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Synopsis

In this paper 'the fill-in minimization problem which arises

at the application of the sparse matrix method for a large sparse

set of linear equations is discussed from the graph-theoretic view

point and also through the numerical experiments. Therefore,

this investigation consists of two parts, and in the former part

the author shows, at first, that the elimination process of a

sparse matrix is equivalently replaced to the vertex eliminations

for a graph obtained from the matrix, and by use of some concepts

in the theory of graph he proves that the vertex elimination

process for the minimum fill-in is equivalent to the vertex elimi

nations for vertices in each subgraph which is obtained by the

appropriate dissection of whole graph, and that there are only

two types of vertex eliminations through the process. This

results in the proposal of a new model of the vertex elimination

process.

The latter part of this investigation is used for the veri

fication of the results from the theoretic investigation. Through

the numerical experiments he concludes that the new model of the

vertex elimination process is valid, at least, for a graph like a

regular finite element mesh. Furthermore, he shows that this

model coincides with Nested Dissection Method which can give the

minimum value of fill-in, at present.
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1. Introduction

Takeo TANIGUCHI and Katsu NUMATA

Since the powerful numerical methods using discretized systems as Finite Element

Method and Finite Difference Method result oftenly in a large set of linear equations,

Mx = b (1)

, where a matrix M is generally sparse, how to solve eq.(l) effectively becomes

important and we find some efficient solvers, most of which utilize the sparsity of

the matrix.

As the discretized system becomes large, the ratio of zero entries to the total
2number of elements of M increases, because total entries increase by O(n ), though

the non-zeros by O(n) for n by n matrix M. Any solver utilizing this sparsity aims

to exclude as many zeros from the numerical operations and also from the input data,

and for this purpose there arise new problems, i.e. the minimum bandwidth problem

for BAND SOLVER [1], the minimum profile problem for PROFILE SOLVER [2] and the

minimum fill-in problem for SPARSE MATRIX METHOD [3].

On the other hand it is well known that through the elimination process for eq.

(1) additional non-zeros are produced, that is zeros in M are replaced to non-zeros

during the elimination [4]. This is proved as following: Assume that the i-th row

elimination alters mjk element of M to mjk' if i<j and i<k.

(2)

Even if mjk = 0 in M, mjk in the modified matrix M* becomes non-zero for mij~ 0 and

~i ~ O. Such a new non-zero entry is called "fill-in". Thus, zero elements in M

are classified into "Fill-in" and "Zero" which is still zero after the eliminations.

Therefore, the minimum value of the input data for the solvers is mainly governed by

the sum of the non-zeros and fill-ins. SPARSE MATRIX METHOD is a solver using only

them, though the others require additional zero entries, and it can be said that this

solver is the most efficient one among sparse matrix solvers.

Though the number of non-zeros is determined when M is given, the number of fill

ins alters according to the elimination ordering, and the fill-in minimization method

is now required. Some effective methods are already proposed for this purpose [4,

5, 6], and George's Nested Dissection Method among them can give the best ordering,

though it has a strict restriction for its application[5,6]. Taniguchi shows

independently that the ordering for the minimum fill-in induces neccessarily the

appropriate dissection of system and that the method of the dissection is dependent

to the system [3].

In this paper we consider on the fill-in minimization method from the graph

theoretic viewpoint and also through the numerical experiments, and aim to obtain

some important informations which are valid for the actual proposal of new ordering.
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2. Elimination Process on Graph

First of all some terminology of the theory of graph [5].
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An undirected graph

G = (X,E) consists of a finite set X of nodes or vertices together with a set E of

edges, which are unordered pairs of distinct nodes of X. A subgraph G' = (X',E')

of G is one for which X' ~X and E' ~ E. The nodes x and yare adjacent if {x,y} E E.

For YCX, the adjacent set of Y, denoted by adj(Y), is {xex/y 13yc:Y~dx,y}EE}.

The degree of a node x in G, denoted by deg(x), is the number ladj (x) I, where I . I
is the cardinality of the set. A graph is complete if every pair of nodes is

adjacent, and if a subgraph G' of G is complete, G' is called a clique. The dis

tance between distinct nodes x and y is the number of edges locating on the shortest

path connecting them, and we denote it by d(x,y).

Now replace the elimination process of a sparse matrix M to that on a graph G.

Let M be a (n * n) sparse matrix with m non-zero entries in its upper triangular area

except the main diagonal. At first prepare n nodes which are numerically ordered

from 1 to n, respectively. Here we denote a vertex labeled i by Vi' Then, give

an edge connecting v. and v. for every (i,j) non-zero entry of the upper triangular
J. J

matrix of M. By this procedure we obtain a graph G for a matrix M. Then, the

row by row elimination of M is equivalent to vertex elimination of G [4].

Let's consider eq.(2) on this graph. Eq.(2) shows that the i-th row elimina

tion can give influence only to a submatrix of M which consist of some j-th rows with

j>i and m.. # O. This is explained on G representing M as that the i-th vertex
J.J

elimination gives influences only to a subgraph which consists of vertices vj with

j>i and d(v.,v.) = 1.
J. J

Let's denote two graphs of before and after the Vi elimination by G and G*,

respectively. Then, even if d(v.,v
k

) > 1 but d(v.,v.) = d(v.,vk) = 1 in G, G* has
J J. J J.

the relation of d(v.,v
k

) = 1 through v. elimination. Since m'
k

# 0 is equivalent
J J. J

to the existence of an edge connecting vj and vk ' a fill-in is recognized as the

introduction of a new edge. Furthermore, we find that Vi elimination replaces the

subgraph {adj(v.)} to a clique. We call this subgraph as a FVG ( which is the
J.

abbrebiation of Frontal Vertex Group).

Now we investigate on the general vertex elimination process. Suppose a

Then, all vertices

modified graph G* which is obtained after some stages of vertex eliminations in

accordance with an arbitrary ordering of the vertex eliminations.

in original graph may be classified into three kind of vertices:

1). vEG
E

2). v G G
N

3). v'" FVG

, where G
E

is a subgraph consisting of only vertices which are already eliminated,

and G
N

is a subgraph consisting of only vertices not eliminated and also not included

in any FVG.
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GNU FVG}.

Type l.

Type 2.

Type 3.

Type 4.

Type 5.

It is obvious that a vertex for next elimination is selected among {v I v ~

Therefore, any vertex v in G must belong to one of following types:

v€: G
N

v Eo FVG, and {adj (v)} 1'\ GN + <P

v E FVG, and {adj (v)} n GN = <P

veFVG's, and {adj(v)}f\GN <P

v",FVG's, and {adj(v)}nG
N

+ <P

Among above five types a vertex elimination of Type 3 never create any fill-in.

Now, let's give physical interpretations for these five types. Type 1-e1imi

nation for a vertex v' creates a new FVGconsisting of vertices {V I d(v',v)=l}, and

Type 2-e1imination of v' includes some vertices {v I d(v' ,v)=l, v;FVG} into the FVG.

Type 3 can decrease the number of vertices in the FVG by one. Type 4 and Type 5

reconstruct several FVG's into one FVG, and the latter can, furthermore, include

some additional vertices in the new FVG. Since Type 5-e1imination is thought as

the combination of Type 2 and Type 4, the vertex elimination is classified into only

4 types, i.e. Type 1, 2, 3 and 4. Summarizing them,

Type 1 Creation of new FVG.

Type 2 Extension of FVG.

Type 3 Schrinkage of FVG.

Type 4 Coupling of several FVG's.

Considering above four types of vertex eliminations, we obtain that

1). at first Type 1-e1iminations appear and the others appear after Type 1,

2). after Type 1-e1imination is applied at least twice, Type 4 can appear, and

3). Type 3-e1imination continues after Type 4.

3. Vertex Elimination Process for Minimum Fill-in

In this section we treat the vertex elimination process for minimizing the fi11-

in which is a special case of the process given in the previous section. Therefore,

the process for the minimum fill-in is also constructed as an appropriate combination

of four types of vertex eliminations.

From the results in previous section it is obvious that all vertices in G can

be eliminated by using only Type 1 and Type 2 if and only if Type 1 is applied only

once, and that otherwise, four types may appear in the elimination process. Now,

we prove that the elimination of the former case cann't generally give the minimum

fill-in. This proof is done by showing an example which cann't give the minimum

fill-in by use of only one Type 1-e1imination. A good example is a tree graph with

, at least, one vertex whose degree is more than 3. Therefore, this results in

that the elimination process includes, at least, two Type 1-e1iminations, and that

during the elimination process four types appear.
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This result gives following very important information; since, at least, more than

two FVG's appear through the elimination, any FVG must stop its growth by the

successive Type 2-eliminations. We denote this FVG stopped its growth by FVG.

At this stage any ve FVG cann' t be eliminated as Type 2 but as Type 3 or Type 4.

Therefore, some vertices {v I GN,v E adj (FVG)} must be eliminated before the elimi

nation of vertices in FVG, that is another FVG must be newly created by the intro

duction of Type I-elimination.

Here, we should notice that the influence of the elimination of a vertex v is

restricted only to {adj(v)}. Therefore, the elimination of vertices in a subgraph

enclosed by one FVG gives no influence to the residual of G, and, furthermore, only

one vertex in the subgraph is eliminated as Type 1 and the other vertices in the

subgraph as Type 2. From this consideration we obtain that the vertex elimination

in any subgraph is proceeded successively from the vertex as Type 1. There appear

as many FVG's as the number of Type 1 vertex eliminations for the original graph GO,

and and all the vertices enclosed in these FVG's are eliminated as Type 1 and Type 2.

We denote the residual graph at this stage by Gl

If we consider G
l

as a new graph, then the vertex elimination for Gl can be done

again by using two types, i.e. Type 1 and Type 2. By the repetition of replacing

the residual graph to a new graph, the discussions for GO are directly applied to

successive graphs, i.e. Gl , G
2

, G3 , ••• , and all vertices in the original graph are

eliminated by using two types of vertex eliminations. From this model of the

vertex elimination process we can notice that

1). how to find FVG's for each Gi is the most important factor for minimizing

the fill-in, and

2). especially, the determination of FVG's for GO gives the largest influence

to the value, because it decides the outlines of successive graphs.

Now consider on the characteristics of FVG. A vertex Vo ~G is, at first,

eliminated as Type 1, and VIG adj(v
O

) may be successively eliminated as Type 2.

Therefore, as far as Type 2 is applied as the successive elimination, a vertex for

the next elimination must be selected among {v I veadj(v
O

' VI' v2 ' ••• )}. In

general, as Type 2 eliminations are continued, the number of vertices in FVG, denoted

by IFVGI, becomes large. The number of fill-in, denoted by IFI,appearing at any

Type 2 elimination is decided by following expression.

IFI ~ IFVGI x deg(v)

, that is IFI is governed by the product of the number of vertices in FVG and the

degree of a vertex being eliminated. This suggests that successive Type 2 are

continued not to increase the vertices in FVG by selecting a vertex with the mini-

mum degree among {v I v e FVG}. Therefore, FVG appearing by further elimination

of v EO FVG includes too many vertices, and any vertex v E adj (FVG) should be included

in another FVG, and thus, this FVG should be the boundary of these subgraphs.
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Above discussions are

From above expression of fill-in we can notice that max IFVGI of G should not

exceed the maximum width of the original graph, where "the width of a graph" is the

shortest path crosses G and separates G into two subgraphs.

valid not only for GO but also successive graphs Gi .

Though this new model of the vertex elimination process is directly obtained

from the graph-theoretic considerations, the model is very similar to Nested

Dissection Method by A. George [5, 6]. The reasons are

1). the graph is subdivided into a gathering of subgraphs,

2). all the vertices in a subgraph are successively eliminated from a vertex

which is appropriately selected, and

3). the maximum dissection line locates at the widest portion of the graph.

Therefore, we can conclude that the discussions given in this section show a proof

that George's method can give the minimum or near minimum value of fill-in.

4. Numerical Experiments

The investigation in Section 3 clarify general characteristics of the vertex

elimination process for the minimum fill-in, but the results obtained there don't

directly lead to actual procedure but only give effective suggestions. Therefore,

the aims of this section are not only to give the proof of the results in previous

sections but also to obtain important informations which are valid for the proposal'

of actual procedure for the determination of vertex elimination ordering.

The results of the vertex ordering given in this section are not by the

computer but by hands so as to satisfy following conditions:

1) • The vertex ordering should basically follow the results in Section 3.

2) . The ordering method obtained must be simple.

3). The number of fill-ins must be less or equal to the minimum value obtained

by using other methods proposed already.

As the other methods in item 3) the author uses a). Minimum Degree Algorithm,

b). Minimum Defficiency Algorithm [4] and c). Nested Dissection Method [5, 6].

The numerical experiments for a) and b) are done by using computer but not for c).

The graphs used for these experiments are simple grid graphs with square and

rectangular surrounding configurations whose edges are subdivided by n x nand n x m,

respectively. This kind of simple test models are chosen in order to clarify the

characteristics of FVG's and also to make ease of hand reordering. The connec-

tivity relation between vertices is that of the nine point of difference sche~e, and

some experiments are done for the five point of differnce scheme.

Some results according to above three conditions are presented in Fig.l, 2 and

3, and Table 1 and 2 summarize all the results of above procedure, a), b) and c).
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Fig. 1 Vertex Elimination Ordering of

(9 x 9) Graph and Location of

Fig. 2 Vertex Elimination Ordering of

(10 x 10) Graph and Location of

FVG's. IFI = 288 FVG's. IFI = 420
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23 24 25 76 28 1 1 3 47 88 41 38 3
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17 I 9 2 I 74 26 1 I I 5 86 39 34 3

Fig. 3 Vertex Elimination Ordering of (11 x 11) Graph

and Location of FVG's. IFI = 573
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Graph No. of Nodes HAND-1 HAND-2 MIN.DEF. MIN.DEG. N.D.(nXn)

5x 5 25 28 28 28 - /
6x 6 36 64 64 64 - /
7x 7 49 104 104 110 - /
8x 8 64 191 191 207 218 /
9x 9 81 288 288 316 349 300

10x10 100 420 420 439 473 /
llX11 121 573 585 610 677 /
12x 12 144 748 795 799 898 /
13x 13 169 968 1041 1018 1280 /
14x 14 196 1235 1336 1320 1367 /
15x 15 225 1519 1691 1681 1861 /
16x 16 256 1860 2079 2002 2316 /
17x17 289 2268 2528 2406 2898 2280

18x18 324 2716 3056 2820 3080 /
19x 19 361 3173 3727 3302 3858 /
20x20 400 - - - 4667 /
25x 25 625 - - - 8644 /
30x30 900 - - - 13724 /

Table 1. Results of Numerical Experiments for ( n x n ) Graphs.

Graph No. of Nodes HAND-1 HAND-2 MIN.DEF. MIN.DEG. N.D. M.N.D.
(nxm)

5X 9 45 76 76 79 79 / /
9x17 153 732 736 775 1020 / 836

10x20 200 1090 - 1133 1266 / /
13x 21 273 1651 - 1656 - / /
17x 25 425 - - - - / 3900

Table 2. Results of Numerical Experiments for (nxm) Graphs.

Notes of Table 1 and 2.

1). Connectivity between nodes is the nine point difference scheme.

2). HAND-1 Hand reordering according to the results in this paper.

HAND-2 Hand reordering in Ref. [3].

MIN. DEF . Minimum Defficiency Algorithm.

MIN.DEG. Minimum Degree Algorithm.

N.D. ; Nested Dissection Method by Alan George.

M.N.D. ; Modified Nested Dissection Method by the authors.
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From these tables and figures we can notice that

1). the new orderings obtained in this paper is not only simple but also very system-

atic,

2). they satisfy all the results obtained in previous section,

3). they can always give the minimum fill-in values for all test examples comparing

with other methods,

4). the vertex orderings for all test examples are very similar to the ones by

Nested Dissection Method, and the difference of the value of fill-in is caused

by the difference of the dissections for four edges of the graphs, and

5). the arrangement of FVG's is rather simple till the width of a graph is less than

11, and new FVG's appear in order to subdivide a subgraph when the width is equal

to 11. This fact indicates that further subdivisions by new FVG's appear when

the width of a graph grows, and it coincides with the increase of "i" for Gi

in the previous section.

From these results ~e can conclude that Nested Dissection Method by A. George

is sufficient for grid graphs with square surrounding configurations, and that the

method is easily applied not only to square graphs with n vertices on each edge but

also to any rectangular graph subdivided into n by m with a slight modification,

though original nested dissection method has a strict restriction for its app1ica-

tions.

5. Concluding Remarks

Through the theoretical and also experimental investigations on the fill-in

minimization problem we obtained following results:

1). New model of the vertex elimination process is theoretically obtained, and it

is proved by the numerical experiments only for simple graphs.

2). In the elimination process there appear only two types of vertex eliminations,

and the elimination is successively done from a vertex which is appropriately

selected in each subgraph enclosed by FVG.

3). FVG's of a graph almost coincide with the dissection lines by Nested Dissection

Method.

4). New model is thought as an extension of the dissection method.

5). IFVG'sl are determined by the characteristics of the graph, though the dissection

lines of George's method are independent from the characteristics.

This investigations can clarify only a portion of the fill-in minimization

problem, and therfore, further study on this problem are required. Especially,

the enumeration of FVG's for various types of graphs are desired for the proposal

of valid method for the determination of the vertex elimination.




