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Abstract

The skeletal muscle is classified into 2 types, slow oxidative or fast glycolytic muscle. For
further characterization, we investigated the capillary architecture in slow and fast muscles. The
rat soleus and extensor digitorum longus (EDL) muscles were used as representatives of slow and
fast muscles, respectively. To investigate capillary density, sections of both types of muscle were
stained with alkaline phosphatase;the soleus muscle showed more intense reactivity, indicating
that it had a denser capillary structure than the EDL muscle. We then injected fluorescent contrast
medium into samples of both muscle types for light and confocal-laser microscopic evaluation.
The capillary density and capillary-to-fiber ratio were significantly higher, and the course of the
capillaries was more tortuous, in the soleus muscle than in the EDL muscle. Capillary coursed
more tortuously in the soleus than in the EDL muscle. Succinate dehydrogenase (SDH) activity,
an indicator of mitochondrial oxidative capacity, and vascular endothelial growth factor (VEGF)
expression were also significantly higher in the soleus muscle. Thus, we conclude that slow ox-
idative muscle possess a rich capillary structure to provide demanded oxygen, and VEGF might
be involved in the formation and/or maintenance of this highly capillarized architecture.
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The skeletal muscle is classified into 2 types,  slow oxidative or fast glycolytic muscle.  For further 
characterization,  we investigated the capillary architecture in slow and fast muscles.  The rat soleus 
and extensor digitorum longus (EDL) muscles were used as representatives of slow and fast muscles,  
respectively.  To investigate capillary density,  sections of both types of muscle were stained with 
alkaline phosphatase; the soleus muscle showed more intense reactivity,  indicating that it had a denser 
capillary structure than the EDL muscle.  We then injected fluorescent contrast medium into samples of 
both muscle types for light and confocal-laser microscopic evaluation.  The capillary density and cap-
illary-to-fiber ratio were significantly higher,  and the course of the capillaries was more tortuous,  in 
the soleus muscle than in the EDL muscle.  Capillary coursed more tortuously in the soleus than in the 
EDL muscle.  Succinate dehydrogenase (SDH) activity,  an indicator of mitochondrial oxidative capac-
ity,  and vascular endothelial growth factor (VEGF) expression were also significantly higher in the 
soleus muscle.  Thus,  we conclude that slow oxidative muscle possess a rich capillary structure to 
provide demanded oxygen,  and VEGF might be involved in the formation and/or maintenance of this 
highly capillarized architecture.
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apillaries in skeletal muscle run longitudinally 
along muscular fibers in the resting state [1-5],  

and are connected by narrow anastomoses that run 
orthogonally to the muscle fibers [5,  6] and create an 
alternative circulatory route to the main longitudinal 
capillary.  This capillary network structure is specific 
to skeletal muscle.  Slow and fast skeletal muscles 
differ in function,  metabolism,  and blood flow charac-
teristics [7-9].  Slow muscles have tonically active 

and mainly slow-twitch fibers with an oxidative pheno-
type for the oxidative utilization of glucose and fatty 
acids,  whereas fast muscles have physically active and 
predominantly fast-twitch fibers with a glycolytic 
phenotype [10].
　 Several studies have shown that the capillary den-
sity in mixed muscles varies with the specific type of 
muscle fiber being supplied by those capillaries [4].  
Slow muscle fibers generally have higher capillary 
densities than areas containing mostly fast muscle 
fibers [4,  11-13].  In addition,  blood flow and oxygen 
consumption are greater in slow muscle than in fast 
muscle under a resting condition [11].  However,  the 
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influence of anastomoses on the behavior of capillary 
flow in muscles with different fiber compositions is 
poorly understood,  since most studies [14-17] have 
evaluated only the number of capillaries per unit area 
of tissue,  i.e.,  the two-dimensional capillary density,  
and/or the numbers of capillaries per individual fiber,  
i.e.,  the capillary-to-fiber (C/F) ratio,  to estimate 
capillarity.
　 The purpose of the current study was to visualize 
three-dimensional (3-D) capillarity and to examine the 
net capillary volume of muscles injected with fluores-
cent dye using a confocal laser scanning microscope 
(CLSM).  For this purpose,  we used 2 muscles in rats,  
the extensor digitorum longus (EDL) and soleus mus-
cles,  as representatives of fast and slow muscles,  
since the former is mostly glycolytic fast muscle and 
the latter is purely oxidative slow [10].

Materials and Methods

　 Animals. All experiments were conducted in 
accordance with the National Institutes of Health 
(NIH) Guide for the Care and Use of Laboratory 
Animals (National Research Council,  1996) and 
approved by the Animal Care and Use Committee of 
Himeji Dokkyo University.  Male Wistar rats (24-25 
weeks old,  n＝8) were used in this study.  These rats 
were housed for 20 weeks in a room maintained under 
a controlled 12h light-dark cycle at a temperature of 
22±2℃ with 40-60ｵ humidity.  All rats were indi-
vidually housed in same-sized cages.  Food and water 
were provided ad libitum.
　 Muscle preparation. The muscle preparation 
procedure was described previously [18,  19].  Briefly,  
animals were anesthetized with intraperitoneal admin-
istration of pentobarbital sodium (50mg/kg).  The left 
soleus and EDL muscles were excised and frozen in 
isopentane precooled in liquid nitrogen.  Then,  these 
muscles were stored at －80℃ until the histochemical 
staining and immunoblotting analyses.  After removal 
of the left muscles,  the abdominal cavity was opened,  
and the left common iliac artery and vein were ligated,  
followed by insertion of a catheter into the abdominal 
aorta to keep the right hindlimb perfused with con-
trast medium.  The right soleus and EDL muscles 
were first perfused for 3min with 0.9ｵ physiological 
saline containing 10,000 IU/L heparin at 37℃,  fol-
lowed by 10ｵ glucose solution and the contrast 

medium to be administered into the muscular circula-
tion.  The contrast medium consisted of 1ｵ fluores-
cent material (PUSR80; Mitsubishi Pencil,  Tokyo,  
Japan),  8ｵ gelatin (Nakalai Tesque,  Kyoto,  Japan),  
and distilled water.  After the perfusion with contrast 
medium,  the whole body of the rat was quickly 
immersed into cold saline for 10min.  Finally,  the 
right soleus and EDL muscles were excised and frozen 
in isopentane precooled in liquid nitrogen.
　 Histochemical procedures. The midbellies of 
the muscles were mounted on a specimen chuck in 
Tissue Tek OCT compound.  Serial transverse sec-
tions (10µm in thickness) were cut with a cryostat 
microtome (CM3050; Leica Microsystems,  Mannheim,   
Germany) at －20℃,  then thawed to room tempera-
ture and air-dried for 30min.  Some sections were then 
stained with both hematoxylin and eosin (HE) and 
alkaline phosphatase (AP) to visualize the capillaries 
in skeletal muscle.  For histochemistry of alkaline 
phosphatase,  sections were incubated in 0.1ｵ α
-naphthyl phosphate,  0.1ｵ fast blue RR and 0.01M 
magnesium sulfate in 0.2M borate buffer for 60min at 
37℃,  washed in distilled water and fixed with 10ｵ 
formalin.  Sections were observed with a light micro-
scope (B×51; Olympus,  Tokyo,  Japan) and imaged 
with a CCD camera (VB-7000; Keyence,  Osaka,  
Japan).  The mean fiber cross-sectional area (FCSA,  
µm2) from HE staining,  and the capillary density and 
capillary-to-fiber (C/F) ratio from AP staining were 
calculated using NIH image software.
　 Some sections were also stained to determine the 
level of succinate dehydrogenase (SDH) activity,  
which is an indicator of mitochondrial oxidative capac-
ity [20-22].  For SDH histochemistry,  sections were 
incubated in 0.1ｵ nitroblue tetrazolium and 0.1M 
sodium succinate in 0.1M phosphate buffer (pH7.2-
7.6) for 30min at 37℃,  and dehydrated through etha-
nol.  One hundred to two hundred fibers per muscle 
were analyzed for the determination of SDH activity.  
The sectional images were visualized with a light 
microscope and imaged with a CCD camera.  Each 
pixel was assigned a gray level value between 0 and 
255,  with the former being equivalent to 100ｵ light 
transmission and the latter to 0ｵ transmission.  The 
mean optical density (OD) of all pixels within a fiber 
was determined using a calibration photographic tablet 
with 21 steps of gradient density ranges and the cor-
responding diffused density values [20-22].
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　 3-D visualization and capillary analysis.
The 3-D capillary architecture was visualized by a 
fluorescent mode of confocal laser scanning micros-
copy (CLSM) (TCS-SP; Leica Instruments) with an 
argon laser (488nm),  [18,  19].  In brief,  the sample 
block was sliced into 100-µm sections using a cryostat 
(CM3050S; Leica Instruments).  Microscopic images 
were obtained ×20 objective lens,  and each 100-µm 
section was scanned to a depth of 50µm at 1µm/slice.  
Microscopic observations were performed in longitu-
dinal sections.  The CLSM images were automatically 
rendered and displayed as 3-D images with a depth of 
100µm.  Digital images were converted into stack files 
for morphometric analysis to a depth of 100µm (NIH 
Image 1.63; NIH,  Bethesda,  MD,  USA).  The capil-
lary volume of skeletal muscle was measured in a 
square with 100-µm sides and 50-µm depth by using 
macros included in the NIH Image software that work 
with stacks of 50µm depth and [18,  19].  The micro-
vessel volume,  number of microvessels and microves-
sel diameter of muscular tissue were determined by 
measuring a 200×200µm2 area of 50 sections using 
NIH Image software.
　 Immunoblotting analysis to determine the 
level of vascular endothelial growth factor 
(VEGF). Immunoblotting analysis of the vascular 
endothelial growth factor (VEGF) levels was per-
formed after homogenization of the midbelly of each 
muscle in an ice-cold homogenization buffer (100mM 
NaCl,  10mM Tris-HCl) containing protease inhibitor 
cocktail (P8340; Sigma Chemical,  St.  Louis,  MO,  
USA).  Total protein concentrations were determined 
using a protein assay kit (Bio-Rad Laboratories,  
Hercules,  CA,  USA) and a bovine serum albumin 
standard curve.  To detect VEGF protein expression,  
each homogenized muscle sample was adjusted to a 
total protein content of 1µg/µL.  SDS-PAGE was 
performed using 15µg total protein per lane for 
VEGF.  Muscle proteins were separated on a 10-20ｵ 
polyacrylamide gradient gel according to the method 
described by Laemmli [23].  Briefly,  adjusted sample 
solution was added to each lane and analyzed with 
electrophoresis at 20mA for 1.5h at 4℃.  Transfer to 
a PVDF membrane was achieved by the semi-dry 
method (100mA for 1h),  followed by shaking for 1h 
in a 5ｵ blocking solution (Amersham Biosciences,  
Piscataway,  NJ,  USA).  The membrane was then 
incubated with anti-VEGF monoclonal antibody 

(SC-7296; Santa Cruz,  CA) for 2h.  Bands were 
detected by chemiluminescence (ECL; Amersham 
Biosciences) and then photographed (LAS-3000;  
Fujifilm,  Tokyo,  Japan).  Finally,  the band densities 
were measured with image-analysis software (Science 
Lab; Fujifilm).  Glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) was used in each group as an inter-
nal control.
　 Statistical analysis. All data are presented as 
the means ± SEM.  All statistical tests were made by 
using an unpaired Studentʼs t-test.  P＜0.05 was con-
sidered to indicate a significant difference.

Results

　 Muscle mass, body weight, and cross-sec-
tional area. The body and muscle weights are 
summarized in Table 1.  The EDL was heavier than the 
soleus.  The fiber cross-sectional area in the EDL was 
significantly larger than that in the soleus muscle 
(Table 1).
　 Capillary density and SDH activity. All of 
the capillaries in the muscular tissue showed intense 
alkaline phosphatase activity,  which enabled us to 
count them (Fig.  1).  The soleus muscle possessed a 
high capillary density around each muscular fiber.  The 
mean capillary density,  which was determined by 
counting all of the capillaries in a 1mm2 cross section 
of muscle,  was significantly higher in the soleus than 
in the EDL muscle.  The mean C/F ratio in the soleus 
was 148.09ｵ of that in the EDL,  and this difference 
was statistically significant (Fig.  1).  These parame-
ters are summarized in Table 1.
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Table 1　 Body and muscle parameter data in rats soleus and 
extensor digitorum longus muscles

Sol EDL

Body mass (g) 368±6
muscle mass (mg) 134.4±2.3 151.2±  1.7 ♯
SDH activity (au) 100.00±1.06 82.94±  0.98 ♯
FCSA (μm2)  5,158±1,519 5,831±2,475 ♯
CD (number/mm2) 476.24±12.04 383.06±16.29 ♯
C/F ratio  8.00±0.17 5.40±  0.13 ♯

Values are means±S.E.M. (n＝8).  Sol,  soleus; EDL,  extensor 
digitorum longus; SDH activity,  succinate dehydrogenase activity;  
FCSA,  fiber cross-sectional area; CD,  capillary density; C/F ratio,  
capillary-to-fiber ratio.
# Significantly different from sol values (p＜0.05).
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　 The staining pattern for SDH activity was different 
between the soleus and EDL muscles (Fig.  2A,  B).  In 
the soleus,  almost all of the muscle fibers showed a 
similar diffuse staining density for SDH activity,  
while in the EDL,  thin fibers (approximately 50-75µm) 
were stained densely,  while most thick fibers (100-
150µm) showed light staining,  and thus low SDH 
activity.  The whole activity of oxidative enzyme SDH 
was significantly higher in the soleus than in the EDL 
muscle (Fig.  2,  Table 1).
　 Capillary architecture and volume. Three-
dimensionally reconstructed CLSM images revealed 
the capillary architecture of the soleus and EDL 
muscles (Fig.  3).  In both muscles,  longitudinal capil-
laries ran along the muscle fibers,  and adjacent longi-
tudinal capillaries were connected by several trans-
verse anastomosing capillaries.  The longitudinal 
capillaries running parallel to muscle fibers showed a 
tortuous course in both muscles.  However,  the course 
of the soleus muscle was more tortuous than that of 

the EDL muscle,  whose longitudinal capillaries waved 
with small amplitude.
　 From the morphological measurement of these 
CLSM images,  the mean microvessel volumes of the 
soleus and EDL muscle were 13.57±4.04×10－3 
mm3/mm3 and 10.67±3.59×10－3mm3/mm3,  respec-
tively (Fig.  4).  The mean microvessel volume in the 
soleus was significantly higher than that in the EDL 
muscle.  Moreover,  the number of capillaries and 
anastomoses in the soleus were 555.6±9.9/mm2 and 
145.2±5.7/mm2,  respectively,  whereas those in the 
EDL muscle were 425.6±15.6/mm2 and 57.85±4.1/
mm2,  respectively.  There was a significantly greater 
number of microvessels in the soleus than in the EDL 
muscle (Fig.  5).
　 The mean diameter of capillaries was 5.99±0.18µm 
in the soleus muscle,  and 5.11±0.17µm in the EDL 
muscle.  The diameter of anastomoses was 5.95±
0.17µm in the soleus and 5.76±0.22µm in the EDL 
muscle.  The former difference was significant,  but the 
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Fig. 1　 Light microscopic images of capillaries and anastomoses in the soleus (A) and EDL (B) muscles,  which were stained with 
alkaline phosphatase.  The capillary-to-fiber ratio in the soleus was significantly higher than that in the EDL muscle (C).  Sol,  soleus; EDL,  
extensor digitorum longus.  ＊p＜0.05.  Scale bar: 50µm.
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Fig. 2　 Light microscopic images of capillaries and anastomoses in the soleus (A) and EDL muscles (B),  which were stained for suc-
cinate dehydrogenase.  The mean succinate dehydrogenase level in the soleus was significantly higher than that in the EDL muscle (C).  
Sol,  soleus; EDL,  extensor digitorum longus.  ＊p＜0.05.  Scale bar: 50µm.

Ａ Ｂ

100µm
Fig. 3　 Confocal laser scanning microscopic images of capillaries and anastomoses in the soleus (A) and EDL muscles (B).  Capillaries 
run tortuously along the muscle fibers in the soleus and EDL muscle.  There appear to be fewer microvessels in the EDL than the soleus 
muscle.
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latter was not (Fig.  6).
　 VEGF expression in soleus and EDL mus-
cles. The expression level of VEGF in the EDL 
muscle was 44ｵ of that in the soleus.  Thus,  VEGF 
levels in the soleus muscle were significantly higher 
than those in the EDL (Fig.  7).  The density of 
GAPDH was found to be the same in all samples.

Discussion

　 In the current study,  the densities of the capillary 
network in the different 2 types of skeletal muscles 
were studied from stacks of perfectly registered opti-
cal images captured by a confocal laser scanning 
microscope.  Three-dimensional methods used in this 

study were able to correctly measure the capillary 
volume in the skeletal muscle,  including anastomoses.  
The present important findings were: 1) there was a 
higher capillary volume in the soleus than in the EDL 
muscle based on CLSM images; 2) there was a higher 
capillary-to-fiber ratio and higher level of SDH activ-
ity in the soleus than in the EDL muscle; and 3) the 
level of VEGF expression was higher in the soleus 
than in the EDL muscle.  To the best of our knowl-
edge,  this is the first report to indicate the relation-
ship between the capillary network density and VEGF 
expression in rat slow and fast skeletal muscles.
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Fig. 5　 The number of microvessels in the soleus was signifi-
cantly higher than that in the EDL muscle.  Sol,  soleus; EDL,  
extensor digitorum longus.  ＊p＜0.05.
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Fig. 6　 The diameter of Capillaries in the soleus was signifi-
cantly higher than that in the EDL muscle.  However,  the number of 
anastomoses was not significantly different between the soleus and 
EDL.  Sol,  soleus; EDL,  extensor digitorum longus.  ＊p＜0.05.
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Fig. 7　 The level of VEGF protein in the soleus was significantly 
higher than that in the EDL muscle.  Sol,  soleus; EDL,  extensor 
digitorum longus.  ＊p＜0.05.
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Fig. 4　 The microvessel volume in the soleus was significantly 
higher than that in EDL muscle.  Sol,  soleus; EDL,  extensor digi-
torum longus.  ＊p＜0.05.
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　 Long-term unloading leads to the atrophy of skel-
etal muscles [11,  13,  24-26].  Atrophy occurs when 
contractile protein breakdown exceeds protein synthe-
sis [24-26].  In addition,  there is an increase in the 
proportion of the fast IId/x isoform of myosin heavy 
chain in the soleus muscle (normally composed of type 
I and type IIa) [27-30].  This means that atrophy 
transforms slow-type skeletal muscles into fast-type 
skeletal muscles.  Moreover,  atrophy causes a reduc-
tion in capillary diameter and tortuosity,  particularly 
in anastomoses,  in association with vascular endothe-
lial cell apoptosis [19].  As for microvessels,  fast 
skeletal muscles might be less necessary than slow 
skeletal muscles.
　 The present CLMS study has shown the differ-
ences in the capillary architecture between the soleus 
and EDL muscles.  The high capillary volume in the 
soleus appears to be the result of the exceedingly 
tortuous course of capillaries in this muscle.  Myrhage 
has suggested that the oxidative capacity of the fibers 
is more important than the fiber diameter in determin-
ing skeletal muscle capillarity [31].  Our results 
indicate that the differences in capillarity associated 
with fiber types are responsible for the differences in 
the capillary volume of skeletal muscle.  The capillary-
fiber cytoarchitecture is arranged to make the tissue 
more effective in meeting the demand for oxygen.  The 
soleus muscle is an oxidative slow twitch muscle whose 
activity is likely to be sustained by the need to main-
tain posture,  and it has a higher blood flow than gly-
colytic fast twitch muscle [9,  32].  Mai et al.  [6] 
reported that the number of adjacent capillaries was 
greater for red type I and red type IIa fibers.  Then,  
Poole et al.  reported that the size of the capillary-
fiber interface might be regulated in direct proportion 
to the fiber mitochondrial volume or maximal oxygen 
demand in skeletal muscles,  independent of their 
fiber-type composition,  level of aerobic capacity,  
degree of capillarization,  and capillary geometry 
[14].
　 VEGF plays an important role in triggering angio-
genesis [33].  VEGF,  a 45 kDa homodimeric glyco-
protein [34,  35],  has been considered to be an impor-
tant regulator of angiogenesis [34,  35].  In the skeletal  
muscle,  VEGF immunohistochemical expression has 
been confirmed in myofibers,  particularly under isch-
emic conditions [36].  Our results showed that VEGF 
expression in the soleus was higher than that in EDL 

muscle.  This may suggest that,  when the muscles 
enter a hypoxic state,  the VEGF in muscles induces 
an increase in the number of blood vessels.  In the case 
of EDL,  mostly glycolytic fast muscle requires less 
oxygen supply from the blood vessels,  so that the 
VEGF expression might be lower than in the soleus.  
Thus,  the capillary volume and VEGF expression in 
slow muscles such as the soleus are much higher than 
those in fast muscles such as the EDL.
　 Most previous studies [14-16] have used the 
number of capillaries per unit area of tissue,  i.e.,  
two-dimensional capillary density,  and/or the numbers 
of capillaries per individual fiber,  i.e.,  capillary-to-
fiber ratio,  to estimate capillarity.   In contrast,  2 
recent studies determined the three-dimensional archi-
tecture of muscle capillary by CLMS,  and the real 
capillary volume per unit cubage of tissue in heart and 
skeletal tissues [18,  19].  We used these 2 tech-
niques in the present study,  and we found a signifi-
cantly higher capillary volume in the soleus muscle 
than that in the EDL muscle,  which was not surpris-
ing,  since soleus muscle has the higher oxidative 
capacity.  In the present study,  capillaries of the 
soleus showed an extraordinarily tortuous course.  
Such tortuousity should be distinguished from the 
results regarding the contractile position.  The current 
comparison of capillarity between the 2 muscles was 
done under a no-load condition by removing the mus-
cles.  In conclusion,  our study revealed differences in 
capillarity,  especially anastomosis,  and capillary 
volume ex vivo between the soleus and EDL muscles of 
rats.  The capillary volume and VEGF expression in 
slow muscle were found to be higher than those in fast 
muscle.  These findings suggest that differences in the 
capillary architecture between slow and fast muscles 
may have arisen in order to meet the different levels 
of oxygen demand.
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