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Synopsis

This paper deals with the groundwater flow in a

semi-confined aquifer causing the phenomena of consoli

dation and free surface lowering. Since the main effect

of consolidation has taken place before noticeable lower

ing of the free surface, one may solve each phenomenon

on its own. The real solution may be obtained by the

principle of superposition. However, the solution for

lowering the free surface is delayed due to the cosoli

dation by a certain timelapse, depending on the place

coordinates.

1. Introduction

The groundwater flow in conection with consolidation will be studied

in a sandy permeable aquifer, which is situated on an impermeable base

and overlained by a less permeable clay layer with a free surface.

The flow in the sandy layer will be supposed to be mainly horizontal.

Since the permeability of clay is much less than that of sand, the flow

in the clay layer will be mainly vertical.

It will be possible to describe the flow in the sandy layer by an

equation containing the average head over the height of that layer as

unknown. The influence of the clay layer is expressed by its parameters.

In addition, a relationship between the average head over the height
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of the sand and the height of the free surface in the clay can be

derived.

It will appear that the contribution of the flow from the clay

layer consists of two parts; the cotribution of the free surface and

that of the consolidation of the layer. Both terms have the form of

the Boulton integral [see (1)] and cause a delay in the flow phenomenon

in the sandy layer.

As lowering of the free surface of the clay layer is a much slower

phenomenon than consolidation, it is possible separate both phenomena.

One may solve each on its own. The real solution can be approximately

obtained by the superposition of both solutions. However the solution

for lowering of the free surface in the clay is shifted by a certain

timelapse, depending on the place-coordinates. Though in practical terms

this is of hardly any influence, it is interesting from a theoretical

viewpoint. Consolidation here results just in a certain delay, which

turns out to be a very interesting function of the place-coordinates.

In order to derive the above mentioned equations it is necessary

to work with a constant vertical resistance in the clay instead of

with a constant permeability. This has its main influence during the

initial stage of the lowering of the free surface in the clay, after

the greatest effect of consolidation has taken place. Its importance

depends on the values of the derivatives of the height of the free·

surface in the clay with respect to the place and time coordinates.

As an example of the use of the derived equations to solve a prac

tical problem the case of pumping up water in the center of a circular

island is studied. The results show that consolidation is a matter

of days/months, while lowering of the free surface in the clay calls

for months/years. The maximum delay caused by consolidation is of order

of the ratio of a combination of the coefficients of storage of the

sandy and clayey layers to the porosity of the clay; this ratio hav

ing a small value for normal soil.

2. Analytical Description

The groundwater flow will be studied in a sandy permeable aquifer

which is situated on an impermeable base and overlain by a less perme

able clay layer with a free water table. A cross section of this

system is shown in Fig.l. H is the height of the sandy layer, hO is

a representative level of the head of the free surface in the clay,

for example the lebel in the initial stage. Since it will be supposed

that the area of the flow phenomenon is broad in propotion to the
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height H+ho (the vertical shear stress due to the flow by consolidation

must be negligible), the flow in the sandy as well as in the clayey

will conform to the simplified consolidation equation,

(1 )

where, c: consolidation coefficient, G: shear modulus of soil,

Kw: compression modulus of water, ~ : head,

P density of water, g: accelaration of gravity,

k permeability coefficient, n: porosity of soil,

K compression modulus of soil, t; time elapse,

x,y and z : place-coordinate,

Equation (1) will be applied on the flow in both layers. In the

plane the layers have in common, z=-hO' the flow is related by two

conditions of continuity: one for the specific discharge, the other

for the head. By those conditions the influence which the flow in the

clay has on the flow in the sand can be expressed in the flow variable

of the sandy layer. One obtains an equation to be solved under the

boundary conditions for the configuration to be studied.

Fig.l General configuration
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Since the flow in the sandy layer is supposed to. be mainly hori

zontal, it is useful to work with the average head over the height· of

this layer,

~ 1 J-ho
¢= II ¢dz

-H-hO

To introduce q;- in equation (1) one may integrate with respect to z

over the height H.

As H is constant and the base is impermeable, one obtains,

1 ~ l!.2¢ + -.l.(lL) (2)Cs at H dz Zs =-hO

where l!. = a2 a2
-2+ ay22 ax

The index s refers to the sand; the index c refers to the clay.

Therefore one needs to know the relation between the flow in the sand

and the flow in the clay. The two conditions of continuity for the

specific discharge as well as the head are,

(3)

( ¢)z --h = ( ¢)z =-h N ¢
s- 0 c 0

Since the flow in the clay layer will be mainly vertical, one may

simplify equation (1), if applied to this layer, as

(4 )

with boundary conditions for z=-hO' and the free surface to be denoted

by z=h [ see Hantush (2) ].

{
z=-,.::o

¢ = ¢ {
z=h

¢ =h

At the time t=O no flow will be supposed. Everywhere in the field the

head has then the same value, ¢ =0 . It is not easy to solve equation (4)

under these conditions. However, an analytical solution is possible

for the case of a constant vertical resistance in the clay rather than

a constant permeability.

--~
h+hO kcf (h+hO) vertical resistance
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Furthermore one must assume,

117

( h+hQ .Q '
hQ )Cc C~: constant

But this has no practical importance, as it will turn out later that

consolidation loses its influence before noticeable lowering of the

free surface in the clay occurs. In order to obtain constant boundaries

as time elapses, one may work with a variable, depending on the height

of the free surface,

-~Z - h+hO{z+hQ)
One has to solve now a well known type of partial differential equation,

(5 )

with initial and b0undary conditions,

{
t=Q

cj>=Q
{
Z=Q~

cj>= cj>
{

Z=hO

cj>=h

It is possible to solve this equation by the theory of Laplace trans

formations. After the transformation of the equation (5) and its bound

ary conditions one obtains a linear second order differential equation

in Z, with three boundary conditions, two of them necessary to solve

the differential equation and one necessary to eliminate the unknown

head of the free surface. From the solution of the differential equat

ion and the third extra condition the following can be derived,

.~ ne.~ .~
Clp =_ Sh(hoV~)+~hovC'Ceh(hoVCf).rp,\JJ"

( ClZ ) Z=Q,-p fie.1'L- .W Va;T (6)
eh(hoV~)+S~hoV~sh(hoV~)

(7 )

where,

¢ L{cj» = [cj>exp{-pt)dt

Ijf L{$') = I(j)exp(-pt)dt

X L{h) = fhexp(-pt)dt
o

L: Laplace transformation, S: coefficient of storage

S~= k6hQ/C~ Ss= ksH/C s

It is possible to find the inverse transform of (6). This can be

achieved by the convolution theorem of Laplace transformations and

the expansion theorem of Heaviside. The result is,
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(8)

where,

Pm is the root of n
§€Pm = ctg{Pm) with m~~Pm ~(m+l)rr

AS for soil and especially clay the ratio nc/S; has a large value.

Therefore it holds approximately that,

M ~1

and one may write formula (8) as the following,

d¢
(az)z=O

t 1: _

1 f d¢ k~ 2 1d¢ 00 2 ? I

- h ax-exp {-~ (t-j,,))dA-h TI L.exp{-m 1T'""~(t_j,,)·ld>-o 0 n c 0 00 11I=0 h a
o

(9)

The result shows that for normal clay (nc~S~) the flow from the clay

to the sand consists of two integrals of the Boulton type [see (1)].

The first one represents the contribution of lowering of the free

surface and can also be derived for the case in which consolidation

is ignored. The second integral represents the contribution of the

consolidation and can also be derived for the case in which the free

surface in the clay is constant. In that case, since the discharge

from the clay to the sand is not limited, one may think the nc in

formula (9) to be infinitely large.

Since it has turned out that the problem is composed of two types

of phenomena, it is sensible to study first the structure of (6).

It is unknown from the theory of Laplace transformations that large

values of its parameter, in this case t. For large values of p it

follows from equation (7) that the head of the free surface in the

clay hardly changes. Therefore for the first stage it can be written,

c'= cc c
k'= k

c c
S'= S

c c z = z + hO

and hence one may omit, in the behaviour of equation (6) for large

values of p, the dash in the consolidation coefficient and use the

normal vertical place-coordinate,

d¢ _.rp .W Ij1
(a"Z}Z =-h - -hOVe- ctgh(hOVC)h

c 0 c c 0
(10 )

Moreover, in the case of a constant head in the clay instead of a

free water table formula (10) is the exact sOlution for the type of

problem studied in this paper.
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It is interesting to know to what extent equation (10) will

approximately the real solution and whether it will lead to a specifi<;:

situation from which the influence of the free surface can be taken

into account. With this purpose in mind, one may consider values of

s'/n andS In ,which are small enough that formula (10) will alsoc c s c
hold for not so large values of p, so that one may write approximate-

ly,

(ll)

From (2), (3) and the invers transformation of (11) it then follows

approximately,

(20 )

Formura (12) is the steady flow equation after consolidation alone.

Therefore for values of (Ss+Sc/3)/nc' which are small enough, the

process of consolidation of the clayey as well as the sandy layer

loses its importance before lowering of the free surface is noticeable.

Conversely small values of the parameter p in (6) and (7) give

information for large values of the time. For small values of p (6)

behaves through it were,

(13)

It follows from (7) that it holds for the head of the free surface

in this cace,

x (14)

Moreover, in the cace of the influence of consolidation not being

taken into account, equation (13) and (14) are the exact solution for

the studied problem.

Since we know now the structure of the problem, we can study it

as a whole. It follows from (2), (3) and (9) that the average head

over the height of the sandy layer conforms to the following equation

for small values of the parameter S'/n'
c c'

- 1 - k' 1 t - k' t.- ... C'
A~ =_.~-S.._{J-~xp{-~(t-A)}d>..+f -.1..-2 L: exp{-m2'IT2~(t-A) }dAJ

2; Cs at kc hOH 0 dA nchO 0 ~>... rn~o h O

(15 )
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'Where

It followed from the Laplace transformation that in the first stage

consolidation prevailed. Therefore we may write,

$c: the solution for consolidation alone,

\: the influence of lowering of the free surface in the clay

on the consolidation.

As the first term and the second integral of the right part of formvla

(15) are mainly reflected bY~, it can be shown that those terms appli

ed on ¢ have negrigible influence. Therefore one may write approximate-
f-

ly by reducing the equation for ¢ from (15),
c

tI¢ = (IT_a~xP{-(l-A)}dA +11fT ~t·exp{-(?J-A)}d). - ~
to )0 - 0'\ 0 01\ C

(17 )

where,
Ik' 1

Tl =yYk~ hOH

It is useful to rewrite (17) by partial integration of the second

integral and by introducing the steady flow equation after only con

solidation (12),

(18 )

where ~o is the solution of (12).

If Wis so small that consolidation still prevails, then it holds

that ¢*"~O. But if n is not particularly small, so that consolidation

has already become less important, then for those values it holds

~~ ~q and it can be shown that the second integral of (18) will

behave like the area between the curves ~and ~cas functions of ~

times the function exp (-1/). The area between the curves ¢c and ~ocan

be found from their Laplace transformations. It follows from (10) and

the transformed equations (2), (3) that the transformed head for con

solidation alone, L( $c) ='¥c , conforms to the equation,

(19 )

The solution of this linear second order differential equation will

be of the form,

(20)
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where a and b denote the boundaries.

The transformed '.solution of the steady flow equation after consolidat

ion alone, L(WO) = ~o, follows from (20) by taking the limit p~O,

1
~ 0 = P f ( €; , n, €;Q. ' €; b ' nQ. ' nb

The area between the curves ~ and ~c as functions of ~ is then equal

°to,

(21)

where f€; etc. are the partial derivatives with respect to ~ etc.

The resulting equation (21) is very interesting. For if one

determines the transformed solution for only the lowering of the free

surface in the clay from (13) and the transformed equations (2) and

(3) ( the head in this case to be denoted by ~swith transformation

L( ~) ~s), one will obtain,

(22 )

where of course the consolidation term for the sandy layer is omitted.

The solution of this linear second order differential equation, appli

ed on the same problem as consolidation before, will also have the

form (20),

(23)

The derivative of ~s with respect to 11 for the limit 'll"",,0 can be found

by determination of the behaviour of ~s- ~o for large values of p,

It follows from the invers transform of this result that the deliva

tive of ~s with respect to 11 for the 1 imit 1I--?"0, being denoted· by ;PI
becomes,

(24)

It turns out from (21) and (24) that the area between the curves ~,fc

as functions of t is proportional to the derivative of fcwith respect

to 11 for the limit 1/ ...... 0 ,
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.. S-j (~ -~ )d'l1 = .:.- '¥ 1 (25)o 0 C n
c

where S = Ss + Sc/3

This is a interesting result. Moreover it is not possible to determine the deriva

tive of ¢s in according to the more advanced method of Laplace transformations

because the function ~s is discontinuous for the time t=O •

One may now write for the auxiliary function ~. by means of (18) and (25),

(26)

with the important condition ~.~ 0 for very small values of W. Therefore to solve

equation (26) one may outline the problem by assuming ~*= 0 for O~'U$."'o'

where ~ois a fixed time ( "'0«1). One may then rewrite equation (26), applying the

subsituation lJ:: A + 'flo

6~ =l-'lr~¢~xp{- ("'-710 ) - lJ}cllJ- ~o{l- exp(-('l/-ll~h
-It" 0 olJ

+ {- 4i" o{exp(7fo) -I} + ;~l)exp(-'I1) (27)

In order to eliminate the last term of this equation one may propose that the

introduced time W. satisfies,

S- -11 IV exp (1/0) - 1 = ~ II </> 0

The rewritten equation (27) becomes then,

(28)

(29)

If one studies what kind of differential equation the function ~s has to satisfy,

one will notice that this is exactly the same type as the equation (29), provided

Ii> O. Therefore the solution of (29) will have the same form as ¢s' but as a func

tion of 'fl- 11. instead of 71. This means that one may write equation (16) as follows,

where S

(30)
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One has now succeeded in simplifying the problem studied for small values of

the ratio S/nc • It has turnd out that the solution of complex problems containing

consolidation as well as lowering of the free surface can be achieved by superposition

of the individual solution for consolidation and lowering of the free surface.

However the solution for lowering of the free surface has to be shifted over a certain

timelapse, depending on the value of the function ¢s and of its derivative, both for

the limit t ~ 0. As the consideration takes place mainly in the first stage, it will

generally result in a certain delay in lowering of the free surface in the clay.

3. Practical Example

The theory of the problems of configuration as in Fig.l has been studied in

the previous section. In this section this theory will be applied to the following

situation. This will concern a cylindrical layer system with radius rl.

In the center of it a pump tube is set up, having a circular cross section. The

boundary faces free water with a constant level. At time t=O, when no flow is supp

osed, pumping will be started over the full height. of the sandy layer. The total

discharge is constant and will be denoted by Q ( see Fig.2 ).

As the problem is circularly synunetrical, it is appropriate to work with polar

coordinates,

2r

where r is the distance from the center.

The outer boundary condition for the sandy layer then becomes,

¢ = °c

As the radius of the pump tube is relatively very small, one may outline the inner

boundary condition as the following,

It follows from the theory in the previous section that one can obtain the

solution of this problem by solving it both for consolidation alone and for lower

ing of the free surface alone. As consolidation will occur in the first stage we

will start with the study of this mechanism. Here one may apply equation (15) but

as the lowering of the free surface will not be taken into account, one must think

the nc ·in this equation to be infinitely large. In this way one may rewrite equation

~15) as follows,
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(31)

p

One now has to solve equation (31) under the boundary conditions,

o

It will be useful to determine in advance the steady flow solution after the

consolidation phenomenon has occured. This solution has to satisfy the equation,

with the solution under the above mentioned boundary conditions being,

(32)

where I~(P) and K~(p) denote the modified Bessel functions of order~, of the

first and second kind respectively. In order to obtain boundary conditions equal to

zero, one may subtract the steady flow equation from equation (31) and solve the

problem for the variable,

(33)

One then has to solve an equation of exactly the same type as (31),

31p I 3 cjJ Ss 3cjJ j"3 cjJ 00 '2 2
W + -p Tp = -s aT + cjJ + 3T 2 E_ exp{-m 'IT ( T-A>}d A.

c 0 m-l

but under the boundary conditions,

3cjJ
lim ~p
[' ....0 a

o ¢=o

However the initial condition becomes

T o

As the boundary conditions of equation (34) are zero one may apply the sepa

ration axiom. The solution of (34) can be supposed to be a function R of ptimes
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a function T of T In this way one will obtain by introducing an arbitrary const~

ant two equations one a linear second order differential equation for R(P), the

other a mixed differential integral equation for T(T). The differential equation

for R(p) can be solved under the boundary conditions for the sandy layer.

The result is,

125

OS)

where A is an arbitrary constant and J~(x) is ~ Bessel function of order ~ of the

first kind, in which the zero's are denoted by j~'n.

By solving the equation for R(p), one also finds the value of the introduced arbi

trary constant for the purpose of applying the separation axiom. Thus one is able

to determine the general solution for the mixed differential integral equation for

T (T). This can be done by applying the theory of Laplace transformation. The re

sult is,

T
Do .2 /p2
~ 2 (1+J a ,n I )To . (_p2T)
L- 2 2 2 2 2 exp
m=l Pm(l+Ss /Sc ) +j /p + P ctg Pm m

O,n I m

(36)

where Pm is

TOis

Apparently

the m-th root of Ss/Sc·Pm-j02n/p.~Pm=ctg(Pm),
the value of T for T=0

one may write,

f. 2(1+ jO;n/ p~)
m=I-P

m
-2-(I-+-'S=-s'>'::/:'S:"'c-)-=+:'::"'j-o-':"-n-/-p-\2-+-P-~-c-t-~-P-m-

I

Bessel functions of real variable and order have an infinite number of zero's.

Therefore it follows from (35) and (36) that toe possible solution of ~ can have

the form,

(7)

where ATO is denoted by an • Formula (37) satisfies the differential equation (34)

and the boundary conditions for the sandy layer. The initial condition still has

to be satisfied. Therefore the coefficients an have to be chosen in such a way

that the following folds,

00

~ anJo{~ljo,n} OS)

The right side of (38) is a Fourier-Bessel expansion. It follows from the theory

of Fourier-Bessel expansions that it then holds for the coefficients an that
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Later in this section, when lowering of the free surface is studied, it will turn.

out that it also holds that,

As this equation is identical with (38) we apparently may write,

a
n

2

i(· )
1 Jo,n

1
(39)

and

(40)

where

j' KO (0,) 0 1
>..{KO(P,A) -~ IOCP,A) JO{AJO n}QA = 2 + .2

o 0 I ' ~ JO,n

The problem is solved now. By use of (32),(33),(36),(37),(38) and (39) one may wri

te for the solution of the average head over the height of the sandy layer.

2
__Q_ ~ 2 J {£ j}t.. 2 (l-exp(-PmT »

2~ksH n=l 2J 2(0 ) 0 Pl O,n m=l p2 (I+S /S )+02 /e,2+ p2ct 2pPI I JO,n m s c JO,n I m g m

2 2p is the m-th root of S /S .p -J
O

/p P = ctgPm" P >0m scm ,n, m m

~ 2( 1+ J 2 / 2)
~ O,n P,L ----.::...z.:::-=-'----o---=---_=_- = I
m=l p2(I+S /S )+J' 2 /p 2 + P

m
2ctg2P

mm s c O,n I

It is possi~le to simplify equation (40) by applying the approximations,

jO,n '\, 1r(n-l/4) Jiuo,n) '\, 2/ J(n-l/4)

These approximations hold especially very well for the larger values of the integer

n. One may now write, allowing an absolute error of about 1% of the unity of

27Tks H/Q'¢c

~. TI ~

~ = - 27T~ H L7 (n-I/4)Jo{p-(n-l/4)} L
s n=l I P, m=l

(41)

= 1

71
2 2

of S /S 'P -~(n-l/4) /p =
scm ~ m

2 2 2f.. 2( 1 +11 (n-l/4) / P,)

m=l p2(1+S /S ) + i(n_l/4)2/ p2+ p2ct~p
m SCI m m

where P is the m-th root
m
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Aninteresting value of the outer boundary is the limit ~+oo • This is the case of a

well in a very wide field, where the outer boundaries are so far from the well

that they cannot be properly distinguished. For the limit p,+oo formula (40) becomes

an integral. One may denote n 'P, ITf '" 0(, p,/ Tf = do( to write this solution as,

1

where Pm is the m-th root of (Ss/Sc)Pm- rf..2./ Pm = ctgp'm

E 2(1+ CX )

m=l P;(l+Ss/Sc) + cx 2 + P;ctgpm

(42)

'It is integrating to compare solution (41) with formula (42). They are similar

for the case P 1'" Tf is applied in (41). The only difference is that (41) is a summa

tion and (42) an integral. Therefore since KO(P) nearly vanishes for P>Tf one may

consider (41) applied for the case ~= Tf , to be a good numerical approach to the

integral form (42). The size of the step is then unity and may be that large, be

cause the variable of formula (41) is. shifted over the value 1/4. Furthermore,

it is possible to simplify formula (42). As cx is known as a function of Pm' one

may substitute this function in the integral form. One obtains,

where,

~ 00 f.m1T rs;; l-exp (-p2c )
'" - 27Tk R L: J O( p/g'=-p

L

- PctgP) P dP
s m"'l rIO c

(43)

This equation can also be derived directly by the theory of Laplace transformation.

It can be derived from formula (43) that the solution¢p+oobehaves for large

values of the time like a function of,

P ; where S·Pl/S
s c

2 ' 2PI can be fairly represented by 1/(Ss/Sc+4/Tf ).

the following relationships are determined,

ctgPl

Therefore for the case PI =Tf

21TksR _ kc

~
S

<Pc{(-S +4S / 2
t .....s=. ) }

Q hO r ks hORs c rr Ss

21TksR _ ~ kc
St s )}-Q-- <Pc{( r k hH

S +4S / 2 hO Ss 0 s c 7T c

see Fig.3.

see Fig.4.
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k c ~ by slightly
Ss+Sc/3 hO

A$ for rJkc/kshoH a logarithmic scale is used. Therefore the value of the tangent

at the curves will be a direct measure of the discharge through a cylindrical cross

section around the well. Obviously for small values of the radius and not too small

values of the time, the curves is parallel straight line, which means that the dis-

charge will be nearly constant and equal to Q. As for the time, the basic parameter

Ss+4Sc / n
2

is used. Actually one should expect this parameter to be Ss+Sc/3 from

the theory in the previous section. However both parameters serve a different aim.

S +S 13 characterizes the behaviour of consolidation in the total flow phenomenon.
s c 2

S =4S In characterizes the behaviour of consolidation alone for large values of thes c .
time variable kc t, one can apply the variable

Ss+4Schr2 hO
shifting the determined curves.

One has now succeeded in determining one leg of the general solution for the

average head over the height of the sandy layer. Now the other leg, lowering of the

free surface, has to be studied. The basic equation to be investigated is the in

verse equation (22), applied for the configuration of Fig.2.,

(44)

where the variables rand t are replaced by p and 11. The boundary conditions are

the same as before, during consolidation,

p=p
1

It follows directly from equation (44) that the head at time 1I~ satisfies the

equation,

Therefore it holds that,

lim ¢s = ¢o
11->-00

Thus it turns out that the function¢s is discontinuous for the time t=O •

To solve equation (44) the same method can be used as for consolidation pre

viously. Therefore one determines at first the steady flow equation after lowering

of the free surface, the head ~ this case to be denoted by¢~,

which can be easily solved giving,
Q P

27Tk H In PI
s

(45)



(46)

Non-steady Groundwater Flow

Again in order to obtain boundary conditions equal to zero one may substract the

steady flow equation (44) and solve the problem for the variable,

Q-
27fks H-1> = <Ps - ~'"

One has to solve then an equation of exactly the same type as (44)

129

But under the-boundary conditions,

limp ~= 0
p+o 3p

The initial condition becomes,

<P = 0

(47)

'f = 0 <P = - In ~
Pl

Equation (47) also can be solved by the separation axiom. The solution of (47)

can be supposed as before to be a function R of P times a function T of 'f • As the

operation with respect to the place coordinates is the same as during consolidation,

the same function (35) for R(p) will be obtained,

(48)

The function T('f) canbe determined from an integral equation, with general solut

ion for 'f>0 , which can be derived by the theory of Laplace transformation,

T '(49)

where TO is the value of T for 'f=0 . It follows from (49) that the value of T for

'f+ 0 is different from that for ~ =0 . This is due to the fact that the function

~s is discontinuous for t=O

By use of (48) and (49) the possible solution for ~ can now be written in the

form,
,2

'!< an p JO,n
l. ---=-'"'"--;:- J (- j ) exp (- ---=--=-="~'~)

n=l lL.2 - /~2 0 Pl O,n 2+,2
~O,n ~l Pl JO,n

(50)

where AtO is denoted by an' Formula (50) satisfies the differential equation (47)

and the boundary conditions for the sandy layer. The initial condition still has to

be satisfied. Therefore the coefficients an have to be chosen in such a way that

the following holds,

-In £ =
P,

I, a JO(E. jo ).. n Pl,n
(51)
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where of course from formula (49) for T the value TO had to be applied. It follows

from the theory of Fourier~Bessel expansions that it holds then for the coefficients

an that,

a
n

I

2 2 fAln>Uo{Ajo )JA
J (. ) )0 ,n
1 JO,n

It can be obtained easily by partial integration that,

a
n

(52)

One is now able to compose the solution for the average head over the height of the

sandy layer for values of ~>O by meansof (45), (46), (50), (51) and (52),

00 exp(-j~,n/{PI2+j~,n)~ )
¢ _Q- L: 2 _l_J (...Q j ) 1- - - (53)

S 2nksH n=l 2 ( . ).2 ° Pi 0, n 2 / 2
J l JO,n JO,n l+jO,n Pi

with ¢t = 0 for ~ = °
For the limit ~~O formula (53) will represent the solution (32) for ~o. Therefore

the following Fourier-Bessel expansion will hold,

1 J (.2 j )
2
t

.2 0 Pi D,n
PI JO,n

This result is used previously in this section to determine the coefficients an

under the condition of consolidation.

Just as for the solution for consolidation alone, one may simplify solution (53)

by the approximations,

jo 'U n<i1-l/4),n

But in this case one has to allow the larger absolute error of about 5% of the unity

of 2~ksH/Q· $5 , in order to write,

Q 00 1
~ = - -- i: -1/4J {p.1f(n-l/4)){1 -

s 2rrksH n=l n- 0 Pi

2 '2. 2 2 2
exp(-n (n-l/4)/{p, +IT (n-l/4) )

1+Tf2 /p 2. {n-l/4)2
I

~} (54)

(55)h
s

As the flow phenomenon inthis part of this section is due to lowering of the

free surface in the clay, a very interesting variable to be determined is the head

of the free surface. This can be determined from the relation it has with the aver

age head in the sand, equation (14). From the inverse transformation of this equat

ion and the solution for the average head (53), it can be derived that,

.2
Q ~ 2 1 P { JO,n Of)}- -- --J (- j ) l-exp (- --=-.::..z..:=---~11

21Tks H n=l ·2 {' ).2 D P D,n p2+.2
Jl,n JO,n JO,n I I JO,n
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An approximate value for this head follows from the inverse transform of (14) and

the approximate solution (54),
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(56)

For the same value of the boundary as used previously in the case of consoli

dation P ='It, the following relationships are determined,

27Tk H k'

~
2lfk H k'

~s
~( ---+-t c 1 ~(~r it h H ) r ~~,- )

Q ncha Q s n h ks haHs a c 0

2711< H fi k' 27Ik H

~
k'

s - c 1 __c_
t ) ; ~(

c 1 0
-Q- <ps( r ks haH ; r it h H ; -----;--t

nchO Q s
s a ncha

see Fig.5.

See Fig.6.

In Fig.5, one notices groups of two curves, ending up in the same point t-700. The

upper curve represents the head of the free surface in the clay, the lower the ave

age head over the height of the sandy layer. As the curves for large values of the

time behave like functions of exp(-9~/25) , in Fig.5, is drawn on exponential paper.

One may notice that the drawdown for small values of p is relatively faster than for

larger ones. As for rJk~/kshoH just as in the previous case of consolidation, a

logarithmic scale is used. Therefore here also the discharge can be read directly

from the tangent at the curves for the head in the sand on the left side of Fig.6.

One has now succeeded in determini:ng the solutions for consolidation ¢;. , and

for lowering of the free surface in the clay;Ps • Accordinj to the theory of the pre

vious section one is able now to construct a formula for the behaviour of the gene

ral solution for the average head over the height of the sandy layer. This general

solution is represented by (30),

¢c (~) 0 $.. ~ ~ ,~o

(ji(~)+(ji.(~-~o)-~ ~~~o
C s a (57)

S S + S 13s c

Therefore the general solution can easily be composed from the already derived cur

ves. For the relatively large value 0.1 for SIn the following relationship is detc
ermined,
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See Fig.7.

Theoretically there will occur a bend in the curves due to the schematization of the

auxiliary function ~*' earlier in.this section. However this bend turns out to be

so small that by simp1y~rawing the curves it will already be rounded off.

The representation of (57) means that the two types of curves, one for ~>~o, the

other for 0~~~~o' are close asymptotic expressions. The real value of the head

arround ~=~o has to be slightly lower than the representation suggests.

At last one can determine the head of the free surface for the general case.

This can be done from the inverse transformation of (14) and formula (57). The re

sult for values ~>~o is,

J
~ j~ (~O

h = Il~O.-~exp(-(~-A»dA - (~-~c)exp(-(~-A»dA +).;p exp(-(~- )Y)dA
"0 0 0 0 0

(58)

The second integral has already been discussed and determined for not too small

values of the time. Its absolute value is equal to the absolute value of the third

integral, but their signs are different. Therefore the head of the free surface

turns out to be equal to the first integral, of which the solution is formula (55)

or (56) applied for the variable ~-~o. As it was supposed that during consolidation

the head of the free surface should not change, one may now write

h 0 o ~ ~ ~~o
{59)

h hs ( ~- ~.) ~>~o

Just as in the case of the average head in the sand, the formula for the head of the

free surface in the clay is obtained in the form of two asymptotic expression. The

real value of the head around the time ~=~. is slightly lower than the represent

ation suggests. It is possible to get an impression of the value of the head for

the time ~= 11 0 , As ~ has a small number, one may integrate the solution (jic with

respect to ~ over the time1apse ~.; see (58) for ~+~o • Integration can be done

roughly by assuming the behaviour of the curves of Fig.3 to be logarithmic.

Even for a relatively large value 0.1 for S/nc' the value of 2~ksH/Q'h is within

a few percent of its unity.

One did succeed in applying the theory of the previous section to a certain

configuration. It turned out that the processes of consolidation and lowering of

the free surface hardly influence each other. The delay caused by consolidation in

lowering the free surface is relatively of little interest. Besides the theory in

this paper, the more general case of consolidation in the sandy layer alone and

lowering of the free surface has been studied.
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Fig.2 Configuration studiied as a practical example.
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Fig.3 Drawdown in the sandy layer as function of the time due to

consolidation alone.
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Fig.4 Drawdown in the sandy layer as function of the radius due to

consolidation alone.
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Fig.6 Drawdown in the sandy as well as the clay layer as function of the radius

due to lowering of the free surface alone.
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Nomenclatures'

c consolidation coefficient

h
O

initial height of the free surface in the clay laypr

k permeability coefficient

n porocity

H height of the sandy layer

Q discharge from a well

S storage coefficient

h head of the free surface in the clay layer

¢ head

<P average head ')ver the height of "he sandy layer

<Po steady flow ~olution after consolidation alone as well as the initial stage

solution for lowering of the free surface only

~£ steady flow solution after the nonsteady flow phenomenon has taken place

completely

~ derivative of the solution for lowering of the free surface in the clay with

respect to 11 for the limit 11+ 0

place coordinate

auxiliary place coordinate

x,y,z,r

t;,n,Z,p

t time

T 11 auxiliary time coordinate

11 0 characteristic for the delay in lowering of the free surface by consolidation

The indices c and s refer to the clay and the sand respectively.




