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In paper 7) we concerned ourselves with the conformal mapping onto
circular-radial slit covering surfaces over the whole plane and its extremal
property. In the present paper we shall concern ourselves with the conformal
mapring onto circular-radial slit covering surfaces of annular and circular
types and their extremal properties (Theorems 1.1 and 2.1). Especially the
extremal property with respect to the radial slits is new.

The results are stated only for the case of the planar domain of finite
connectivity, The metkod suggests the possibility of an extension to the
case of a domain of infinite connectivity or an open Riemann surface of
finite genus. We shall corcern ourselves with this problem in the subsequent

paper.

§ 1. Circular-radial slit covering
surface of annular type.

1. Definitions. Let B be a domain on
the z-plane of which the boundary C consists
of a finite number of continua C, ---, Cy (N
=2). Partition the boundary C into three dis-
joint sets of its components

C’: ﬁ CJ,
j=1
I
(= Z C)\+j
j=1

and
G”,:Z C)\+u+1
=1
(A=2, =0,y =0, A+ p+v=N),

where C"=g or C""=g¢ is permitted. Letw

=/z) be a single-valued regular function on B.

The rotation number y,( f) of the image of a
generic boundary component C; about w=0
under f is defined by

k(f) = —217—_[ SC* d argf,

where C% is an analytic Jordan curve homo-
topic to Cy in B and y,(f) is an integer not de-
pending on a particular choice of Cf.
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Let zo be an arbitrarily preassigned point in
Band lety; (j=1,--, 1) be arbitrarily preas-
signed non-zero integers under the condition

(1.1 3 5, =0,
Jj=1

Let & be the class of single-valued regular func-
tions w= f(z) on B which have the properties:

(a) f has no zero point in B;

(b) Vj(f):Vj (\]‘=1,"',l),

Vj(f)=0 (J=1+la3N);

(c) Ds(g|fl)<<-ree,
where by Dx(lg|f|) we denote the Dirichlet
integral of 1g | f| over B;

(d) f satisfies the normalization condition:

f(zo)zl-

We can easily see that Fgd.

Let (2,17, (j=1, -+, N) be sequences of
ends defining C; respectively; i.e. C;C 2 for
every 1, 25nr1 C 2 and N\ 2 = ¢. Let G
be the subclass of § which consists of func-
tions f(z) of ¥ satisfying the condition:

(e) An arbitrary branch of arg f is constant
on each component C;(j=2A+pg+1,:+, N),
which means that ‘

i\l arg f(2:.)

is reduced to a real value.
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Let £ be the subclass of § which consists of
functions f{z) of & satisfying the condition:

(f) 1f] is constant on each component C;
(j =A+1, -+, 24+ ), which means that

N TA2:)]

is reduced to a real value.
Set

mf ) =inf\ | @],

M(f)y=sup N\ [F@] i (f)>0,
and

m(Sy=sup N T/,

Mf)y=inf A\ Tf@D]  if +(/)<0

(j=1,---,2). Let & be the subclass of & which
consists of functions f(z) of © satisfying the
condition :

" Dglf1) < 2632 v, 1g M),

where by Dy(lg | f|) we denote the Dirichlet
integral of Ig | /| over B.

Let & be the subclass of » which consists of
functions f{z) of § satisfying the condition:

(h) A

D,(Ig|f1) < 2533+, g m,(f).

Let {B,}z_, be an exhaustion of B such that
the boundary 9B, of B, consists of analytic
Jordan curves Cj(j=1,-+-, N) homotopic to
Cjrespectively, and let G, = 3)_,Cj, C
ZZ'}L.:IC)HJ"N and C;,,”223=1 C)\+n+j,n- IffE@
satisfies the condition:

O telridarg s

So,,lglfI darg f <0,

= lim

14—>00

then f belongs to the class . If f & D satisfies
the conditions:

() |f1=const.(=m,(f)=M,f)) on each
component C; (j =1, -+, 1);

b4

(k)
[, lels1darg 1

= lim g Ig| /| d arg f <0,
oo lskdd

7

then f belongs to the class . We shall see
that the classes @, 9, and $’ are not vacuous
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(cf. Remark of 3).

2. Theorem. By a function of the class F
mapping onto a circular-radial slit covering surface of
annular type we mean the function ¢ of the class
& which satisfies the conditions:

(1) An arbitrary branch of arg ¢ is constant
on each component C; (j=/+n+1, -, N);

(m) || is constant on each component C;
(J =1, 4+ p).

For the function ¢

A
D,(Igle l):fzfjgl vy lg m;(g)
A

=23 Yy lg A/IJ(SD)

J=1
holds. The image covering surface by ¢ is
called a circular-radial slit covering surface of annu-
lar type.

TureoreM 1.1. (i) Foreach class § there ex-
ists one and only one function ¢ of the class T map-
ping onto a circular-radial slit covering surface of
annular type;

(ii) The function ¢ is the only element which
simultaneously belongs to & and 9

(1) For every f = & the inequality

Di(lgl¢ N=Dy(1g| 1)
holds and thus for every f & & the inequality

A A
;LMJ((P)VJ gszj(f)vj

holds. In the both inequalities the equality signs

appear if and only if f= ¢;
(iv)  For every f = &' the inequalities

A A
jWT m @)’ ngrmj(f)"J
=1 =1
and thus

Diy(lgle N=Ds(1g| /1)
hold. In the both inequalities the equality signs ap-
pear if and only if f = .

Proof. (i) and (iii) have been proved for the
case of an infinitely connected domain in The-
orems 5. 2 and 7.1 of 8) respectively. For
the conformity we shall state their proofs again.

The domain B can always be conformally
mapped onto the domain by a univalent func-
tion @& of which the boundary consists of ana-
lytic Jordan curves. Thus we may assume
that so is the domain B.

Construction of ¢ in (i). It is easy to find a
solution u of the boundary value problem
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satisfying the conditions:

(A) u is single-valued harmonic on B;

(B) uis constant on each boundary compo-
nent C; (j=1,-,/+p) with the constant so
chosen that

’O‘u . N
Saj%dj‘-a'—‘Qu j (]_1) Tt /“)!

where 6/6n denotes the inner normal deriva-
tive on C; and ds the line element of C;;

(©) g_z =0 along C, (j=2+ 241, e, N;

(D) u(z)=0.

Let u* be a conjugate harmonic function of u
uniquely determined up to multiples of 2 un-
der the condition

u*(zy)=0 (mod 27)
and set ¢(2) = exp (u-+iw*). Then it is easily

verified that ¢(z) is the function satisfying the
property of (1) up to the uniqueness.

Proof of (iii). Let f be an arbitrary element
of @, andset U=Ilg| f|,u=lg|¢| and h=U—u.
Then we have that

D1gl/H—Dy(1gl¢ )

(1.2)
=2 Dy(u, k) +Dy(h).
We shall verify that
(1.3) Dy(u, h)=0.

Let {By}:_, be an exhaustion of B such that
(" is a portion of the boundary 8B, of B, for
all nand 8B, — (" consists of analytic Jordan
curves Cj, (f=1,-++, 2+ ) homotopic to C; res-
pectively. Let uy(z) for each n=1, 2,:-- be the
function on B, which satisfies the conditions:

(A) uy is single-valued harmonic on B,;

(B) un=c; on each component Cj, (j=1, -,
ji-+u), where ¢; (j=1, -, 1+ u) are the constant
values which u(z) takes on C; respectively;
ou,
on =0
Set u,(z)==¢; (j=1, ---, 2+ ) on each ring do-
main of B— B, adjacent to Cj, respectively.
Then we can casily see that {u,} ., uniformly
converges to u on B and thus

(1.4 lim Dy(u—u,)=0.

(o)) along C,
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Since
S (:—hds:s (',U ds*S E_—ud3=0
01"072 oanIZ oanIZ
(j=17 R l—{—au)
and
?—h:O along C'",
cn
we find that

(e
(1.5) D, (b= gua—ﬂ ds=0

for every =,

Further by the Schwarz inequality
| Da(t, h)-=Dy (tin, k)

< VDy(u—u,) Dy(h)

holds. Qur assertion (1.3) follows from (1.4),
(1.5) and (1.6). Consequently by (1.2) and
(1.3) we have that

Dy(lg| f1)—Ds(1g ¢ |)=Dx(1)=0.
The equality sign in the last inequality ap-
pears if and only if A=const.=0 and thus /= ¢,
because of the normalization condition (d) of 1.

(1.6)

Proof of (iv). Let f be an arbitrary element
of &, and set U=Ig|f|, u=Igle| and h=u
—U. Then we have that

277(;?1 vylg mj(?)*é vylg m,(f))
=Dy(Igl¢ )~ 273 »; Ig m(/)
D)+ 2D, 2)—~Dy(U)

“2”;21 vslg m;(f)-

We shall verify that
(1.8) Dyl 2252 v, g miS).

(1.7

Let {B,}=_, be an exhaustion of B such that
C” is a portion of the boundary 8B, of B, and
¢B,—C” consists of analytic Jordan curves Cj,
(j=1, -+, 2y A+ u+1, -+, N) homotopic to C;
respectively. Let By be a subdomain of B
surrounded by C;, =3%_ Cjn, €7 and C;”
=E~JY=H#+ICJ,C (k>n). Thus B, C B, and G’
and C” are common portions of the bound-
aries of B, and Byx. Let vni(2) for each pair of
n and k (k>>n) be the function on By which
satisfies the conditions:
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(A) wa is single-valued harmonic on Byu;

(B) ovnx=const. on each component Cj, (j
=1,-+, 1) and on each component C; (j=2+1,
-+, 2+ u) with the constant so chosen that

b

g Ct sm s, (j=1, 0, )

O
Evnk = f—= eee .
Scj'a—n*ds“—o (J—X'{‘l, ;‘"I_//‘),
(© %"—:0 along G,/
D) 0, (20)=0.

For [>F the equation

DBnk(vnk, z/nl): HSE Ui 7

Bk

implies that
-DBM(”M — ) = DBnk(v'nk) —‘DBM(vm)-

Thus DBM(vnk) is monotone decreasing with &

and vy strongly converges to a function v, on
B" = Ul?=n+1 B"k as k-—»co:

(1.9)

The function v, satisfies the conditions:

(A) oy is single-valued harmonic on B,;

(B) un=const. on each component Cj, (j
=I,-+, 1) and on each component C; (j=i-+1,
-+-y A+ ) with the constant so chosen that

ov,
Sc" on

Jn

lim Dy, 0= 20) =0,

ds=—2mv, (j=1, -, d),

dv, .
SOJ pa ds=0 (J=A-+1, o) A p);
© 661;" =0 along C';
(D) 0,(2,) =0.

For n>m the equation

v,
DBm(v'm.y vn) = - S Im - d.S'
B, (N

_ 00m 4o
= Swmvm on ds=Dg_(vr)

implies that
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Dy (1 —0,) < D, (22)— D3, (0.

Thus DBn(z;n) is monotone increasing with .
Furthermore the equation

~

(/4

—ds
n

DB"(Uny u): - S’()B U
n

Cvy ,
_ _gwn 022 ds =Dy, (1)

implies that
DBn(u — 1) < Dy(u) "DBn(vn) .
Thus o, strongly converges to u on B as n—>ee:
(1.10) h_,rg DBn(u —0,)=0.
By (1.9), (1.10) and the inequality
JD;, (=) <D, (=0, VDo (0n—as),

we see that there exists a subsequence {ki};_;
of {k}z_, such that

k=1

(1.1
Further the inequality
|DB(U) u) - DBnkn(U’ ynlcn) l

lim D, (142,)=0.

U, w)

<Dy, (U, u—2)| + Dacn,,
< JDyU) DBM (w— vnkﬂ) -+ ]DB——BMC (U, w)

holds and thus
(1.12) }}_{2 DBWc @, Umcn): (U, u).

If we note that

G0 .

I P =1 e 2
Som o ds=2mv, (j=1, -, 2),

U=const. on each C;
(]:l'"i_ly ) A—i—/‘)»

U
I,

—ds =0
cn
(J:)‘+1: "% l+iu)

S %fsdj_o
¢, on ’

and

00

on =0

along G,

then we find that

(1.13) D, (U, ) = —S

ov
U *le ds
aBnk: cn
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A 22 x
._ZS UTdJEQQTZ Z)j[/‘jn(U),
€n n Jj=1

=

where 2, (U) (j=1, -+, J) are defined by

t0)=min U ify,>0
€
and
Uy =max U if v, <0,
C

Jjn

We can easily see that
(1.14) Jim 1 @=Ig m(f) (j=1, -, D).

Our assertion (1.8) follows from (1.12), (1.13)
and (1.14). Consequently, by (1.7), (1.8) and
the condition (h) of 1 we have that

277(32:1 vy lg mj(¢)~ﬁ} v, g mj(f))
(1.15) \ -
= Dy(h)+ 2’7]_:1”} lg my(f)—D, dgif1)

=0,

The equality sign in the second inequality of
(1.15) appears if and only if 4 = const. =0 and
thus f = ¢, because of the normalization con-
dition (d) of 1. Then the equality sign in the
first inequality of (1.15) also appears.

Proof of the unigueness in (1). Let @ be another
element of ¥ with the same circular-radial
slit mapping property of annular type as ¢.
Then by (iii) and (iv) we have that

Dy(lg[¢])=Dy(lgle|)
and thus
¢=e.
Now (ii) is evident.

Remark. The second inequality of (iii) of
Theorem 1.1 does not generally hold for f = .
Also the both inequalities of (iv) of Theorem
1.1 do not generally hold for f= 9. They are
shown by simple examples (cf. Examples of
7).

3. Corollaries. We should note that in
Theorem 1.1 the case =g or C"”'=¢ is per-
mitted. Then we have the following corollary.

CoroLLARY 1.1. (1) Foreach class ¥ there exists
one and only one function r of the class § mapping

Circular-Radial Slit Covering Surfaces
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onto a circular slit covering surface of annular type;
(11) For every f & T the inequality

Dy(Ig 1) < D5 (Ig1f1)

holds and thus for every f& § satisfying (g) of 1
the inequality

i-l Mj(\p,)"; §;|}i—l My(fys

holds. In the both inequalities the equality signs ap-
pear if and only if f=Jr;

(ii1) For each class § there exists one and only one
Sunction X of the class §§ mapping onto a radial slit
covering surface of annular type;

(ivy For every f& § satisfving (h) of 1, the
tnequalities

5>

A
my Xy s =1 my(f )
1 j=1
and thus

Dy(Ig (X )= D:(glf1)

hold. In the both inequalities the equality signs ap-
pear if and only if f= 7.

RemARk. Let D;(j=4+1, -, N) be the com-
plement continua of B adjacent to C; respec-
tively and let

B'=B+3D,,, and B=B+Y Dy, ...
J=1 J=1

Let §(BY) and $(B2) be the class § defined
for the domains B! and B? respectively in place
of B. Apply the consequences (iii) and (i) of
Corollary 1.1 to &(B') and F(B?) respectively.
Then we see that the restrictions to the domain
B of the functions ¥ = §(B!) and v = (52 of
Corollary 1.1 belong to  and 9 respectively.
Furthermore it is easily verified that the func-
tions ¥ and 4 also belong to & and £’ respec-
tively. The above construction method is
available for each domain conformally equiva-
lent to Bin place of B. Therefore we know that
the both classes & and £’ have infinite num-
bers (in continuum potency) of elements other
than the function ¢ of Theorem 1.1.

Consider the class § of the case i=2, yi=1,
y;=—11in 1 and let §, ®; and 9, be the sub-
classes of &, & and 9 respectively consisting of
univalent functions f(z).  Then & C & and
further f = & for f = &, satisfying (j) of L.
Thus we have the following corollary of
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Theorem 1.1.

Corovriary 1.2. (i) For the class 55 of the case
=2, vi=1, vs=—1 there exists one and only one
JSunction @ of the class § mapping onto a circular-
radial slit covering surface of annular type (circular-
radial slit annulus);

(i1} The function ¢ is the only element which
simultaneously belongs to & and ©;

(iii) For every f = © the inequalities

Dy(gle )< D,(g | f )
and thus

Ml(SO) < M](f)
Myp) = My(f)

hold.  In the both inequalities the equality signs ap-
pear if and only if f = o;

(v) For every f € 9y satisfying (j) of 1, the
inequalities

m,(f)
- mz(f)

m1(50>
mz(ﬂp)

and thus

Dylgle)=D,1g| f1)

hold.  In the both inequalities the equality signs ap-
pear if and only if f= .

If ¢ = ¢ (or C" = @) in (iii) (or (iv) resp.) of
Corollary 1. 2, then &; = & (or H; = F resp.)
and the present consequences are reduced to

the well-known classical results (cf. 1), 9) and
10)).

§ 2. CGircular-radial slit covering
surface of circular type.

1. Definitions. Let B be a domain on the
z-plane of which the boundary C consists of a
finite number of continua Ci, ---, Cy (N = 1).
Partition the boundary C into three disjoint
sets of its components

A
=30,
J=1
n
cn :2 C)\+f
J=1

and
cr :i C)\+u+j
j=1
(121; 1"‘_.2_0, V207 l—-}—‘”‘_*—;:N)!

(Vol. 4,

where (=g or ""'=4¢ is permitted. Letz; (j
=1, ¢; ¢ =1) be arbitrarily preassigned .
points in B, and let w = f(;) be a single-
valued regular function on Bwhich has the only
zeros z; (j=1,---,¢). The rotation number
vi( f)of theimage of a generic boundary compo-
nent G, about w = 0 under f is defined by

1
=g\, dare],

where Ci is an analytic Jordan curve homo-
topic to C, in B— {z;} 5-1 and vx(f) is an integer
not depending on a particular choice of Ct.

Let n;(j=1,-, 0 and y; (j=1,---, 2) be ar-
bitrarily preassigned positive integers under
the condition

L

=

J=1

A
(2. 1) = Z e
Jj=1
Let § be the class of single-valued regular func-
tions w= f(z) on B which have the properties:
(a) f has only zeros z; (j=1,--,¢) with
their order n, respectively;

() w(f)=v; (=14,
Vj(f)::O (]:A'_l_ly Y N)’

(c) Holg |f|darg f | < +oo,

where the line integral means lima-w [opa

lg|f| d arg f with an exhaustion {By}3_, of B;

(d) f satisfies the normalization condition
J(2)

1
1 ——2 —_ fn) —
1132111 (R—z)n 7 my! Jroe)=1.

We can easily see that & - ¢.

Let {2m} 7, (j=1, ---, N) be sequences of
ends defining C, respectively; i. e. G5 C 2
for every n, 25011 C 25 and MNa-1 25n = ¢.
Let & be the subclass of §§ which consists of
functions f(z) of & satisfying the condition:

(e) An arbitrary branch of arg f is constant
on each component C;(j= i+pu-+1, -, N),
which means that

Narg f(2)

is reduced to a real value.

Let  be the subclass of § which consists of

functions f(z) of & satisfying the conditions:
(f) | f| is constant on each component C;
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(j=2+1,---, 2+ 1), which means that

n[=\1 I_f (-QJn) I

is reduced to a real value.
Set

m () =inf N\ TF @],

M) =sup N TT@DI (G=1, -, ),

Let & be the subclass of & which consists of
functions fiz) of @ satisfying the condition:

A
(g) Sclg!fl darg f< 225 v lg M,(f).

Let  be the subclass of © which consists of
functions f(z) of § satisfying the condition:

) | 1g1f] d arg f< 253 v lgm ().

Let {B,} 7., be an exhaustion of Bsuch that
the boundary 8B, of B, consists of analytic Jor-
dan curves Cj, (j=1, -, N) homotopic to C;
respectively and such that {z)}4., C Bj, and
let C, =33_,Ci, C; =3¢ Crijn and G
=3V Crxiprjm. Iff = @ satisfies the condi-
tion:

(i) g Ig|f| darg f
o

Sldarg f<0,

then f belongs to the class &'. If / = § satisfies
the conditions:

(3 |fl=const. (=my(f)=M,f)) on each
component C; (j=1,-, A);

(k) Somlg!fldargf

=lim | lgIf|darg S0,
Cn

74— 00

=lim S I
>0 o,

then f belongs to the class £’. We shall see
that the classes &, 9, & and & are not vacu-
ous (cf. Remark of 3).

2. Theorem. By a function of the class &

mapping onto a circular-radial slit covering surface of

circular type we mean the function ¢ of the class
2% which satisfies the conditions:

(1) An arbitrary branch of arg ¢ is constant
on each component C; (j=Ai+ u+1, -+, Ny;

(m) |¢] is constant on each component Cj

Circular-Radial Slit Covering Surfaces 25

(J: 15 R )u‘i‘/l).
For the function ¢

A
Saglgh/;] d arg Sp:?ﬂ‘jZ:l v;lg myp)
A

= 275-’2::1 Yy lg M;((p)

holds. The image covering surface by ¢ is call-
ed a circular-radial slit covering surface of circular

type.
Let
J=| 18171 darg s
2.9) o
—27{2 n; lg | f"(z))],
and
Tmy(f)"
m(f)=—21= o —
2.3) AR
irMJ(f)"f

M(f)=

TS
for f € &, where
JZ)

fii(z)=lim G—zy

2z
J

1
=1 )

(J: 1) e ()'
Generally M(fy=m(f). 2xlg M(f)=Jf)
for fe &, 2z lgm(f) = J(f) for f = & and
further 27 lg m(p) = 2r lg M(p) = J(¢) for the
function ¢.

TuroreM 2. 1. (1) For each class ¥ there exists
one and only one function ¢ of the class § mapping
onto a circular-radial slit covering surface of circular
type;

(i) The function ¢ is the only element which sim-
ultaneously belongs to & and 9

(iii) For every [ = @ the inequality

Jo) = K

holds and thus for every f € & the inequality

M) < M(f)
holds. In the both inequalities the equality signs ap-
pear if and only if f=¢;
(iv) For every f € ' the inequalities
m(e) = m(f)

J) = J(S)

and thus
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hold. In the both inequalitics the equality signs ap-
pear if and only if f=o.

Proof. The domain B can always be conform-
ally mapped onto the domain of which the
boundary consists of analytic Jordan curves,
by a univalent function @ satisfying the condi-
tions @(z1) = 71 and @&'(z;) = 1. Thus we may
assurme that so is the domain B. In fact, by
the mapping the functional J{ f) varies only an
additive quantity

23 nf lg |02,
j=2

and the functionals m(f) and M(f) vary only
a multiplicative constant

¢ 2
T {2'(2,)|"s
i=2
independent of a particular choice of f € .

Construction @ in (i). It is easy to find a solu-
tion u of the boundary value problem satisfy-
ing the conditions:

(A) u is single-valued harmonic on B
— {z;}4.; and has logarithmic singularities

wR)=mn, Ig|z—2z,| +o(1) atz,
and
u(z)=n;lg[z—z,| +0(1) atgz,
(j=2, =, o;
(B) u is constant on each boundary com-

ponent C; (j=1, -+, A+ x) with the constant so
chosen that

ou .
So,?ﬁ ds=—2m;  (j=1, -, d)

cu
c.0n

J

ds=0 (j:).—}-l,---,}%—/},);

(©) 5-=0 along C, (j=2+p+1, - N),

Let u* be a conjugate harmonic function of u
uniquely determined up to multiples of 27 un-
der the condition

lim (@*(2)—n, arg (2—z,)) = 0 (mod 2x),

22 1

and set ¢(z)=exp (u+iu*). Then it is easily
verified that ¢(z) is the function satisfying the
property of (i) up to the uniqueness.

(Vol. 4,

Let f be an arbitrary element

Proof of (iid).
of & and let

B.=B—3{|2—2,| <1},
=1

where 7 should be chosen suitably sufficiently
small. Then, the image curves of {|z—z;|=r}
(j=1,---,¢) under f surround about w=0 m;
times (j=1, .-+, ¢) respectively and lie between
circumferences

0] =5[22 | (1 +309)
and

lw|=rs]|fm2z)|(1—-6@() (J=1,-+ 0
respectively, where the positive number &(r)

does not depend on a particular choice of f
=@ and

lim ¢(r)=0.

T4

Therefore, using the Green formula, we have
that

J)=Ds (g1 f1)
_)_Jil;‘l Slz—z.|=,«lg‘fl dargf
— 23, lg| S|

C-H Db, (g1.71)+ 2533 1, lelrs s i)

—2r % n; 1g| S (@) [+ 06()

=Dy, (g1 1)+273] n/lg 7+ 0(().

Set U=lg| f], u=lg|¢| and h=U—u. Then

we have that
SN —He)=Dys (g1 f1)—D5 (gl
+0(0(r))
=Dy (U)—Dj (u)+0((r))
~2D, (u, h)+D, (h)+0((r)),
which yields, by r—0,
(2.5)  JS)—Ke)=2Ds(u, h)-+Dy(h).

By the method similar to (iii) of Theorem 1
of 7) we can verify that

(2.6) D,(u, k)=0,
By (2.5) and (2.6) we have that
S ) —Je)=Dy(h)=0.

The equality sign in the last inequality
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appears if and only if A= const.=0 and thus

Jf= @, because of the normalization condition
(d) of 1.

Proof of (iv). Let f be an arbitrary element
of & and set U=lg|f|,u=Ig|¢| and h=u—T.
By (2.4) we have that

J) = IS ) =Dy () =Dy (U) +0((r))
=2 D), (U, 1)+ Dy (0) + 060,
which yields, by r—0,

(2.7)  Jg)—JS)=2DyU, k)-+Dy(h).
We shall show that

A
Dy, ﬁ)227fj§”j lg m',(f)

| Jelriaarss

Let {B,}7_, be an exhaustion of B such that
(" is a portion of the boundary ¢B, of B,, (B.
— (" consists of analytic Jordan curves Cj, (Jj
=1, 4, 24+ p+1, -, Nyhomotopicto C,respec-
tively and such that \U‘_, {z;} C Bi. Let Bue (k
>=n; B.,,=B,) be asubdomain of B surrounded

(2.8)

by €, = X5_,Cpn, C"and G = Eip,Co

Thus B, C By, and C, and C” are common
portions of the boundaries of B, and B,. Let
vak(z) for each pair of # and & (k = n) be the
function on B, which satisfies the conditions:

(A) ovm is single-valued harmonic on B
— {z;}4-, and has logarithmic singularities
vuR)=nlg|z—2, | +o(l) atz
and
va(R)=n;1g|z—2,| +0(1) atz;

(J=1 )
) umx =const. on each component C;, (Jj
-+, /) and on each component C; (j=,;+1,
-o+y A + 1) with the constant so chosen that

(B
=1,-

00, ;
Som“t‘inﬁk ds= =2z 5 (j=1, -, 2),

0
[, owds=0
o, On

'J

6 z)nk
cn

(C) =0 along C./7,

Extend 1,4 to B by setting ¢ =0 on B— B.

Circular-Radial Slit Covering Sur faces 27

For [=k>n the equation
DBnk(vnlc— 4 un)

0
= SBBn (vnl'"' vnn) —é‘;(vnk - v‘rm) ds

CU
——S PR ' = ds
’” , in
€ —Cp

00
;Son Unn on £ ds-= DB (vnh

nny Ill

nn)

implies that

DBnk(vnl'_ Z/nk) g DBM(Z}nl'— vnn)

_DBnk(vnk - vnn)-
Thus DBM(U,L,c — Unn) is monotone increasing

with &. Let vy be the function on B, which
satisfies the conditions:

(A) ©vn is single-valued harmonic on B,
— {2, 4-,and has the same logarithmic singulari-
ties as van at 25 (j=1, -, 0);

B) 2,=0 on ¢B,.

Since, on setting 7, = 0 on B —B,,

nk
D M(ano nny n rm) S 1 7m '“

Bnk( U — Z}nn);

we find that
DB,nk(vnlc —Uno ) = DBn(vno '_“ Z"nn)
- DBnk(Z)nlc - Z}nn)-

Hence Dl;nk(vm»— Unn) 1s uniformly bounded
and

= lim v,
K—>oc0
exists on By=\_;

(2.9)

lim Dy, (v,~—v.:)=0.
Koo n

The function v, satisfies the conditions:

(A) v, is single-valued harmonic on B,
— {z;}4_, and has the logarithmic singularities
0,(2)=nlg[z2—2, | +o(l) atg
and
v(3)=n;lg|z—%;| +0(1) atgz,
(=1, );
(B) wv,=const. on each component C;,(J
=1,--, ) and on each component C; (j=4i-1,

-+, 4~ ) with the constant so chosen that
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S 00 fs— 20, (j=1, -+, 2) oU

., ) ) 2.13) ﬂwuﬂm

nkn
ov .
nds:O (]:]_+1, ...’Z._i_‘,}'))- A aU
S%W >3 (U)+\  Un-ds,
i=1 I 3B,y on
0o, "
© on =0 along ", where p(U) (j=1, -+, 2) are defined by

Extend v, to B by setting v,=0 on B—B.
For n=m the equation

DBm(Um — 0y, Uy 0))

on S on

m 1

o(v, — 0
:,,S @m~vyﬂﬁ;i@dy_g, 2, 20 ds
aBl c.—C

0v, v ,
- Li Un oy ds— SC;‘ Unm E{df—DBm(Um’— v,)

implies that
DBm(vn — ) = DBn(Un —2y) ’“DBM(Um —y).

Thus Dg (va—v;) is monotone increasing with

n. Furthermore the equation
Dy (v,— vy, u—2,)=Dpg (2,—7))
implies that
DBn(u —v,) = Dy(u—v) -DBn(vﬂ —u).
Thus v, strongly converges to u on B as n->oe:
(2.10) lim Dy (u—12,)=0,
By (2.9), (2.10) and the inequality
VD =52 ZADa (4 —5.) - \Ds o),

we see that there exists a subsequence {k.} 3,

of {k}z., such that
2.1 lﬂn‘)o Dy, (u—v, )=0.
Set hn=vu,—U. Then by (2.11) we can easily

see that

(2.12) ,hg.} DBnk W, h)=Dy(U, k).
When we note the boundary behaviors of
v and U, we find that

m(amu_g U %0 g
ulr” 6

a“uk‘ n
I

t(U)=min U
Cjn
respectively. We can easily see that

(2.14) IEE paU)=1g m(f) (=1, 4).

Our assertion (2.8) follows from (2.12), (2.13)
and (2.14). Consequently, by (2.2), (2.3),
2.7), (2.8) and the condition (h) of 1 we have
that

2x(1g m(g)—1g m(f)
=Jg)= )= (273 v g mi( )

(2.15) _Solgifldargf)
gmm+%§wgmu)
| 181/1 darg sz 0.

The equality sign in the last inequality of (2.
15) appears if and only if 4 =const.=0 and
thus f=¢, because of the normalization condi-
tion (d) of 1. Then the equality sign in the first
inequality of (2.15) also appears.

The uniqueness in (i) will be obvious by (iii)
and (iv). (ii1)is also evident.

RemArk. The second inequality of (iii) of
Theorem 2.1 does not generally hold for f = @.
Also the both inequalities of (iv) of Theorem
2.1 do not generally hold for f = . They are
shown by simple examples (cf. Examples of

7).

3. Corollaries. We should note that in
Theorem 2.1 the case C"=¢ or (=4 is per-
mitted. Then we have the following corollary.

CoroLLARY 2. 1. (1) Foreach class ¥ there exists
one and only one function \r of the class T mapping
onto a ctreular slit covering surface of circular type;

(i1) Forevery f = § the incquality

JE) = JS)
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holds and thus for every f < & satisfying (g) of 1 the
inequality
M(y) < M(f)
holds. In the both inequalities the equality signs ap-
pear if and only if f =
(ii1) For each class § there exists one and only
one function X of the class § mapping onto a radial
slit covering surface of circular type;
(iv). For every f = § satisfying (h) of 1, the in-
equalities
m(X) = m(f)
and thus

JX) =)

hold. In the both inequalities the equality signs appear
if and only if f=7.

REMARK. Let D, (j=2-+1, -+, N) be the com-
plement continua of B adjacent to C; respec-
tively and let

B'=B+3' D, and B=B+> D,,,.,
J=1 J=1

Let (B! and §(B?) be the classes §F defined
for the domains B! and B? respectively in place
of B. Apply the consequences (iii) and (i) of
Corollary 2.1 to %(B!) and §(B?) respectively.
Then we see that the restrictions to the domain
B of the functions 7 € F(BY) and ¥ = F(B2)

of Corollary 2.1 belong to & and  respectively.

Furthermore it is easily verified that the func-
tions ¥ and v also belong to & and §’ respec-
tively. The above construction method is avail-
able for each domain conformally equivalent
to Bin place of B. Therefore we know that
the both classes & and & have infinite num-
bers (in continuum potency) of elements other
than the function ¢ of Theorem 2.1.

Consider the class i of the case 2= ¢ =1, u;
=m=1in1, and let &, &; and H, be the sub-
classes of &, & and $ respectively consisting of
univalent functions f(z). Then & C & and fur-
ther f € 9 for f = 9 satisfying (j) of 1. Thus
we have the following corollary of Theorem
2.1.

Cororrary 2.2. (1) For the class § of the case
J=t=1, vy =ny=1 there exists one and only one
Sunction ¢ of the class § mapping onto a circular-
radial slit covering surface of circular type (circular-

radial slit disk);
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(i1) The function ¢ is the only element which sim-
ultaneously belongs to & and 9 ;
(iii) For every f & & the inequalities

J@)=JU)

and thus
Mp) < M(f)

hold. In the both inequalities the equality signs ap-
pear if and only if = ¢;
(iv) Forevery f = § satisfying (j) of 1, the in-

equalities

ml(Sp) = mx(f)
and thus

Jo) = JS)

hold. In the both inequalities the equality signs ap-
pear if and only if f = ¢.

If ¢ = ¢ (or C” = ¢) in (iii) (or (iv) resp.) of
Corollary 2.2, then & = & (or §; = F) resp.)
and the present consequences are reduced to
the well-known classical results (cf. 1), 9)
and 10)).
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