, @)

Then Q' of the regulated Q-table is given as follows

if Q@(s,a)>0; then

Q'(s,a) = l B )Q(s @) +p (2)
else  (Qs, u) <)
Q'(s.6) = Q(s a) +p (3)

m““(

where p is a constant value which means the ratio of
reward to penalty. Next, we fix the action ¢; and sort
Q'(s. ;) according to their value from high to low for all
states, and we define them as the Q/(s,a;) and the op-
eration is repeated for all actions. For example Q%(1, a;)
means the maximum value of Q'(s.¢;) and Q, (N, a;)
means the minimum value of @ és ,a;), where N, is the
size of state space. In the second step, we calculate the
fitness. The fitness of the gene whose phenotype is re-
lated to the action g; is given as follows

fitgla;) = Q‘(l““ + 10 Dol ; ACLIN
- Q {1, ﬂ.]+Q’(2 ai) + -+ + QLN i)
N
k,a,
- Z ( Q (k,a; ) @

where w; is a We1ght coefficient which decides the ratio
of special actions to general actions.

The fitness defined in (4) has the three important
points. The first point is the regularization of the state
value of the Q-table. In the Q-learning, the value of the
state that is closer to goal state is higher. Se if the fit-
ness is calculated from unregulated Q-table, the selected
actions at the state that is close to the goal are evaluated
as high value, And the actions that are selected near the
start state are evaluated as low value and they are extin-
guished. But to accomplish the task, a series of actions
is important. So the regularizatien of state value of the
Q-table is necessary.

Second point is the handling of the penalty. At the Q-
learning, the penalty that has negative value is employed.
But the fitness of Genetic Algorithm shonld be positive,
so the conversion of penalty to the fitness is necessary. At
the proposed method, the positive value of the Q-table is
converted to the value from g to 1 and the negative value
converted to the value from 0 to p. We can tune the rate
of the reward to the penalty by selecting the value of p.

Third point is the method of caleulation of the fitness.
The first term of the equation (4) means the maximum
value of the action. When w, is chosen as a large value,
the action that is effective in special state is evaluated
as a high credit, and the special actions are generated by
Genetic Algorithm. The last term of (4) implies the mean
value of the actions. And when wy, is chosen as a large
value, the action that is effective in the various states is
evaluated as a high credit and general actions are gener-
ated. Selecting the weight coefficients (w1, -, wn, )}, we
can set the ratio of the special actions to general actions.
And in the proposed method, it is possible to set that
the special actions and the general actions are evaluated
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as a high credit simultaneously, so they can coexist. And
aur proposed method does not have “don’t care” sym-
bol that is used in classifier system (Holland, 1986), so
the problems caused by vsing "don’t care” symbo} do not
exist,

3.2.¢ Fitness of Frequency of Use

‘We introduce the fitness of frequency of use to save effi-
cient series of actions. We define the fitpess of frequency
of use as follows

Nu(ﬂi)
E;:l Nule))

where N, is a number of all actions at one generation
and N,(g;) is the number of times which e; was used in
the Q-learning at this generation.

In the fitness of Q-table, the value of series of actions
from start to goal is not considered. But to acconplish
the task, the series of actions is important and preserva-
tion of series is needed.

Fityla;) = (5

3.2.10 Fitness

Combining (4) and (5) we define the fitness as follows

Jitlas) = fitglas) + kg - fitu(as) (6)
where k¢(ks > 0) is a constant value to determine the
rate of fitg and fit,.

3.2.11 Selection and Reproduction

Various methods of selection and reproduction that have
been studied can be applied to our proposed method.
The suitable method of the selection and reproduction
should be chosen for each given task. In this paper the
method of the selection and reproduction is net main
subject so the conventional method is used.

4 Application to Redundant

Robot

In this section we apply QDSEGA to a hyper-redundant
robot. We impose the same locomotion task to two differ-
ent forms: multi-legged robot and snake-like robot, and
we consider the ability that adapts control methods to
differences of the body sutomaticaily.

4.1 Multi-legged robot
411 Task

The task is how to get closer to the light source. Fig-
9 shows the outline of the task. The light source is far
enough from the start position of the robot and the re-
ward is calculated using the distance between the current
position of the robot and the light source.

Direction of light

initia] position
™. _Light
rﬂAll ° .

X
S%.ZOO)

Reward = 100 {d(+-1 Fd(7}}

Head

Figure 9: Task

4.1.2 Simulation Model

We consider 12-legged robot. We employ Miuimal Simu-
lation Model {(MSM} that was proposed by M. Svinin et
al., {8]. This model is very simple and it can be calcu-
lated very low computational cost.

Fig. 10 shows a multi-legged robot. Each leg has two
joint and has four motoin and four states (1: Move for-
ward and lift down, 2: Move back and lift down, 3: Move
forward and lift up, 4: Move back and lift up). The po-
sition: of the robot can be calculated by MSM as follows:

A

119 75 31

Head
Active Joint

12 10 8 6 4 2

/\WQA

Figure 10: Multi-legged robot

Jire = u(niy ~ n3;) (1)
Fies = v(n]; + n3y) {8)

{ 0 f | fpal < fres
Freo fie,—fes elseif f1 > f],, &)

Jaro t frea else (f7., < f1,)

F=F4+F (10)
M=F ~F (11)
Au =, F (12}
AB = coM (13)
a(t + 1) = x() + Aucos f(t) {14)
y(t +1) = y(t) + Ausinb(?) (15)
Ot + 1) =8(ty+ AP (16)
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Figure 11: Trajectry of acquired locomotion of the multi-
legged robot

where n!; is the number of legs on the right side changing
their configuration from the state i at the tiwe ¢ to the
state j at the time t + 1. Similarly defive ni; for the
left side. F is total propulsion force and A is monient.
And 3,8 mean the position and orientation of the robot.
Details are written in [8].

4.1.3 Simulation

<Formation of GA> .

The dynamics of Genetic Algorithm of the proposed
algorithm is composed as follows.

At first we describe the encoding. We define the ac-
tion as the desired condition of legs. And the actions are
encoded as the gene. One action expresses the all con-
ditious of legs of one step, The number of individuals is
200. The roulette selection is employved. The probability
of the crossover is 6.2 and uniform crossover is employed.
The probability of mutation is 0.001. And 200 times re-
production is carried out.
< Fomation of Q-learning>>

The action space consists of the phenotypes of the gen-
erated genes. The state space counsists of interior state
and exterior state. The inferior state is composed of the
initial state and the states that can be transited by gen-
erated actions. The exterior state consists of the angle to
the goal. The angle is divided four states (form -45{deg)
to 45[deg] each 30{deg]). Reward is calculated as follows
and it is given by each step.

Reward = 100{d(t — 1) — d(t)} (7)

The roulette selection using the Boltzmann distribu-
tiont is emploved. The temperature of the Boltzmann
distribution is given as follows.

T = 150.0 x e(-ﬂ.oﬂ2xtrin!)+1 (]8)

The learning rate is 0.5 and discounting rate is 0.9. The
number of trials of each learning dynamics is taken as
10000.
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Figure 12: Acquired locomotion of the multi-legged robot

4.1.4 Simuniation Results

Fig. 11 shows the trajectory of the robot and Fig. 12
shows the acquired locomotion at 200th generation. The
number of the left side of Fig. 11 indicates the genera~
tions, the horizontal axis means the x-aeds and the verti-
cal axis means y-axis of Fig.9. From the Fig. 11 we find
that as the generation increases, s movement distance
is on the increase. In the simulation, the optimal mov-
able distance is 40 so we can conclude that the acquired
behavior is almost optimal.

4.2 Snake-like robot
4.2.1 Task

We consider a task which is the same as the subsection
4.1.1, using snake-like robot.

4.2.2 Simulation model of the snake-like robot

In this simulation we employ the dynamic model of the
snake like robot with considering friction between robot
body and environment proposed by Iwasaki et al [9]. All
links touch the ground and the friction of the vertical
direction with respect to the robot body is larger than
that of the tangential direction. Owing to this difference
of friction the snake-like robot can move. The number of
links is 5. We regard that all actuator is stepping motor
and the angle and angular velocity can be controlled.
Lower agents move the corresponding joint 1o the desired
angle with constant speed.
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Figure 13: Acquired behavior (Acquisition of loromotion
pattern by snake-like tobot)

4.2.3 Simulation

<Formation of genetic algorithm>

Outline of the formation of genetic algorithm is same
as the subsection 4.1.3. One gene has 9 characters that
express the angles from -20[deg] to 20[deg] every 5 de-
grees. The number of individuals is 30. And roulette
selection is employed. The probability of the crossover is
0.5 and one-point crossover is employed. The probability
of mutation is 0.02. And 30 times reproduction is carried
out.
<Formation of Q-learning>>

Outline of formation of Q-learning is same as the sub-
section 4.1.3. The exterior state consists of the angle to
the goal. The angle is divided four states (form -45 [deg]
to 45 {deg] each 30 [deg]). The roulette selection using
Boltzmaun distribution is employed. The learning rate
is 0.5 and discounting rate is 0.9. The number of tri-
als of each learning dynamics is 1000 times. Reward is
calculated as follows and it is given by each step.

Reward = 100{d(t — 1) — d(t)} (19}

4.2.4 Simulation Result

Fig. 13 shows the acquired behavior. We can find that
the winding motion is acquired and the task is accom-
plished. It means that proposed algorithm is effective for
not only the task in the static world but also the task in
the dynamic world.

5 Conclusion

We have considered new approach that realizes flexible
antonomous system. We regard a hyper-redundant robot
as a flexibility of hardware and QDSEGA as flexibility of
software. By combining these flexible mechanisms, we
have realized flexible antonomous system. To demon-
strate the effectiveness of the proposed approach, the
locomotion task has been imposed to the multi-legged
robot and snake-like robot. As a result effective locomo-
tion patterns for each different bodies have been obtained
automatically.

We can conclude that our proposed approach is effec-
tive to realize flexible autonomous systems.
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