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In paper 7) we concerned ourselves with the conformal mapping onto
circular-radial slit coverin6 surfaces over the whole plane and its extremal
property. In the present paper we shall concern ourselves with the conformal
mapping onto circular-radial slit covering surfaces of annular and circular
types and their extremal properties (Theorems 1.1 and 2.1). Especially the
extremal property with respect to the radial slits is new.

The results are stated only for the case of the planar domain of finite
connectivity. The metr.od suggests the possibility of an extension to the
case of a domain of infinite connectivity or an open Riemann surface of
finite genus. We shall cor-cern ourselves with this problem in the subsequent
paper.

where C" = ¢ or C'" = ¢ is permitted. Let w
= f(z) be a single-valued regular function on B.
The rotation number VkU) of the image of a
generic boundary component Ck about w=O
under f is defined by

§ 1. Circular-radial slit covering
surface of annular type.

1. Definitions. Let B be a domain on
the z-plane of which the boundary C consists
of a finite number of continua CJ, "', CN (N
~2). Partition the boundary C into three dis­
joint sets of its components

Let n be the class of single-valued regular func­
tions w= f(z) on B which have the properties:

(a) f has no zero point in B;
(b) VjU)=Vj (j=l,.··,),

vj(f)=O (j=A+ 1, "', N);
(c) D B(1glfl)<+oo,

where by DB(1glfj) we denote the Dirichlet
integral of 19 If I over B;

(d) j satisfies the normalization condition:

1(<:0)= 1.

We can easily see that n+¢.
Let {gjn} ;;'=1 (j= 1, "', N) be sequences of

ends defining Cj respectively; i. e. C; C gjn for
every n, gj,n+I C gjn and 1\;~lgjn= ¢. Let @

be the subclass of n which consists of func.
tionsf(z) of nsatisfying the condition:

(e) An arbitrary branch of arg f is constant
on each component C j (j =). + f..t +1, "', N),
which means that

(1.1 )

Let zo be an arbitrarily preassigned point in
B and let v j (j= l, "',) be arbitrarily preas.
signed non-zero integers under the condition

}..

C'=~ Cj ,
j~I

I'

C"=~ CHj
j~l

and

where ct is an analytic Jordan curve homo­
topic to Ck in Band VkU) is an integer not de­
pending on a particular choice of ct. is reduced to a real value.
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is reduced to a real value.
Set

~

n I f(Qjn) I
n=1

(j= 1, "', ).). Let @' be the subclass of@ which
consists of functions J(z) of @ satisfying the
condition:

Let Sj be the subclass of ty which consists of
functionsJ(z) of ty satisfying the condition:

(f) IJI is constant on each component Cj

(j = A+ 1, "', A+p), which means that

(cf. Remark of 3).

and thus

holds. The image covering surface by <p is
called a circular-radial slit covering suiface oj annu­
lar type.

2. TheoreIll. By a Junction oj the class ty
mapping onto a circular-radial slit covering suiface oj
annular type we mean the function <p of the class
ty which satisfies the conditions:

(1) An arbitrary branch of arg <p is constant
on each componentCj (j=i-+p+l, .. ·,N);

(m) I<p I is constant on each component C j

(j =l,"·,i-+p).
For the function <p

DB(lg ISO \)~DB(lg \f \)
hold. In the both inequalities the equality signs ap­

pear if and only if f == <po

Proof. (i) and (iii) have been proved for the
case of an infinitely connected domain in The­
orems 5. 2 and 7. 1 of 8) respectively. For
the conformity we shall state their proofs again.

The domain B can always be conformally
mapped onto the domain by a univalent func­
tion (jJ of which the boundary consists of ana­
lytic Jordan curves. Thus we may assume
that so is the domain B.

A

DB(lglsol)=27:'L; vjlg mj(SO)
j~1

A

=21TL; Vj 19 M)(SO)
J~l

THEOREM 1. 1. (i) Foreach class ty there ex­
ists one and only one Junction <p oj the class ty map­
ping onto a circular-radial slit covering suiface oj
annular type;

(ii) The Junction <p is the only element which
simultaneously belongs to @ and Sj;

(iii) For everyf E @ the inequality

DB(lg ISO I)s DnC1g If I)
holds and thus Jor everyJ E @' the inequality

A A

IT M)(SO?jS IT Mif?)
j~1 J-I

holds. In the both inequalities the equality SIgns

appear if and only if J == <p;

(iv) For every J E Sj' the inequalities
A A

IT misorj~ lTmj(fYJ
J=I J=1

ifvif»O,

if ))j(f)<O

L"lglfl d argf

= !~~ t"lg If I d arg f s 0,
n

L",lglfl d arg f

= ~L~ L..,19lfl d argf sO,
n

~

mif)=infn I f(Qjn) I,
n~1

mJCf)= sup n I fUJ jn) I,
n=l

Mif)=infn I f(Qjn) I
n=l

Mlf)=sup n I f(Qjn) I
71=1

(g)

(i)

(k)

and

A

DB(lglfl) S 21TL; vjlg M)(f),
j~1

where by DB (1g If I) we denote the Dirichlet
integral of Ig IJ lover B.
Let Sj' be the subclass of ''0 which consists of
functionsJ(z) of Sj satisfying the condition:

(h) DB(lglfl) S 21TI; ~j 19 mJ(f).
)~l

Let {Bn }:-1 be an exhaustion of B such that
the boundary BBn of Bn consists of analytic
Jordan curves Cjn (j = 1, "', N) homotopic to
Cj respectively, and let C' = "A CJ·n , C"n ....::::..t;=l n

= ~j~lCA+j." and C;:' = ~~~I CA+JL+j,n. IfJE@

satisfies the condition:

then J belongs to the class @'. IfJ E Sj satisfies
the conditions:

(j) IJI=const. (=m)(j)=M/J)) on each
component Cj (j = 1, "', i-);

then J belongs to the class Sj'. We shall see
that the classes @, Sj, @' and Sj' are not vacuous

Construction oj <p in (i). It is easy to find a
solution u of the boundary value problem
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(j=I, "', A+f-t)

Since

)
fhd _~ GU d ) CU d _ O- s- - s- - s-

o jn Cn 0 In I: n 0 jn (; n

satisfying the conditions:
(A) u is single-valued harmonic on B;
(B) u is constant on each boundary compo­

nentCJ (j=l,···,i.+p) with the constant so
chosen that

r ~u ds= -2"j (j= I, "', i.),
JOJ on

and

ch
-=0en along C"',

Proof of (iii). Let f be an arbitrary element
of6$, and set U=lgIJI,u=lglq>1 and h=U-u.
Then we have that

Set u, (z) = CJ (j= 1, ... , ). +p) on each ring do­
main of B - If" adjacent to CJn respectively.
Then we can easily see that {un} ;~1 uniformly
converges to u on B and thus

0. 4) lim Diu-un)=O.
'it_t:JO

2,,(~ ~'j 19 m;(SO)-~ lij 19 m;(f»)
A

=DB(lglso 1)-2n~ lij 19 mJCf)
j~l

=DB(h) + 2DnCU, u)-DnCU)
A

-2n~ lij 19 mif).
j~1

We shall verify that

(1.7)

(1.6)

we find that

)
6h

(1.5) DB (Un, h) = - un<> ds=O
n aBn un

for every n.

Further by the Schwarz inequality

IDnCu, h)-DB (un, h) I
n

ProoJ oj (iv). Let J be an arbitrary element
of~', and set U=lgIJI, u=lglcpland h=u
- U. Then we have that

(1.8)

Let {Bn} ;~1 be an exhaustion of B such that
C" is a portion of the boundary DBn of Bn and
GBn - C" consists of analytic Jordan curves Cjn

(j=l, ... , A, A+p+l, ... , N) homotopic to Cj

respectively. Let Bnk be a subdomain of B
surrounded by C~ = 2:~~1 Cjn , C" and C~"

=2:r~A+I'+1Cjk (k>n). Thus BnCBnk, and Ge,.'
and C" are common portions of the bound­
aries of Bn and Bnk • Let Vnk(Z) for each pair of
nand k (k> n) be the function on Bnk which
satisfies the conditions:

holds. Our assertion (1.3) follows from (1.4),
(1.5) and (1.6). Consequently by (1.2) and
(1.3) we have that

DB(lg IfI)-DB(lg ISO I)=DnCh)~O.
The equality sign in the last inequality ap­
pears if and only if h==const.=O and thusJ== <p,

because of the normalization condition (d) of 1.

(j=},+I, "', A+,Il),

along C"'.(C)

where D/an denotes the inner normal deriva­
tive on CJ and ds the line element of CJ ;

(C) :~ = 0 along CJ (j= A+ /-l + 1, "', N);

(D) u(Zo) = O.

Let u* be a conjugate harmonic function of u
uniquely determined up to multiples of 2n: un­
der the condition

u*(zo)=O (mod 2,,)

and set q>(z) = exp (u+iu*). Then it is easily
verified that cp(z) is the function satisfying the
property of (i) up to the uniqueness.

(1.2) DB(lglfl)-DB(lgISO I)
=2Dn(u, h)+Dn(h).

We shall verify that

(1.3) DB(u,h)=O.

Let {Bn } ;-1 be an exhaustion of B such that
CI/f is a portion of the boundary DBn of Bn for
all nand DBn - CI/f consists of analytic Jordan
curves CJn (j= 1, ... , A+p) homotopic to Cj res­
pectively. Let un(z) for each n= 1, 2,· .. be the
function on Bn which satisfies the conditions:

(A) Un is single-valued harmonic on Bn ;

(B) Un=CJ on each component CJn (j=l, ... ,
). + p), where CJ (j = 1, ... , A+p) are the constant
values which u(z) takes on Cj respectively;
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(A) Vnk is single-valued harmonic on Bnk;
(B) Vnk = const. on each component Gjn (j

=1"",) and on eachcomponentG;(j=)+I,
"', A. + p.) with the constant so chosen that

r C~nk ds= -21rYj (j= 1, "', ).),
JOjn en

r GVnk ds=O (j=).+l, "').+(1.);
JO j an

Thus DB (vn) is monotone increasing with n.
n

Furthermore the equation

(C)
implies that

DBn(u-vn) :::;:DB(u) -DBn(vn).

For l> k the equation

DB (vnk, vnz )= - r vnz G,.,Vnk ds
nk JaBnk on

holds and thus

(1.12) lim DB (U, Vnk )=DB(U, u).
'It_co nkn 11.

If we note that

(l.10) lim DB (U-Vn )= O.
'/~_OO n

By (1.9), (1.10) and the inequality
~~.,..--~--.

IDB (u-vnk):::;:"jDB (u-vn)+"jDB k(Vn-vnk),'V. nk - n n

we see that there exists a subsequence {knl ;~1

of {kl ;=1 such that

(1.11) lim DB (U-Vnk )=0.
'1(,-+00 nkn n

Further the inequality

IDB(U, u)-DBnkn(U, vnk) I

:::;:IDBnk (U, U-Vnk) \ + IDB- Bnk (U, u)l
n n

Thus Dn strongly converges to u on Bas n->oo:

(1.9)

The function Vn satisfies the conditions:
(A) Vn is single-valued harmonic on B n ;

(B) Vn = const. on each component Gjn (j
=1, "',) and on each component G) (j=}.+l,
"', A+p.) with the constant so chosen that

implies that

DBnk(vnz- vnk ):::;: DBnk(Vnk)-DB)Vnz).

Thus DBnk(vnk) is monotone decreasing with k

and Vnk strongly converges to a function Dn on
B n == U';=n+l Bnk as k->oo:

~
aVn da- s= -21rYjo. on

In

r ~vn ds=OJo en
j

(C)

(D)

OVn =0
an

V,,(ZD) = O.

(j= 1, "', ).),

(j= ). + 1, "', ). + p);

along C"';

J
GVnk ds=21rY (J'-l ... ).)an j -, , ,

°jn
U= canst. on each C)

(j=).+l, "', ).+p.),

J
ru
~ds=O

a en
j

(j=).+l, "', A+P.)

For n> m the equation

DB (vm, Vn)= - \ vm
CVn ds

m JaB
m

en

implies that

and

GVnk -0an -
then we find that
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where J-!.jn (U) (j = I, "', I,) are defined by

l!.jnCU) = min U if ))j>O
°jn

and

f!.jnCU) = max U
C jn

We can easily see that

(1.14) lim f!.jnCU)=lg mif) U= 1, "', ,l).
n-~

Our assertion (1.8) follows from (1.12), (1.13)
and (1.14). Consequently, by (1.7), (1.8) and
the condition (h) of 1 we have that

2rr(t))j 19 mj(f[!)-#~)j 19 mif»)
(1.15) A

?:DB(h) + 27l"l:!Jj 19 m;(f)-DBCIg If I)
j~l

?:O.

The equality sign in the second inequality of
(1.15) appears if and only if h 0= Const. =0 and
thusf 0= ({', because of the normalization con­
dition (d) of 1. Then the equality sign in the
first inequality of (1.15) also appears.

Proif if the uniqueness in (i). Let (p be another
element of zy with the same circular-radial
slit mapping property of annular type as ({'.
Then by (iii) and (iv) we have that

DB(lg r~ 1)=DB(lg Iso I)
and thus

ff = SO·
Now (ii) is evident.

REMARK. The se-eond inequality of (iii) of
Theorem 1.1 does not generally hold for f E @.

Also the both inequalities of (iv) of Theorem
1.1 do not generally hold for fE S). They are
shown by simple examples (cf. Examples of
7».

3. Corollaries. We should note that in
Theorem 1.1 the case Gil = ¢ or Gm = ¢ is per­
mitted. Then we have the following corollary.

COROLLARY 1. 1. (i) For each class zy there exists
one and only one function 0/ if the class zy mapping

onto a circular slit covering surface of annular type;
(ii) For every f E zy the inequality

DB(lg I'If I)~ DB(lg If I)
holds and thus for every f E ilr satisfying (g) of 1
the inequality

holds. In the both inequalities the equality signs ap­
pear if and only if f 0= 'If;

(iii) For each class zy there exists one and only one
function X if the class zy mapping onto a radial slit
covering surface of annular type;

(iv) For every f E ilr satisfying (h) if 1, the
inequalities

and thus

hold. In the both inequalities the equality signs ap­
pear if and only if f 0= X.

REMARK. Let D j (j=J. + I, "', N) be the com­
plement continua of B adjacent to Gj respec.
tively and let

Let fg(Bl) and ilr(B2) be the class ilr defined
for the domains BJ and B2 respectively in place
of B. Apply the consequences (iii) and (i) of
Corollary 1.1 to zy(Bl) and zy(B2) respectively.
Then we see that the restrictions to the domain
B of the functions XE ilr(BI) and 1fr E zy(B2) of
Corollary 1.1 belong to @ and S) respectively.
Furthermore it is easily verified that the func­
tions X and 1fr also belong to @' and h)' respec­
tively. The above construction method is
available for each domain conformally equiva­
lent to B in place of B. Therefore we know that
the both classes @, and h)' have infinite num­
bers (in continuum potency) of elements other
than the function ({' of Theorem I. I.

Consider the class zy of the case J. =2, ))1 = I,
111= -I in 1 and let ilrl, @I and h)1 be the sub­
classes of ilr, @ and h) respectively consisting of
univalent functions f(z). Then ~h c @' and
further f E h)' for f E h)l satisfying (j) of 1.
Thus we have the following corollary of
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Theorem 1. 1.

COROLLARY 1. 2. (i) For the class tr of the case
;. = 2, ).1\ = 1, ).12 = -1 there exists one and only one
function <p rif the class .)} mapping onto a circular­
radial slit covering surface of annular type (circular­
radial slit annulus);

(ii ) The function <p is the only element which
simultaneously belongs to ® and.\);

(iii) For every f E ®1 the inequalities

where Gil = ¢ or C'" = ¢ is permitted. Let Zj (j
= 1, ... , c; t~ 1) be arbitrarily preassigned c

points in B, and let w = f(z) be a single­
valued regular function on Bwhich has the only
zeros Zj (j= 1,00', t). The rotation number
J)k(j) of the image of a generic boundary compo­
nent Gk about w = 0 under f is defined by

lk(f) - --}r d argj,
IT j aZ

Let lY be the class of single-valued regular func­
tions w = f(z) on B which have the properties:

(a) f has only zeros Zj (j=l,"',c) with
their order Il j respectively;

).Ij(1) = ))j (j= 1, ... , A),

))/f)=O (j=).-+l, ...,N);

IL19 If I d arg 1 I< -+ 00,

( c)

(b)

where GZ is an analytic Jordan curve homo­
topic to Gk in B- kj} J-l and ).Ik(j) is an integer
not depending on a particular choice of ct.

Let Ilj (j=l,oo.,c) and).lj U=l,oo.,).) be ar­
bitrarily preassigned positive integers under
the condition

hold. In the both inequalities the equality signs ap­
pear ff and only if f '= <p;

(iv) For every f E .\)1 satisfying (j) of 1, the
inequalities

and thus

Dilg I({' I)~DB(lg If I)
hold. In the both inequalities the equality signs ap­
pear if and only if f'= <po

and thus

If Gill = ¢ (or Gil = ¢) in (iii) (or (iv) resp.) of
Corollary 1. 2, then ®1 = lYl (or .\)1 = lYl resp.)
and the present consequences are reduced to
the well-known classical results (cf. 1), 9) and
10».
§ 2. Circular-radial slit covering

surface of circular type.

1. Definitions. Let B be a domain on the
<:-plane of which the boundary G consists of a
finite number of continua G\, 00°, GN (N ~ 1).
Partition the boundary G into three disjoint
sets of its components

A

G' =:E Gj ,
j~1

f1.

Gil =:E GMj
j~I

and

where the line integral means limn_~ faBn

19lfl d argfwith an exhaustion {Bn};;'=1 of B;

(d) f satisfies the normalization condition

We can easily see that lY =1= ¢.
Let {gjn) :~1 U= 1, .. 0, N) be sequences of

ends defining Cj respectively; i. e. Gj CQ~~

for every Il, Qj,n+l C Qjn and (\;:~1 Qjn = ¢.
Let ® be the subclass of lY which consists of
functionsf(z) of)} satisfying the condition:

(e) An arbitrary branch of arg f is constant

on each component Cj U = I.+,u +1, ... , N),

which means that

~~-~--n arg fUljn)
11=1

is reduced to a real value.
Let .\) be the subclass of lY which consists of
functionsf(z) of lY satisfying the conditions:

(f) If I is constant on each component Cj
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J(f) = t 19lfl d argf

-27ri; nj Ig 1pnjJ(Zj) \,
j~l

),.

Trmj(f)V j
m (f) = ---:-"j_~=-l----

-IT- 1 pnj1(Zj) In j
j~l

),.

Tr Mif)Vj
M(f)=-,~j~~l~~~-

Tr Ipn)(Zj)\n j
j~l

(2.3)

(2.2)

U= I, ..., c).

Generally M(j)2m(f). 2rr Ig M(j) 2J(j)
for J E @', 2rr Ig m(j) 2 J(j) for f E Sj' and
further 2n- Ig m(cp) = 2rr Ig M(cp) = J(cp) for the
function cp.

for J E ~, where

holds. The image covering surface by cp is call­
ed a circular-radial slit covering surface oj circular
type.

Let

(j=I, .. ·,}.+p).

For the function cp

r 19l9?1 d arg 9?=2rr:E vj lgmj(9?)Jall J~l
),.

= 2rr~ vJIg M;(9?)
J~l

n IIUljn) I
n=l

mif) == infn 17(.Qj"fl,
n=l

Mif) == sup n [lUljn) I (j = I, "', J.).
n=l

(i) L"lglfl d argf

==~L~ L~lglfl d argfs 0,

thenJ belongs to the class (S)'. IfJ E Sj satisfies
the conditions:

(j=). + I, "")'+ It), which means that

(h) fa 19 If I d arg f S 27rj~ v)g mif).

Let {Bn} ;~1 be an exhaustion of B such that

the boundary 8Bn of B" consists of analytic Jor­
dan curves Gjn U= I, ... , N) homotopic to Gj

respectively and such that {z.,} j~l C BJ, and

let G~ = 22~~1 Gjn , G;; = 22j~l G),.+ j,n and G~"

= 2:}~1 G),.+I'+J,n. Iff E ® satisfies the condi­
tion:

is reduced to a real value.
Set

Let G>I be the subclass of @ which consists of
functionsJ(z) of@ satisfying the condition:

(g) tlg1fl d argfs 27r~/,jlgM;(f).

Let Sj' be the subclass of Sj which consists of and
functionsJ(z) of .~ satisfying the condition:

(j) IJI=const.(=mj(j)=Mj(j)) on each
component Gj U=l, "',).);

(k) L,,,lglfl d argf

==~L~ fc,,,lglfl d argfs 0,
n

then f belongs to the class ,p'. We shall see
that the classes ®, S), @' and S)' are not vacu­
ous (cf. Remark of 3).

2. TheoreIIl. By a function of the class lr
mapping onto a circular-radial slit covering surface ~l

circular type we mean the function cp of the class

lr which satisfies the conditions:
(1) An arbitrary branch of arg cp is constant

on each component Gj U=). + /t+ I, ... , N);
(m) Icp I is constant on each component Gj

THEOREM 2. 1. (i) For each class ~ there exists

one and only one Junction cp of the class ~ mapping
onto a circular-radial slit covering surface oj circular

type;
(ii) The Junction cp is the only element which sim­

ultaneously belongs to ® and Sj;

(iii) For euelYf E ® the inequality

J(9?) sJ(f)

holds and thus Jor every J E ®' the inequality

M(9?) S M(f)

holds. In the both inequalities the equality signs ap­

pear if and only if J == cp ;
(iv) For everyJ E Sj' the inequalities

m(9?) ~m(f)
and tlno

J(9?) ~J(f)
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lim 6(r)=0.
'J'-u

Therefore, using the Green formula, we have
that

Iwl =rnjlpnjJ(Z;)I(l +6(r»
and

Iwl =rnj lpnjJ(Zj)I(l-6(r» U=I, "', ,)
respectively, where the positive number oCr)
does not depend on a particular choice of f
E®and

,
Br=B- ~{Iz-Zjl~r},

j~l

where r should be chosen suitably sufficiently
small. Then, the image curves of {iz-Zj 1= r}

(j= 1, ''', c) under f surround about w=O m;­

times (j=l, "', c) respectively and lie between
circumferences

Let f be an arbitrary elementProof of (iii).
of ® and let

hold. In the both inequalities the equality signs ap­
pear if and only if f == cpo

and the functionals mU) and MU) vary only
a multiplicative constant

,
27f~ n/ 19 I(/,1(<:) I

j~2

Proo]. The domain B can always be conform­
ally mapped onto the domain of which the
boundary consists of analytic Jordan curves,
by a univalent function (j) satisfying the condi­
tions (j)(Ztl = ZI and (j)'(ZI) = 1. Thus we may
assume that so is the domain B. In fact, by
the mapping the functional lU) varies only an
additive quantity

, 2

1r 11/(Zj)lrlj
j~2

independent of a particular choice off E ?:y.

and

au
(e) an=O along Cj (j=}.+p+l, "', N).

u(z)=n j 19lz-Zjl +0(1) atzj
(j=2, ... , i);

J(1)-J(<p)=DB/lg Ifl)-DB/lg l<p I)
+0(6(r»

=DB (U)-DB (U)+0(6(r»
r , r

=2DB (u, h)+DB (h) +0(6(r»,
r r

J(f) =Dflr(lg If I)

+EL-z .I~r 19 If\ d arg f
J

- 2rrt nj 19 IpnjJ(Zj) I
j-l

(2.4) =DB (lglfJ)+2rrt nj 19lrnjpnjJ(Zj) I
r j~J

-27ft nj 19lpnjJ(Zj)1 +0(6(r»
j~l

=DB (lg Ifl)+2rr± n/lg r+O«(J(r».
r j~l

Set U=lglfl, u=lglcpl and h=U-u. Then
we have thatU= I, "', A),

( J.= J. -1- 1 ... A+ 11.)·, , j I,~
GU

--;;;--- ds=O
c. on

J

Construction cp in (i). It is easy to find a solu­
tion u of the boundary value problem satisfy­
ing the conditions:

(A) u is single-valued harmonic on B
- {zj} ~H and has logarithmic singularities

u(z)=n,lglz-z,l+o(l) atZJ

(B) u is constant on each boundary com­
ponent Cj (j= 1, "', A+ fl.) with the constant so
chosen that

(2.5)

which yields, by r ....... 0,

By the method similar to (iii) of Theorem 1
lim (u*(Z) - n1 arg (z -ZI» == 0 (mod 27f), of 7) we can verify that
Z----"'Zl

Let u* be a conjugate harmonic function of u
uniquely determined up to multiples of 2rr un­
der the condition

(2.6)
and set cp(z)=exp (u+iu*). Then it is easily
verified that cp(z) is the function satisfying the By (2.5) and (2.6) we have that

property of (i) up to the uniqueness. J(f)-J(<p) =DB(h) '2.0.

The equality sign in the last inequality
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appears if and only if h~const.=O and thus
J~ cp, because of the normalization condition
(d) of 1.

ProoJ of (iv). Let J be an arbitrary element
of~' and set U=lgIJ],u=lglcp] and h=u-U.
By (2.4) we have that

](<p)-](f)=DBJu)-DB,.(U) +O(o(r))

=2DB (U, h)+DB (h)+O(o(r»,
r r

For l>k>n the equation

) c.. Vnkd- V ~- S
If' 'f' nl en

a k -an

which yields, by r~ 0,

(2.7) ](<p)-](f)=2DB(U, h)+DB(h).

implies that

DB (vnt-Vnk)s.DB (Vnt-V nn )
nk - nl

We shall show that

Let {B,,} ;~I be an exhaustion of B such that
CIf is a portion of the boundary 6Bn of Bn, (- B"
- CIf consists of analytic Jordan curves Cjn (j
= 1, "', ).,}. +- II+- 1, "', N) homotopic to Cjrespec­
tively and such that Uj~1 kj} C BI . Let Bnk (k
~ n; Bnn = B,,) be a subdomain of B surrounded
by C~ = .2..:;~lCj", CIf and C~" = .2..:'l~I<.+P.+ICjk'

Thus B" C B"k, and C;, and CIf are common
portions of the boundaries of B" and B"k' Let
Vnk(Z) for each pair of nand k (k > n) be the

function on B,'k which satisfies the conditions:

(A) Vnk is single-valued harmonic on Bnk

- kj} J~I and has logarithmic singularities

(2.8)

I<.

DB(U, h) Z2rr2:'> j Ig mif)
j~1

- f Igifl d argf
JaB

Thus DBnk(Vnk - Vnn) is monotone increasing

with k. Let VnO be the function on Bn which
satisfies the conditions:

(A) vno is single-valued harmonic on Bn

- kj} J~I and has the same logarithmic singulari­

ties as Unn atZj (j=l, "', r);

(B) vno=O on cB".
Since, on setting V"O ~ 0 on B - B~,

we find that

and

Hence DlInk(Vnk - vnn ) is uniformly bounded
and

vnk(Z)=n j lglz-zj ! +0(1) at Zj
(j= 1, "', );

(B) Vnk =const. on each component Cjn (j
=-1, ''',}.) and on each component Cj (j=).+ 1,
"', }. +- /t) with the constant so chosen that

(j= 1, "', }.),

(2.9)

The function Un satisfies the conditions:
(A) I'n is single-valued harmonic on B n

- {Zi! J-l and has the logarithmic singularities

Extend I'nk to B by setting Z'nk =0 on B-B"ko

f ~V"k ds=OJa. on
J v,,(z)=n j lgiz-Zjl +0(1) at Zj

(j=1, "', );

(B) 1',,= const. on each component Cjn(j
= 1, "', i.) and on each component C j (j =). -: I,
"', i,-:p) with the constant so chosen that

and( . " 1 ',)J= /1. ----r , ••• , ,F, "'-l'~ ;

,=0
en
(; LJ rtk(e)
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Extend Vn to B by setting vn=O on B-Bn.
For n:?: m the equation

r ~Vnds=-2;r))J (j=l, ... ,A),
J0 jn an

r avnds=O (J=A+1, ... ,A+,aX
JoJ an

(2.13)

where t!j,,(U) (j=l, "', I,) are defined by

fl.jn(U)=min U
°jn

respectively. We can easily see that

along 0".(C)

(2.14) lim /~jn(U) =lg mif) (j= 1, ... , A).
,,-~

implies that

DB (Vn-Vm)~DB (vn-vr)-DB (vm-v,).m - n . Tn

Thus DBn(vn-Vj) is monotone increasing with

n. Furthermore the equation

DB (Vn-V" u-v,)=DB (vn-v,)
n n

implies that

DB (U-Vr.)~DE(U-v,)-DB (vn-v,).
n - n

Thus Vn strongly converges to U on Bas n->-o<>:

Our assertion (2.8) follows from (2.12), (2.13)
and (2.14). Consequently, by (2.2), (2.3),
(2.7), (2.8) and the condition (h) of 1 we have
that

2n(lg m(~)-lg m(f»

=](~)-](f)-(2ntl lJJ 19 mif)

(2.15) -t1glfl d arg f)
A

d:= DB(h) + 2;r~ Vj 19 mif)
j~l

- L1glfl d argf:?: O.

The equality sign in the last inequality of (2.
15) appears if and only if h '=const.=O and
thusj,=<p, because of the normalization condi­
tion (d) of 1. Then the equality sign in the first
inequality of (2.15) also appears.

(2.10) lim DB (u-Vn)=O.
7t oo n

By (2.9), (2.10) and the inequality

./DE (u-vnk)~.JDB (u-vn)+.JDB (Vn-V"k)'
nk - n nk

we see that there exists a subsequence {k n} :~1

of {k} ;~1 such that

(2.11) 1imDE (u-vnk )=0.
·/~_OO nkn n

Set hn =l'nkn - U. Then by (2.11) we can easily

see that

(2.12)

The uniqueness in (i) will be obvious by (iii)
and (iv). (ii) is also evident.

REMARK. The second inequality of (iii) of
Theorem 2. 1 does not generally hold for j E (S.

Also the both inequalities of (iv) of Theorem
2. 1 do not generally hold for j E .S). They are
shown by simple examples (cf. Examples of
7).

3. Corollaries. We should note that in
Theorem 2. 1 the case GIf = ¢ or Gill = ¢ is per­
mitted. Then we have the following corollary.

When we note the boundary behaviors of
Vnk and U, we find that

D" (U, /Z,,)
Ilk

It

COROLLARY 2. 1. (i) For each class.1r, there exists
one and only one junction y ~f the class fj mapping
onto a circular slit coeering surface oj circular ~Y1Je;

(ii) For [WI)' f '=:rs the incqualifJ'
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holds and thus for every f E tr satisjjing (g) of 1 the
inequality

holds. In the both inequalities the equality signs ap­
pear if and only if f =0 'fr;

(iii) For each class tr there exists one and only
one function X if the class tr mapping onto a radial
slit covering suiface of circular type;

(iv) For every f E tr satisjjing (h) if 1, the in­
equalities

m(X) "2. mel)
and thus

J(X) "2.J(])

hold. In the both inequalities the equality signs appear
if and only if f =0 X.

REMARK. Let D j (j=).+ I, "', N) be the com­
plement continua of B adjacent to Gj respec­
tively and let

Let trWI) and trU]'l) be the classes tr defined
for the domains BI and B2 respectively in place
of B. Apply the consequences (iii) and (i) of
Corollary 2.1 to tr(BI) and tr(B2) respectively.
Then we see that the restrictions to the domain
B of the functions 1. E trW!) and 1Jr E trW'l)
of Corollary 2. I belong to ®and .1) respectively.
Furthermore it is easily verified that the func­
tions X and 1Jr also belong to ®' and .I)' respec­
tively. The above construction method is avail­
able for each domain conformally equivalent
to B in place of B. Therefore we know that
the both cla.sses ®' and .I)' have infinite num­
bers (in continuum potency) of elements other
than the function rp of Theorem 2. I.

Consider the class tr of the case}. = i = I, VI

= nl = I in 1, and let trh ®I and .1)1 be the sub­
classes of tr, ® and .I) respectively consisting of
univalent functions f(z). Then ®I C (\:I' and fur­
ther f E ~' forf E .1)1 satisfying (j) of 1. Thus
we have the following corollary of Theorem
2.1.

C JROLLARY 2.2. (i) For the class \J of the case
;. = i = I, lit = nl = I Ihqre exists one a/ld on[y one
function rp of Ilw elanD majlping 0/110 a rirrular­
radial slit rOl'8riJlg slllIare of rirrular U,/Je (rirrular­
radial slit disk);

(ii) The function rp is the only element which sim­
ultaneously belongs to @ and .I);

(iii) For every f E ®t the inequalities

J(ep) sJ(])

and thus

hold. In the both inequalities the equality signs ap­
pear if and only if f = rp;

(iv) For evelY f E .1)1 satisjjing (j) of 1, the in­
equalities

and thus

J(ep) "2.J(])

hold. In the both inequalities the equality signs ap­
pear if and only if f =0 rp.

If GI// = 91 (or Gil = 91) in (iii) (or (iv) resp.) of
Corollary 2.2, then ®I = trl (or .1)1 = trl resp.)
and the present consequences are reduced to
the well-known classical results (cf. I), 9)
and 10)).
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