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Proof that Akers' Algorithm for Locally Exhaustive Testing Gives Minimum 
Test Sets of Combinational Circuits with up to Four Outputs 

Hiroyuki Michinishi, Tokumi Yokohira and Takuji Okamoto 

Faculty of Engineering 
Okayama University 

3- 1 - 1, Tushima-naka, Okayama-shi, 700 Japan 

Abstract 
In this paper, we prove that Akers' test generation algo- 

rithm for the locally exhaustive testing gives a minimum test 
set (MLTS) for every combinational circuit (CUT) with up 
to four outputs. That is, we clanfi that Akers' test pattern 
generator can generate an MLTS for such CUT. 

1 Introduction 
In built-in self-test of multiple output combinational cir- 

cuits (CUTS), exhaustive testing is a simple testing method 
to raise fault coverage, whereas too many test patterns are 
necessary for the CUTs with large number of inputs. 

In order to overcome the above problem, retaining the 
advantages of the exhaustive testing, the locally exhaustive 
testing['i2], the pseudoexhaustive t e~ t ing [~*~]  and the verifi- 
cation testingI5I have been proposed. The difference among 
them is only in the naming, and the principal concepts are 
almost same. We use the first naming. In the locally ex- 
haustive testing, if an output yi depends on wi inputs, a test 
set (LTS) is generated so that 2"{ pattems are applied to 
them (1  5 i 5 m; m is the number of outputs). Many re- 
searchers, for example, Akers, Hiraishi, McCluskey, have 
proposed the algorithms to obtain LTSs. Using these algo- 
rithms, hardware generators for LTSs can be also obtained 
directly. These algorithms, however, do not guarantee to 
obtain a minimum test set (MLTS). 

In general, an MLTS has more than or equal to 2w ele- 
ments, where w is the maximum number of inputs on which 
any output depends. We have proposed an algorithmra] to 
obtain an MLTS for every CUT with up to four outputs, and 
clarified that the number of test patterns is equal to 2", in- 
dependently of n, where n is the number of inputs. It has 
not however been investigated how to construct a hardware 
generator for an MLTS. We call such a generator an MLTS 
generator. 

In this paper, we show that Akers' algorithm gives an 
MLTS generator for every CUT with up to four outputs, 
that is, that the algorithm gives an MLTS for such CUT. 

In Section 2, the LTS, MLTS and a linear function are 
formally defined, and the relation between linear function 
and Akers' algorithm is described for the succeeding sec- 
tions. In Section 3, two theorems closely related to linear 
function are established, and it is proved by the use of these 
theorems that Akers' algorithm gives an MLTS. 

2 Akers' Algorithm 
2.1 Definition of Minimum Locally Exhaustive 

Test Set 
We shall consider a combinational circuit under test 

(CUT) having n inputs z1, 2 2 ,  * .  -, z,, and m ou uts 91, 

Xi be {a$, z;, - - e .  z&} (C X) when yi depends on zf, 

XI U XZ U U X, = X and the CUTremains combi- 
national even if any fault occurs. A locally exhaustive test 
set, an LTS briefly, for the CUT is defined as foll~ws[~l. 

[Definition 11 We call an n-dimensional vector (21, z2, - + a ,  a,) a testpattern. If a set T of test pattems satisfies the 
following condition for 'i (1 5 i 5 m), then the set T is an 
LTS. 

Condition : The projection of T onto (zf , zi, - .  ., zi,) 
subspace corresponding to Xi contains all 2°C distinct 
binary pattems. 

Thus, an LTS is a set of test pattems which can exhaus- 
tively test each output of the CUT. If the number of test pat- 
tems is minimal, then the LTS is a minimum Zocally exhaus- 
tive test set, an MLTS briefly. Note that the number of test 
pattems in an MLTS is more than or equal to 2" from the 
definition of the LTS, where w 4 maz{wl, 1u2, - - . , wm}. 

2.2 Linear Function 
In this section, we introduce the following definitions as 

preliminaries for the succeeding sections. 
[Definition 21 When each of matrices M I ,  M2, ., Mk 

has the same number of row vectors, the concatenation of 
these matrices in this order, which is called a concatenated 
matrix M ,  is represented as 

[Definition 31 The dependence matrix Dc for a CUT 
has m row vectors and n column vectors. The ijth element 
is 1 iff the output yi depends on the input zj, and is 0 oth- 

Note that the weight of the ith row vector of a DC is 
equal to wil and the maximum row weight is equal to w. 

[Definition 41 For ' T  (T 2 l), let tp  be a column vector 
which has 2' elements (1 5 p 5 T ) ,  and it is assumed that 

T-dimensional row vectors. Then, the set { t l ,  t z ,  . . -, t,  
the concatenated matrix tl W t 2  W 

is called a base set. 

y2, ' e, +. Let a set X be {z1,22, . ., tn}, and 'p et a set 

z;, * e, zLi (1 5 i 5 m, and IXi I = wi). It is a ~ ~ ~ m e d  that 

M S M i  WM2W.**WMh. 

erwise. 

- W t ,  has all bin 
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[Definition 51 A linear combination kl tl CB IQ t2 @ 
CB krtr is called a linear function, where k l ,  kz ,  ., k, 
E 

Lote that there exists 2"- 1 linear functions. 
In the discussions below, we implicitly assume that a 

base set is T' (4 {tl,t2,. . e , t ,}), and that linear functions 
are linear combinations of t 1, t ~ ,  . - , t.. 

[Definition 61 The set of g distmct linear functions 
f l ,  f 2 , .  - .  , fg is calledq-indepeltdentif f1 W f2 W 
has all binary q-dimensional row vectors. 

[Definition 71 For a given linear function set S (g { f l  , 
f2, a ., f,}), the set of all linear combinations of f1 ,  f2, . 
Note that, a given linear function set { f 1 ,  fz. 1 ., fg } is 

pindependent iff F(f1, f2, . - .. fq) has 2 9  - 1 elements[']. 
Thus, by constructing F(. - .), we can examine whether a 
given linear function set is g-independent or not. 

[Definition 81 For two distinct linear functions f (9 

if ELl kP2p-' < &;2P-l, then we call that f is 
smaller than f'. m 

For example, let f a tl$t2 and f' P tl$t3, then f is 
smaller than f'. 

0, 1) and (kl, kZ, * * kr) # (O,O, * * ' 9 0)- 

"fs  
f9  is represented by F(S)  or F ( fl,  f ~ ,  -. f9). i 

kltl$k2t2@***$btp) and f' (e k{tlCBk~tzCB***$k:tp), 

2.3 Akers' Linear Function Assignment Algo- 
rithm 

Akers' test pavtem generator is based on linear function 
assignment described below. 

[Definition 91 Let G be a set of U linear functions 
f1, f2, - e ,  f,, (w 1. U n), arid assume that there exists 
such a mapping g from X onto G that satisfies the follow- 
ingcondition f0r"Xi (recallthat& 4 {z~,z~,-..,x~,}), 
then we call that the CUT or the corresponding dependence 
matrix DC is r-assignable. 

Condition: If g(zf) = fj  (1 5 j 5 wt), then the set 

It fi = g(xj), then we call that the linearfunction f, 
is assigned to the input x,. Note that, if a CUT is r- 
assignable, then r is greater than or equal to w. 

Suppose a CUT whose dependence matrix is shown in 
Figure l(a). If t4, t l ,  t2, .t3 and tlCBt2 are assigned to 2 1 ,  
z 2 , 2 3 , 2 4  and zs, respecavely, then the condition above is 
satisfied. Fi ure 1(b) shows t4 W tl W t2 WI t3 W (tl@tz). 

resentation of an LTS for the CUT. 
E4ach row vector of the matrix constructed with t l ,  t2, 

. ., t, can be easily generated by a maximum sequence 
generator. Thus, if a CUTis r-assignable, then a test pattem 
generator constructed with a maximum sequence genera- 
tor and EXOR gates can be easily obtained. For example, 
Figure l(b) can be generated with a test pattern generator 
shown in Figure 2. 

For a given Dc, Akers' algorithm assigns linear func- 
tiom as follows: 

[ 4kers' Assignment Algorithm] 
(A-l)  r = w. 
(A-?,) Select such an arbitrary output y; that the weight of 

the corresponding row vector in the DC is equal to w,  
and assign t j  to each input zf (1 5 j 5 w; = w ) .  

{ f i , f j , - . - ,  j h 4 }  is wi-independent. m 

From the de a nition 6, Figure l(b) is therefore a matrix rep- 

9 x2 XJ xr Y 

1 0 0 1 0  
0 0 1 0 1  
1 0 1 0 1  

t4 tl t2 1 3 w  

(a) Dependence Matrix (b) LTS 
Figure 1 Relation between Dependence Matrix 

and LTS. 

Maximumsequealce 
amaaror 
EXOR N e t w h  I 

Y l  YZ Y3 Y4 Y5 Y6 

Figure 2 Test Pattem Generator for the LTS 
shown in Figure l@). 

(A-3) Repeat the following procedures (A-3.1) and (A- 
3.2) until a linear function is assigned to every in- 
put. 
(A-3.1) Select an arbitrary input z j  to which a linear 

function is not assigned, and find all output y$, yf?, 
. a  ..yie whichdependonxj. Next,foreachoutputy:. 
(1 5 w 5 c), find all inputs to which linear functions 
have been already assigned. and construct a set LC 
of such linear functions (for an output dm, if yj. does 
not have an input to which a linear function has been 
already assigned, then Li, = 9). 

(A-3.2) Construct an set Si according to the following 
equation. 

(1) 
Next, construct F(Tr), where T' 4k { tl,  tz, . a, t, }. 
If < I F ( T ) ~ ,  then execute the following proce- 
dure (A-3.2.1), otherwise, execute the following pro- 
cedure (A-3.2.2). 
(A-3.2.1) Assign the smallest linear function in the 

(A-3.2.2) Assign tr+l to xj, and increase the value 

Thus, if Liw = { f f v  , fie, * a ,  f:;* }, where qi, = (.L:o 1, 
then the procedure (A-3.2) assigns such a linear function f 
that{ f ~ l , f ~ ] , . . . , f ~ ~ ~ , f } , {  f f l , f ~ , . . . , f ~ * , f } , . . . . {  
f:c, fie, a a ,  f i ~ ~ ,  f } become (g;,+l)-independent, (giz+l)- 

sj !! F(L{,)  U F(Li,) U . . . U F(Lfe). 

set iP to zj. 

of T by 1. 
A '  
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independent, 

3 Proof that Akers' Algorithm Gives an 
MLTS 

The basic problem with respect to linear function assign- 
ment is to find such a mapping g that the value of T is min- 
imum, because the smaller the value of r is, the smaller the 
number of test patterns is. Unfortunately, the problem is an 
NP-complete one[*]. nough ~ k e r s '  algorithm is straight- 
forward and time-effective, it does not guarantee to obtain 
the minimum value of T . 

In this section, we prove that the minimum value of 
v can be obtained from Akers' algorithm and is always 
equal to the value of w for every CUT with up to four out- 
puts. It is trivial that, if any CUT with four outputs is w-  
assignable, then every CUT with less than four outputs is 
also w-assignable. Thus, we prove only for four outputs. 

Without loss of generality, it is assumed that a given de- 
pendence matrix Dc has the following properries (see Fig- 
ure 3). 
[Assumption-11 The weight of the row vector which cor- 

responds to the output 11 is w (w1 = w), and X1 = 

[Assumption-2] f D c  has U column vectors whose 
weight are four ( U 5 w ), these column vectors are lo- 
cated in U successive column vectors starting with first 
column vector. 
And without loss of generality, we assume that the arbi- 

trary selection in the procedures (A-2) and (A-3.1) of Ak- 
ers' algorithm are determined as follows: 
[Assumption-3] In the procedure (A-2), y 1  is selected as 

yi, q d  t l ,  t2, e ,  tw are assigned to 81 ,  2 2 ,  e . . ,  z,, re- 
spechvel y. 

[Assumption-4] In the jlthprocedure (A-3.1), xu+,, is se- 
lect+ as 2 .  (1 5 j 1  5 n - w) .  That is, a linear function 
is assignedto each of ~,+1,2,+2, . ., 2, in this order. 

., (qi, + I  )-independent, respectively. 

(21, 2 2 , '  **,2"). 

Figure 3 General Form of Dependence Matrix. 

Under the assumptions above, if it is proved that IS"+Jl I 
< (F(Tw)l for ' w  and '/jl (1 I j1 n - w )  in the jl th 
visit of procedure (A-3.2), then a given DC with the max- 
imum row weight w becomes w-assignable, where Tw c 
t1, t 2 ,  - * ,  t w } .  So, we prove that ISw+Jl( < IF(T")/ for 

e three cases, w = 1, w = 2 and w 2 3. The pro0 for 
each case is performed by induction with respect to j, . 

In this section, two theorems are established, and the 
proof is done using the theorems. 
3.1 Theorems for the Proof 

In the discussions below, we simply represent a column 
vector and a row vector of a given DC by a column vec- 
tor and a row vector, and we represent the column vector 
which corresponds to z,+., by (0, a 2 ,  a3, a#, where vT 
represents the transpose ofH Tow vector u. Without loss of 
generality, weassumethat(a2,a3,u4)=(l,0,0)or(l7 1,O) 
or (1,1,1) (note that (a*2,a3,a4) # (O,O,Ol since it is as- 
sumed that X = XI U X2 U ... U X,,,). 

Let (1, b2, b3, bdT be the wth column vector (which cor- 
responds to zw). If (b2,b3,b4)  = (1,1,1), then all elements 
of a given DC are 1s from Assumption-2, i.e., w1 = w2 = 
w 3  = w4 = w = It. In this case, it is trivial that a given CUT 
is w-assignable (the procedures (A-3.1) and (A-3.2) of Ak- 
ers' algorithm are not executed). Thus, in the discussions 
below, we assume that (h7b3,b4) # (1,1,1). 

[Theorem 11 For 'w and '"jl (1 5 j1 5 n - w), the 
following roperty holds. 

[Aperty-11 Assume that (az, a 3 ,  a4) = (1,0,0) 
or (1, 1,O) . And consider a matrix constructed by re- 
movin the (w + j1)th to nth column vectors f" a 
given bc  as a new dependence maaix DL (note that 
the maximum row weights of DL is equal to that of 
DC from the general form of dependence matrix). If 
DL is w-assignable, then IS"+jl I < IF(Tw)J, 

[hoof of Theorem 11 If ( a 2 , a 3 , a 4 )  = (1, ,O), then 
~ + j l  = F(L:+~')). since DL is w-assignable, L;+~I is 
q2-indepen&nt, and consequently, IF(L:+j')l = 2@ - 1, 
where qz ILw+jl 1.. On the other hand, since 0~ = 1, 
qz I w - 1 (otheMlise, a contradiction that wp is larger 
than w occurs). Thus, the following relation holds. 

(SW+jl( = 1F(Ly+jl)l = 2qz - 1 < 2" - 1 = IF(TW)I. (2) 
If (u2, a3, u4) = (I, I, 01, then Sw+jl = F ( L , W + ~ I ) . U  
F(Ly+j'). Since 0 3  = 1, q 3  5 w - 1, where ,q3 4! ILyJ1 I .  
Thus, the following relatlon holds. 

IS"+jl I = JF(LF+j,) U F(L3"'j')I 
5 p(L;+Jl)l + JF(L3""j')I 
= 242 - 1 + 2 m  - 1 5  2-1 - +2"-1- 1 

< 2" - 1 = p(T")( .  (3) 

[Theorem 21 Let two linear function sets L and L' be 
{ f1, f2, e - . ,  f W - 1  } and { fi, E ,  e - . ,  f: }, respectively, 
where u 5 w - 1. and assume that L and L' are (w - 1)- 
independent and u-independent, respectively. Then the fol- 
lowing equation holds. 

[Definition 101 Let a linear function set L be { fl,  f2, 
. - -, fq 1, and assume that a linear function f is not an ele- 
ment of L. We represent the set { f@f l ,  f @ f 2 ,  - . , fefd 
by f e L .  

[Proof of Theorem 21 It is trivial for the case that 
F(L)  2 F(L'). Thus, we prove for the case that F(L)  2 
F(L'). If it is assumed that all elements of L' are ele- 
ments of F(L),  then F(L) 2 F(L'). Thus, in the case 
that F(L) 2 F(L'), there exists such an element of L' that 
is not an element of F(L). Without loss of generality, let 
{ fi, f;+l,. . . , fi} be a set of such elements that are not in- 
cluded in F(L).  We prove the following three cases. 
Case-1 : u = 1. 

Since L' is {f:}, F(L') = {f:} . On the other hand, 
fl 6 F(L).  Thus F(L) n F(L') = +. Therefore, IF(L) n 
F(L')I = 0 = 2-l - 1. 
Che-2 : U 2 2 and q = u (see Figure 4(a)). 
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fi.1 

Case-3 : U 2 2 and 1 5 q 5 U - 1 (see Figure 4(b)). 
Since fi. @ F ( L )  (q 5 q1 5 U), f:, is an element of 

{f,,,} U (j;&F(L)), where f w  is suchahear function that 
the set { f l ,  f2 , .  . . , f w - l ,  f w  } is w-independent. Thus, fi, 
is represented as follows: 

f ; l = f w @ k f ' f i  @k,P"f2B) e - .  ~ B k E - 1 f w - 1 ,  (8) 
where there may exist the case that ( I t : ' ,  k;, - - - , kw-l) = 
(O,O,. . , 0). Thus, for vql (q + 1 5 q1 5 U), the following 
equation holds. 

fief:, is therefore an element of F(L). 

91 

fief:! = k$f i  @ k$f2 @ 1 . .  k w - , f w - i .  crl (9) 

Csn the other hand, let L" be { f i ,  fi, - - e ,  f:-,, f:, 
f i ~ B f : + ~ ,  f le~f;+~,  . - e, fief: }, then A'' is U-independent, 
and subset of F(L'). Therefore, F(L") = F(L'). 

Therefore, relation between L" and L is as same as 
the relation between L' and L in Case-2. Thus, IF(L) n 
F(1")I = 2"-' - 1. Consequently, IF(L) n F(L')J = 
2u- ' - 1. 
3.2 Proof that I Sw+jl I < I F(T")I 

For w = 1, we prove by induction with respect to j1. 
[Basis Step : w = 11 From Assumption-3, the as- 

sumptions of Property-I are satisfied. From Theorem 1, 
the proof is trivial for the case that (a2, a3, a) = (1, 0,O) or 
(1, I ,  0). If (a2,a3,a4) = (1,1, l), then €q = b3 = b4 = 0, 
since w = 1 (see Figure 5(a)). Therefore, each of L;, L: 
and Li is an empty set. Thus, 1S21 = IF(L$) U F(L:) U 

[Induction Step : w = 11 . If (a2,a?,a4) = (1,0,0) 
or ( I ,  1,0), then the discussion in the basis step similarly 

F(Li)I = 0: 

holds. If (a2, a3, a4) = (1,1, I). then the general form of 
Dc becomes as shown in Figure 5(b). All elements of 
shadow area m Os, since w = 1. But this is contradic- 
tory to the assumption that X = XI U X2 U - . -  U X,. In 
other wards, if jl > 1, then there does not exist such a case 
that(a2,as9a4)= (1,1,1). 

(a) Basis Step (b) Inductionstep 

Figure 5 Dependence Matrix in case that w=l 
and (az, a3, a4) = ( 1.1, 1 1. 

For w = 2, we prove by induction with respect to j , .  
[Basis Step : w = 21 If (a2,a3,a4) = (1,0,0) or 

(1 , 1 , 0), then the proof is trivial from Theorem 1. The proof 
for the case that (%,a3, 04) = (1,1,1) is as follows: 

If c2, cg and c4 are defined as shown in Figure qa),  then 
(c i ,bi)  f (1, l), since w = 2. Thus, ILiI 5 1, IL;I 5 1 and 
IL:I 5 1, and it is trivial that L:, = 4 for 3il or Lh = Lh 
for and %Z (il # id .  Therefore, the following relation 
holds. 

IS31 = IF(Li) U F(L;) U F(Li)I 
= IF(Li*) U F(L;JI I IF(L:2)I + IF(L:J 
5 2 < 3 = IF(T2)I, (10) 

where i 3  # i l  and i 3  f i2. 
[Induction Step : i~ = 21 If (a2,a3,a4) = (1 ,O,O) or 

(1, 1, 0), then the proof is trivial from Theorem 1. The proof 
for the cFe that (a2, 9, a4) = (1,1,1) is as follows (note 
that)L?'I 5 1, I&?' I 5 1 and I L y  I 5 1, since w = 2): 

I the second row vector does not have an 1-element in 
(2 + j l  - 1) successive columns starting with the first col- 
umn, i.e., 312 does not depend on each of inputs zl, 22, . - ., 
22+jl - 1 ,  then L y l  = 9. In this case, the following relation 
holds. 

lS2+j'1 = IF(L?') U F(LY1)  U F(L?')l 
= IF(LY1) U F(L7')I  
5 IF(Ly1)l + lF(Ly' ) l  
5 2 < 3 = lF(T2)1. (11) 

Similarly, we have lS2+j1 I < lF(T2)1 for the case that y3 or 
y4 does not depend on each of inputs z l r z 2 ,  - ., z2+jl-1. 
Thus, we assume that each of outputs yz, y3 and y4 depends 
on one of ~ 1 ~ 2 2 ,  . e ., 22+,,-1 (this situation can occur only 
when j ,  = n - w, since w = 2). Let za, z p  and ty  be 
such inputs for y2, y3 and y4, respectively. If z, and xp are 
identical inputs, then the same relation as (1 1) holds. Sim- 
ilarly, we have 1S2+11 I < IF(T2)1 for the case that zp and 
zy are identical inputs, or 2, and zy are identical inputs. 
Thus, in the discussions below, we assume that z,, z,g and 
zy are different each other, and without loss of generality, 
we assume that a < ,kJ < y. 

Figure 6(b) shows the general form of DC under these 
assumptions, and al and ,kJ1 are defined as shown in the 
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figure. From Assumption-1 and w = 2, all elements in a 
shadow area of the first row vector are Os. And from ut = 2, 
all elements in shadow areas of each of the second, third 
and fourth row vectors are Os. 
(i) Let fa, fp and f7 be linear functions which are as- 

signed to Zar zp and z7. respectively. The first, sec- 
ond and third rows of the 7th column vector are Os. In 
the (7 - w)th visit of (A-3.1), i.e., in the assignment to 
z7, therefore, S7 = F(L:) = 4. Since t l  is the smallest 
linear function of F(P) (4 { tl , t z ,  tl $t2}), therefore, 
tl is assigned to z7, i.e., f7 = t l .  

(ii) If ,d1 = 1, then a1 = 1 from Assumption-1 and w = 2, 
i.e., za and z p  are identical to z and 22, respectively. 
Thus, fa = t l .  From (i), therefore, L y  = Lyl in the 
assignment to z2+jl. Thus, the same relahon as (1 1) 
holds. 

(iii) If ,d1 = 0, then the fist, second and fourth rows of 
the pth column vector are OS. n u s ,  S@ = F ( L ~ )  = 46. 
Therefore, fp = t l .  From (i)* therefore, LY = L y l  
in the assignment to z~+j,.  Thus, we have lS2+jl I < 
lF(T2)1 by replacing L y  in (1 I)  with Lp . 

tl t2 f a  fg fY + +  + +  + 
e= 4 

Y1 
Yl 
Y3 
Y4 

(a) Basisstep CO) Inductionstep 
(x., x p  and x,. are different each other) 

Dependence Matrix in case that w=2 
and(az,as,ad=( 1, 1, 1). 

We assume that any DC with the maximum row weight 
(w- 1) is (ut-1)-assignable, and we prove that (S"+jl 1 < 
IF(T")I for "jl in any DC with the maximum row weight 
w. The proof is done by induction with respect to j1. 

[Basis Step : w 2 31 If ( a ~ , a 3 , a 4 )  = (1,0,0) or 
( 1 , 1 , 0). then the proof is trivial from Theorem 1. The proof 
for the case that (azra3,a4) = (1,1,1) is as follows: 

(2 F(LZ+l) for 'il and 
relation holds. 

Figure 6 

Let qi e ILY'I (2 5 i s 4 qi 5 w - 1). IfF(Ly+') 
(il # iz), then the following 

ISW+lI = IF(L,w") U F(L,"+') U F(L,W+')I 
= JF(Lr ' )  U F(LX+1)\ 

< 2" - 1 = IF(T")I, (12) 
where i 3  # il and i 3  # i 2 .  If qil = 0 (2 5 il 5 4), then 
the same relation as (12) holds. Thus, in the discussions 
below, we assume that F(Lz+') F ( L ~ ' )  for "il and 
'i2 ( i l  # i z ) ,  and assume that gi 2 1 for " i .  

Without loss of generality, we assume that w - 1 2 q2 
2 43 2 44, and prove the following four cases. 

5 2% - 1 + p i 3  - 1 5  2"-' - 1 +2"-l - 1 

= IF(L,W+')( + lF(L3"")1 + IF(L,"+')I 
- I F ( L , " + ' )  n F(L;U+')( 
-)F(L;U+') n F(L,"+')~ 
- p ( ~ f l )  n F ( L Y + I ) I  

+ I F ( L ; " + ' )  n F(L?') n F(L,"")I 
= 242 - 1 + 243 - 1 + 294 - 1 

-(243---1 - 1) - (244-1 - 1) - (294-1 - 
+ I F ( L , W + ' )  n ~ ( ~ h + l )  n F ( L ~ + ~ ) I  

+IF(&?+') n F(L?+') n F ( L ~ + ~ ) I .  

1) 

= 242 + 293-1 

(15) 
From Theorem 2, )F(Z;U+') fl F(L,W+')I = 244-l  - 1. 

On the other hand, IF(L:+') n F(L;"+') n F(L,"+l)I 5 
IF(&;"+') n F(Ly+')l. Therefore, the following relation 
holds. 

I F ( L , ~ + ' )  n F(LP+') n F!L,w+')( 5 294 - 1. (16) 
From (15) and (16), the following relation holds. 

5 2"-1 + 2 w - 2 + 2 ~ - 3  - 1 
ISur+'I 5 242 + 2B-I + p 4 - l  - 1 

< 2w - 1 = IF(T")l. (17) 
Case-4 : qz = q3 = q4 = w - 1 

Note that, for also this case, (15) holds. This case can 
occur if zw+l = zn (see Figure 7(a)). If b; = 0, then the jth 
column of the ith row vector is 1 (2 5 a 5 4; 1 5 j 5 
w - 1). since qi = w - I. Thus, if b; = 0, then LP+l = { t l ,  
t z ,  . . -, t,-l ). Using this, the proof is done as follows: 

Without loss of generality, we prove for the case that 
@2,b3,b4) =(O,O,O) or(LO,O)or(L LO). 

If (b, b3, b4) = (O,O, 0) or (1,0,0), then Lp+' = LqU1+' = 
{ tl, t2, - a ,  t,-l }. Consequently, F(Ly+') = F(L,w+'). 
This is contradictory to the assumption that F(L;U+') g 
F(L,"+'). In other words, if F(Ly+') g F(L,"+'), then 
there does not exist such a case that (b, b3, t") = (0, 0,O) 
or (1,0,0). 

con- 
tain tw,  and Lyc1 never contains t,. Thus, F(L?+l) n 
F(LY')  3 F(Ly*') n F(L;U+') n F(LY+'). On the other 
hand, IF(L,w+') n F ( L Y ' ) l =  2"-' - 1 from Theorem 2. 
Therefore, IF(LT') n F ( L y l )  n F(L,"+')I < 2w-2 - 1. 
Thus, from (13, the following relation holds. 

If (b2, b3, b4) = (1,1,0), then both L,W+l and 

\S"+lJ = 241 +243- '  

+ I F ( L ~ + ' )  n F ( L ~ + ' )  n F(L,~+')I  
2"-1 + 2"-2 + 2"-2 - 1 < 
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= 2" - 1 = IF(T")I. (18) 
1 

[Induction Step : w 2 31 If (a2,ag,a4) = (1,0,0) 
or (1,1,0), the proof is aivial from Theorem 1. And, if 
(~%2)Q3,a4) = (1 ,1 ,1 ) ,  then the discussions until Case-3 in 
the basis step hold by replacing w+l  with w+jl .  

Thus, in the discussions below, we assume that, 42 = 
43 = 44 = w - 1, where qi lF(Lyj')l ,  and F(Ly+") # 
F(L"+jl), F(L'"'j') # F(LY'j') andF(L;"+j') # F(Lyy ' )  
(see kgure 7(bj). Note that this case can occur when 31 = 
n-ut, i.e., x,+j, = 2,. 

Yl 
Y2 

Y3 Y4 

(a) Basis Step 

tl 15 tW.1 tw * *  t *  

( q 2 = q s = q 4 = w - - 1 )  

Xl x2 XW.lXV/XW+l X.N+j,.l Xw+h=Xn 

Y111I11 -*. 1111101 '*. lo lo]  

a given dependence mapix 

remove the w th and nth 
Y J -  Column veculrs 

t l 1 5  k v l  * *  * 
XI x2 XW.lXWtl XW+j,.l 

Y1 
Y2 
Y3 
Y4 

(b) InductionStep 
(qz=q3=q4=w- l  

Figure 7 Dependence Matrix in case that w 2 3 
and (az,a3,a4) = ( 1, 1, 1 ). 

The maximum row weight of a new matrix constructed 
by removing the wth and nth column vectors from a given 
Dc is w - 1. On the other hand, we have assumed that 
any DC with the maximum row weight (w-1) is (w-1)- 
assignable. Thus, if the new matrix is considered as a new 
dependence matrix D;, the Akers' algorithm assigns a lin- 
ear function constructed with some of t l ,  t ~ ,  . - a ,  to 
each of inputs XI, 2 2 ,  . - ., x,,,-1, z,+~, e . ., xw+j,  -1. There- 
fore, for the original Dc, Akers' algorithm assigns a lin- 
ear function constructed with some of t l ,  t ~ ,  e .  +, t,-! to 
each of inputs XI, 2 2 ,  . a ,  T, - I ,  zW+l, . e ,  zw+j l  -1. since 
the smallest linear function is assigned in the procedure 
(A-3.2.1). Thus, (i) if bi = 0, then t ,  never appears in 
the expression of any linear function of L T 3 ' .  And from 
Assumption-3, t ,  is assigned to 2,. Thus, (ii) if b; = 1,  
then t, is included in Ly'j'. Using (i) and (ii), the proof is 
done as follows: 

If (b2) b3, b4) = ( O , O ,  0) or (1,0,0), then t,  never ap- 
pears in the expression of any Pinear function of L:+j1 and 

Ly+j'. On the other hand, both L;"+jl and LY'jI are (w - 1)- 
independent. Therefore, F(L;"+j') = F ( L r j ' ) .  This is 
contradictory to the assumption that F(Lg'j') # F(Ly+j'). 

If (b, b3, b,) = (1 ) 1,O). then both L;"+jl and L;U+jl con- 
tain t,, and consequently, both F(t:'j') and F(L$l"') 
contain t,. On the other hand, t, never appears in the 
expression of any linear function of L ; + ~ I ,  and conse- 
quently, t, never appears in the expression of any linear 
function of F ( L : + ~ I ) .  Therefore, F(L:+~I )  n F(L;"+~') 2 
F(L:+~') n F ( z Y + ~ ~ )  n F(LY+~') .  Therefore, from Theo- 
rem 2 , 2 ~ - 2  - 1 = IF(L:+~')  n F(L;"+~I) I  > I F ( L ~ + ~ I )  n 
F(L;"+j') fl F(L""j')I. On the other hand, it is trivial that 
an equation whici is obtained by replacing (w+l) in (15) 
with (w+jl) holds. Thus, the following relation holds. 

I , y + i l I  = 292 +293-1 

+ I F ( L ; + ~ I )  n F(L;"+~') n F(L:+~')I  
2w-1+ 2,-2 + 2,-2 - 
2, - 1 = IF(TW)J. 

1 < 
(19) 
1 

= 

4 Conclusion 
In this paper, we showed that a hardware MLTS gen- 

erator for every CUT with up to four outputs can be con- 
structed using a maximum sequence generator with w 
stages and EXOR gates, by giving proof that Akers' algo- 
rithm gives an MLTS for such CUT. 

We can easily prove that there does not exist such a gen- 
erator for some CUT with more than five outputs. It is how- 
ever an open problem whether there exists such a generator 
for every CUT with five outputs or not. 
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